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Rate-One Space–Frequency Block Codes With
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Abstract—We propose a novel rate-one (i.e., one symbol per
transmission), space–frequency block code (SFBC) for an orthog-
onal frequency division multiplexing (OFDM) system with trans-
mit (M ), and receive (N ) antennas that achieves the maximum
diversity attainable over frequency-selective channels. Moreover,
the space–frequency (SF) code design is shown to be robust to
overestimation of the (true) channel order L at the price of
increasing decoding complexity. Further, even if the channel order
is underestimated (K < L), diversity order of MNK is achieved
with commensurately reduced decoding complexity; this allows a
natural mechanism for trading diversity for decoding complexity
as desired. In addition, since the SF code symbol is transmitted in
one OFDM block duration, it has a smaller processing delay than
comparable space–time–frequency block codes (STFBC).

Index Terms—MIMO, OFDM, space–frequency block codes,
space–time block codes.

I. INTRODUCTION

F IXED broadband wireless access (BWA) in the 2–11 GHz
band is a rapidly maturing “last-mile” solution for residen-

tial and enterprise scenarios that holds great promise for regions
with low penetration of cable/telephony loop plant. The IEEE
802.16a Task Group for Wireless Metropolitan Area Networks
has recently finalized a standard [1], [2] for wireless access
to an external stationary receiver on customer premises from
a nearby base station.

In fixed BWA, deep fades due to multipath propagation can
persist over a significant period of time and such wide-area
wireless channels also encounter significant multipath disper-
sion that limits the maximum achievable rates. Since fixed
BWA competes with cable modems and asynchronous digital
subscriber line where the channel is static nonfading, new sys-
tem designs must counteract these key challenges and provide
high data-rate access comparable to wireline cost/performance
considerations.

The use of multiple antennas at both transmit and receive
ends of a wireless link resulting in a multiple input multiple
output (MIMO) channel has been recognized as an important
system component towards meeting these requirements. Point-
to-point MIMO schemes ideally allow both high-rate trans-
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mission and exploitation of the multipath diversity available
between any transmit–receive pair in an MIMO setup; in
practice there exists a fundamental tradeoff between spatial
multiplexing that increases the achievable rate and diversity that
enhances link reliability [9].

As is well known, orthogonal frequency division multiplex-
ing (OFDM) is a multicarrier transmission scheme that can po-
tentially attain high-rate transmission due to enhanced temporal
spectral efficiency. In packetized transmission over frequency-
selective (dispersive) channels, OFDM can eliminate the effects
of ISI by inserting cyclic prefix (CP) in the header, at the cost
of a penalty in channel utilization due to the added overhead.
Hence, receive equalization to compensate for the channel fre-
quency response (probably the most important receiver subsys-
tem in single-carrier modulation) is now trivially implemented
via a complex scalar multiplication on a tone-by-tone basis.
Thus a combination of MIMO and OFDM (MIMO–OFDM)
appears particularly promising for fixed BWA. In this paper,
we focus on space–time (S–T) coding methods that maxi-
mize diversity gain in MIMO–OFDM systems over frequency-
selective channels, to meet the quality of service requirements
and desired data rates for intended applications.

A. Literature Review

S–T coding was initially introduced for narrowband single-
carrier systems operating over flat fading channels where spatial
diversity in the form of multiple transmit antennas was avail-
able. The simple linear block code of [15] was generalized via
the theory of S–T block codes (STBCs) [18], but at the price
of rate loss for a complex constellation and when the number
of transmit antennas exceed two. To maintain rate of unity,
nonorthogonal STBC has been proposed by several authors
(e.g., [27], [29], and [30]) which trades decoding complexity for
rate-one. Moreover, S–T block coding based on linear complex
field (LCF) precoding enables full diversity without any rate
loss [7], [8], [22], [26], [28]. For broadband wireless systems
over frequency-selective fading channels, S–T code (STC)-
OFDM modulation [10], [13]1 has been naturally proposed and
STBC-OFDM can preserve the orthogonality of STBCs (that
leads to a simple receiver) while enabling high data rates. How-
ever, the channels need to be quasistatic over several OFDM
symbol blocks. Moreover, since the S–T encoding is applied
independently on subcarriers, only maximum spatial diversity

1Here, each subcarrier is independently S–T encoded and the resulting
symbols sent over multiple transmit antennas.
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but not frequency diversity is achieved. In order to exploit the
inherent frequency selectivity available in the channel, coding
across the subcarriers is needed. Several S–T–frequency (STF)
or space–frequency (SF) schemes have been proposed [3]–[6],
[12], [14], [20]. However, simply using Alamouti code on adja-
cent subcarriers [12] fails to exploit the frequency selectivity in
the channel. Similarly, [14] trades achievable rate for limited
(second order) frequency diversity. In addition, in [14], the
choice of the cyclic shift of the replica symbol depends on the
channel, necessitating feedback.

In [6], the S–T trellis code designed shows that a large
effective block length and the ideal interleaving are two key
requirements in STC coding for OFDM systems. The authors
adopt existing codes that do not achieve the maximum diversity
gain available in the channel.

In [3], the design criteria for SF coding was established. It
was shown that the figure of merit for designing good SF codes
is vastly different from that for S–T codes in narrowband fading
channels. For example, employing known S–T codes as SF
codes by coding across space and frequency (rather than across
space and time) in general provides spatial diversity but fails to
exploit the available frequency diversity [3]. The case of two
transmit and one receive antennas for a two-tap channel was
considered in [4]. Although a full diversity code was designed,
the design criteria imposed limits on the achievable code rate
leading to a rate of 1/4 SF code. Most recently, [32] proposed
a systematic method for the design of SF codes with variable
multiplexing–diversity tradeoff through linear precoding.

In [5], a novel STF block code for a multiple-antenna OFDM
transmission over frequency-selective Rayleigh fading channels
was proposed. Incorporating subcarrier grouping and choosing
appropriate system parameters, the authors converted their sys-
tem into a set of grouped STF systems. This enabled simplified
STF block coding within each group. The resulting codes were
shown capable of achieving both maximum diversity and cod-
ing gain, while affording low-complexity decoding. However,
since the authors used orthogonal STBC as the component S–T
code, STFBC incurs rate loss when the number of transmit
antennas is greater than 2. Another disadvantage of [5] is that it
requires the channel to be constant during 2M(M ≥ 4) OFDM
symbol times for M transmit antennas implying a longer
processing delay. Recently, another kind of S–T-multipath cod-
ing method, which uses digital phase sweeping (DPS), has
been proposed in [20]. This overcomes the drawback of rate
loss in [5], guarantees maximum diversity, and achieves good
coding gain.

The contribution of this paper is a new SF block coding
scheme that achieves maximum diversity available in MIMO–
OFDM systems over frequency-selective channels; like [20],
this maximum space–multipath diversity is obtained without
rate loss for any number of transmit antennas and requires that
the channel be constant only for one OFDM symbol duration.
We note that while [20] and our SFBC-OFDM were designed
independently resulting in very different encoder structures, the
complexity and performance of these two schemes are very
close to each other. Table I summarizes the above discussion
and provides a comparison among various ST/SF/STF block-
coded OFDM schemes.

TABLE I
COMPARISON AMONG VARIOUS ST/SF/STF BLOCK

CODED OFDM SCHEMES

II. DESIGN CRITERIA AND CODE CONSTRUCTION

We adopt the design criteria proposed in [3] for an
MIMO–OFDM system with M transmit and N receive an-
tennas and Nc subcarriers, where Nc � M , N . Let C =
[ c0 c1 . . . cNc−1 ] and E = [ e0 e1 . . . eNc−1 ] be
two different SF code words represented by matrices of size
M × Nc, where ck = [ c(0)

k c
(1)
k . . . c

(M−1)
k

]T stands for
the kth frequency vector composed of transmitted data symbols
with c

(i)
k denoting the data symbol transmitted from the ith an-

tenna on the kth tone. In [3], it is assumed that the channel
consists of L matrix taps (each of size N × M ) with the matrix-
valued transfer function given by

H(e j2πθ) =
L−1∑
l=0

Hle
−j2πlθ, 0 ≤ θ < 1. (1)

For Rayleigh fading channels, the elements of Hl (l =
0, 1, . . . , L − 1) are (possibly correlated) circularly symmetric
zero-mean complex Gaussian random variables with variance
σ2

l , where the path gain σ2
l is derived from the power delay

profile of the channel. Furthermore, it is assumed that heavy
scattering occurs around the transmitter whereas the receiver
is unobstructed. This implies that the signal from different
transmit antennas will be uncorrelated, modeled by assuming
that different columns of Hl are uncorrelated. Due to the lack
of scattering at the receiver, signals at different receive antennas
will be correlated which corresponds to correlation among
different rows of Hl. In addition, the contributions from distinct
scattering clusters are assumed to be uncorrelated and a uniform
linear array is used for both the transmitter and the receiver.
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An upper bound on the expected pairwise error probability
(averaged over all channel realizations) was derived in [3] as

P (C → E) ≤
rank(CY )−1∏

i=0

[
1 + λi(CY )

Es

4σ2
n

]−1

(2)

where CY =
∑L−1

l=0 [Dl(C − E)T(C − E)∗DlH] ⊗ Rl =
F (C,E)F (C,E)H has a dimension NcN × NcN and λi(CY )
is the ith nonzero eigenvalue of CY . Rl denotes the N × N
correlation matrix of the kth column of the zero-mean matrix
Hl, which is independent of k, or equivalently the fading
statistics are the same for all transmit antennas. Also, the
power delay profile of the channel is absorbed into the cor-
relation matrices. F (C,E) is an NNc × MNL matrix defined
as shown in (3) at the bottom of the page, where D =
diag{exp[−j(2π/Nc)k]}Nc−1

k=0 . As mentioned in [3], the ac-
hievable diversity order critically depends on the propagation
environment and the antenna spacing (interested readers should
refer to [25] for details on the impact of receive correlation on
SF coded systems). In order to achieve MNL-fold diversity, it
is necessary that: 1) r(Rl) = N for l = 0, 1, . . . , L − 1; 2) the
Nc × M matrix (C − E)T is full rank over all distinct {C,E}
pairs; and 3) the stacked matrix F (C,E) always has full rank
as well.

It is already known that for the case when Rl is full rank, the
diversity order achieved by an SF code is independent of spatial
correlation (i.e., the specific structure of Rl);2 hence without
loss of generality, we assume in the subsequent proof that the
channel is characterized by: i) no spatial fading correlation
and ii) uniform power delay profile, i.e., Rl = IN for l =
0, 1, . . . , L − 1.

For the above, CY can be simplified as CY = S ⊗
IN with S = G(C,E)GH(C,E) having a dimension Nc ×
Nc where G(C,E) is the Nc × ML matrix G(C,E) =
[ (C − E)T D(C − E)T · · · DL−1(C − E)T ]. Therefore,
the upper bound in (2) on the expected pairwise error prob-
ability (averaged over all channel realizations) simplifies to [4]

P (C → E) ≤
rank(S)−1∏

i=0

[
1 + λi(S)

ρ

4

]−N

(4)

2Note that receiver spatial correlation does induce a loss of coding gain, but
this is independent of the code design [25].

where ρ = (Es/σ2
n) is the average signal-to-noise ratio (SNR)

and λi(S) is the ith nonzero eigenvalue of S. The diversity
order of the code is defined as Gd = min{C,E} rank(S) × N .
For Nc > ML, the rank of the Nc × ML matrix G(C,E) is at
most ML and hence the maximum achievable diversity order
is MNL. In order to achieve MNL-fold diversity, appropriate
code design is needed to ensure that not only the M × Nc error
matrix (C − E) is full rank over all distinct {C,E} pairs, but
the stacked matrix G(C,E) always has full rank as well.

A. Code Construction

For rate-one SF block codes, the number of information
symbols mapped into the SF code matrix is equal to the number
of subcarriers Nc. We choose Nc = M × K × G, where K is a
transmitter design parameter that can be appropriately adjusted.
To achieve full diversity order MNL, we can choose K ≥ L;
however, we may choose to use K < L to trade diversity with
lower receiver complexity. In addition, G is the number of
groups the subcarriers are divided into (see Figs. 1 and 2).

First, the Nc × 1 vector of input symbols s =
[ sT

0 sT
1 · · · sT

G−1 ]T is divided into G groups of size
MK × 1 vectors {sg}G−1

g=0 . Next, each sg is left multiplied by
the same constellation rotation (CR) precoder Θ [8] of dimen-
sion MK × MK to produce size MK-vector vg = Θsg =
[θT

1 sg · · · θT
MKsg ]T, where θT

i denotes the ith row of Θ.
Then we partition each vg into K M × 1 subvectors;
each subvector is then used to create an M × M diagonal ma-
trix Dsg,k = diag{θT

M×(k−1)+1sg · · · θT
M×ksg }, for k =

1, . . . , K. The resulting K submatrices are regarded as
belonging to the same group. Finally, we map the submatrices
from the G groups (a total of G × K diagonal matrices) into
a large M × Nc SF matrix in such a way so that submatrices
from the same group are equally spaced. In other words, a total
of G precoded symbol vectors {vg}G−1

g=0 are mapped in the SF
domain to get the M × Nc SF matrix (or SF codeword) [see
(4a) at the bottom of the page]
Remarks:

1) Generally, the true number of channel taps L is unknown
at the transmitter, which assumes a parameter K �= L for
this purpose. Implicitly, we assume that K is also known
at the receiver.

2) Introduction of G is needed to ensure Nc = MKG
holds since generally ML < Nc and the design parame-
ter K related to L is generally chosen to satisfy MK <
Nc. Typically, G will be small (G = 1 when MK is

F (C,E) =
[
(C − E)T ⊗ R

1
2
0

[
D(C − E)T

]
⊗ R

1
2
1 . . .

[
DL−1(C − E)T

]
⊗ R

1
2
L−1

]
(3)

C = [Ds0,1 Ds1,1 · · · DsG−1,1 · · · · · · Ds0,K Ds1,K · · · DsG−1,K ] (4a)
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Fig. 1. Baseband multiple antenna OFDM system model.

Fig. 2. Structure of rate-one SFBC matrix C.

sufficiently large); however, because all the diversity is
collected within each subgroup of subcarriers (as shown
later in the proof), code performance will not be affected
by the specific value of G. Further, we remark that if
the maximum diversity order is not deemed necessary,
we may choose K < L in order to trade diversity (the
achieved diversity order is MNK in this case) for lower
decoding complexity, as will be demonstrated.

B. Precoder Design

The general form of square CR matrices [7], [8] has row-wise
Vandermonde structure

Θ =
1
ψ




1 α0 · · · αMK−1
0

1 α1 · · · αMK−1
1

...
...

...

1 αMK−1 · · · αMK−1
MK−1


 (5)

where ψ is a normalizing scalar that enforces the power con-
straint E(‖Θs‖2) = E(‖s‖2) = MK. It is shown in [8] that
the CR precoder Θ achieves maximum diversity over any

quadratic-amplitude modulation (QAM) constellation provided
any of the following holds.

1) MK is an Euler number, i.e., MK ∈ S1 = {φ(P ) :
P �= 0(mod 4)}, and {αk}MK

k=1 are chosen to be roots
of the equation ΦP (x) = 0, where ΦP (x) =

∏
i∈I(x −

αi) with I := {i|gcd(i, P ) = 1 and i ∈ [1, p)} and α :=
exp[ j2π/P ].

2) MK is a power of 2, i.e., MK ∈ S2 = {2Q : Q ∈ N},
and {αk}MK

k=1 are chosen as the roots of xMK − j = 0.
The precoder in (5) becomes a unitary precoder that
can be factored as: Θ = FT

MKdiag(1, α, . . . , αMK−1),
where FMK is the MK-point inverse fast Fourier
transform (IFFT) matrix with (m + 1, n + 1)th en-
try (MK)−1/2 exp[ j2πmn/(MK)], and α := exp[ jπ/
(2MK)].

3) MK �∈ S1 ∪ S2, and {αk}MK
k=1 are chosen to be the roots

of xMK − (1 + j) = 0.

In our SFBC, we make use of the following desirable prop-
erty of Θ: for all distinct pairs {sg, s̃g} and vg = Θsg , ṽg =
Θs̃g , the corresponding error vector eg = (vg − ṽg) has all
nonzero elements. Thus if we generate Ds̃g,k, k = 1, . . . , K
from s̃g , then the K diagonal error matrices (Dsg,k − Ds̃g,k)
have all nonzero diagonal elements. Therefore, all distinct
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pairs {sg, s̃g}, give rise to K full-rank diagonal error matrices
(Dsg,k − Ds̃g,k); this property will be used later in our proof.

C. Diversity Order Evaluation

Theorem 1: Under the assumption that r(Rl) = N for l =
0, 1, . . . , L − 1, the SF codes proposed can achieve the diver-
sity order of MNL (or MNK) for K ≥ L(or K < L), or
equivalently, the diversity order is min(L,K)MN .

Proof: As already argued based on the results in [25],
it suffices to show that the theorem holds for the case of no
spatial fading correlation with a uniform power delay profile.
From (4), this is equivalent to proving that over all distinct
{C,E} pairs, min{C,E} rank(S) = M min(L,K). Since S =
G(C,E)GH(C,E) and rank(S) = rank[G(C,E)] = rank[G(C,
E)T], this is equivalent to showing that min{C,E} rank[G(C,
E)T] = M min(L,K), where G(C,E)T is an ML × Nc

matrix

G(C,E)T =




(C − E)
(C − E)D

...
(C − E)DL−1


 (6)

and D = diag{exp[−j(2π/Nc)k]}Nc−1
k=0 .

As defined in Section II-A, C = [Ds0,1 Ds1,1 · · ·
DsG−1,1 · · · · · · Ds0,K Ds1,K · · · DsG−1,K ], where
Dsg,k = diag{θT

M×(k−1)+1sg · · · θT
M×ksg }, for k = 1, . . . ,

K. Similarly, let E = [Ds̃0,1 Ds̃1,1 · · · Ds̃G−1,1 · · · · · ·
Ds̃0,K Ds̃1,K · · · Ds̃G−1,K ]. Consider the Nc × 1 vectors
s = [ sT

0 sT
1 · · · sT

G−1 ]T, and s̃ = [ s̃T
0 s̃T

1 · · · s̃T
G−1 ]T

such that s �= s̃; then there exists sg �= s̃g for some g ∈
{0, . . . , G − 1}. For rate-one SFBC, the min{C,E} rank[G(C,
E)T] is achieved when there is only one subvector sg �= s̃g for
some g. Without loss of generality, let this be s0 �= s̃0.

Define the diagonal M × M matrices A(k−1)G+g+1 =
Dsg,k − Ds̃g,k, k = 1, . . . ,K; g = 0, . . . , G − 1. Note that due
to the property of the CR matrix Θ, each of {A(k−1)G+g+1}
will either be a full-rank (when sg �= s̃g) or a zero matrix (when
sg = s̃g). Thus, we can write C − E = [A1 · · · AGK ].

We now partition the diagonal matrix D =
diag{exp[−j(2π/Nc)k]}Nc−1

k=0 into GK M × M diagonal
submatrices {Di}GK

i=1 such that D = diag{D1 · · · DGK }.
It is clear that Di �= Dj �= 0, ∀i �= j and ∀i, rank(Di) = M .
In addition, it is easy to see that Di = diag{Di

1 · · · Di
GK }

using property of block diagonal matrices.
Thus, we get

(C − E)Di = [A1 · · · AGK ]




Di
1 0 · · ·

0
. . . 0

0 · · · Di
GK




= [A1D
i
1 · · · AGKDi

GK ]

= [Di
1A1 · · · Di

GKAGK ]

= [Di
1 · · · Di

GK ]


A1 0 · · ·

0
. . . 0

0 · · · AGK


 (7)

where we used the fact that both Aj and Di
j are diagonal

matrices in the final step. Therefore

G(C,E)T =




IM IM · · · IM

D1 D2 · · · DGK

...
...

...
...

DL−1
1 DL−1

2 · · · DL−1
GK




×


A1 0 · · ·

0
. . . 0

0 · · · AGK


. (8)

The first matrix on the right-hand side is of size ML × Nc

(for Nc = MGK) and the second matrix is of size Nc × Nc.
Note that the second matrix is not always full rank.

Define P = min(L,K). As previously shown that over all
distinct pairs {s0, s̃0}, we have K full-rank diagonal error ma-
trices A(k−1)G+1 = (Ds0,k − Ds̃0,k), for k = 1, . . . ,K. Thus,
in G(C,E)T, we can find an MP × MP submatrix which is
the product of two other MP × MP matrices as follows:


IM IM · · · IM

D1 DG+1 · · · D(P−1)G+1

...
...

...
...

DP−1
1 DP−1

G+1 · · · DP−1
(P−1)G+1




×




A1 0 · · ·
0 AG+1 · · ·

0
. . . 0

0 · · · A(P−1)G+1


. (9)

The first submatrix is block Vandermonde and composed of
diagonal submatrices and it is easy to prove that it has a nonzero
determinant. The second submatrix is a block diagonal matrix
composed of full-rank diagonal submatrices and thus has a
nonzero determinant. Therefore, the product also has a nonzero
determinant and is of full rank MP = M min(L,K). Since
G(C,E)T (dim ML × Nc, ML < Nc) has rank at most ML
and we can always find a submatrix of dimension MP × MP
which is of full rank, the minimum rank achieved is MP [note
in this case G(C,E) may not be full rank]. Thus, we con-
clude that min{s,s̃} rank[G(C,E)T] = MP = M min(L,K).
Because diversity order is determined by the minimum rank
of G(C,E)T over all distinct {s, s̃} pairs (equiv. all distinct
{C,E} pairs), we conclude that the diversity achieved by our
SFBC is of order MN min(L,K), which completes our proof.

Comment: We propose a suboptimal but near maximum
likelihood decoding scheme in the next section, whose com-
plexity is polynomial in the OFDM symbol length. If the
maximum diversity order is not deemed necessary, we may
choose K < L in order to trade maximum possible diversity
order MNK for lower decoding complexity.

D. Coding Gain Evaluation

Following [23] and [24], the idea of subchannel grouping
is applied in code construction. Once again we restrict our
attention to the special case of no spatial fading correlation with
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uniform power delay profile, for receive correlation essentially
results in loss of coding gain that is independent of the code
design [25]. In order to evaluate coding gain, we rewrite (4)
based on subchannel grouping as follows:

For the gth group

P (Cg → Eg) ≤
rank(Sg)−1∏

i=0

[
1 + λi(Sg)

ρ

4

]−N

(10)

where Sg = Gg(Cg, Eg)Gg(Cg, Eg)H has dimension MK ×
MK and λi(Sg) is the ith nonzero eigenvalue of Sg.
Gg(Cg, Eg) is an MK × ML matrix defined as

Gg(Cg, Eg)

= [(Cg −Eg)T Dsub,g(Cg −Eg)T · · · DL−1
sub,g(Cg −Eg)T ]

(11)

and Dsub,g = diag{Dg DG+g · · · D(K−1)G+g} is composed
of the diagonal submatrices {Di} as defined in proof of
Theorem 1 and Cg = [Dsg,1 Dsg,2 · · · Dsg,K ] with Eg de-
fined similarly. Thus, Cg − Eg = [Ag AG+g · · · A(K−1)G+g]
using the definition of Ai in proof of Theorem 1.

Therefore, the coding gain for our SFBC based on subchan-
nel grouping is

Gg,c = min
∀Cg �=Eg


rank(Sg)−1∏

i=0

λi(Sg)




1
rank(Sg)

. (12)

Under the assumption of Theorem 1 for our SFBC, rank(Sg) =
M min(L,K). In addition, the coding gain brought by
LCF precoding is ηlcp = min{sg,s̃g}

∏MK
k=1 |θT

k (sg − s̃g)|2 =
(∆2

min/β2)MK , where ∆min is the minimum distance among
signal points and β2 = MK if MK is an Euler number or
a power of two; otherwise, β2 = 1/(2(1/MK) − 1) [23]. The
coding gain of LCF precoder is maximized if MK is an Euler
number or a power of two [7], [8]. In the following, we give the
main results of coding gain evaluation and leave the derivation
in the Appendix.

Case I: K < L: The coding gain is

Gg,c = K

√√√√K−1∏
n=0

[(⌊
L − 1 − n

K

⌋
+ 1
)

K

]

×
(

∆2
min

β2

)
≤ L ×

(
∆2

min

β2

)
(13)

where �x
 is the largest integer contained in x. The
equality holds only when L = mK, m = 2, 3, . . ..
From the right-hand side of (13), we find that the
coding gain of SFBC is affected by two factors:
i) the first term is due to symbol mapping and ii)
the second term is determined by LCF precoding.
The detailed derivation of coding gain is in the
Appendix.

Case II: K > L

Gg,c = min
∀Cg �=Eg

K ×


ML∏

j=1

βj




1
ML

(14)

where 0 < mink∈1,...,MK |θT
k (sg − s̃g)|2 ≤ βj ≤

maxk∈1,...,MK |θT
k (sg − s̃g)|2. The derivation of

coding gain is in the Appendix.
Case III: K = L: The coding gain is

Gg,c = L × ∆2
min

β2
(15)

where β2 = ML if ML is an Euler number or a
power of two; otherwise, β2 = 1/(2(1/ML) − 1)
[23]. The two terms on the right-hand side have
the same significance as in Case I. The derivation
can be found in the Appendix.

In [20], using a more generalized channel model, the maxi-
mum coding gain for these linearly coded systems was investi-
gated. Assuming that maximum diversity is achieved and that
channel correlation matrix Rh has full rank, the maximum cod-
ing gain [20] corresponding to the maximum diversity gain of
MNL was shown to be Gmax

c = [det(Rh)]1/MNL(∆2
min/M).

Since we use the same precoder as in [20], we can make
a fair comparison between the coding gain achieved by our
SFBC and the maximum coding gain (both corresponding to the
maximum diversity MNL) for the case of no spatial correlation
(i.e., Rh = IMNL). We define the relative coding gain as the
ratio

Gg,c,relative =
L

∆2
min
β2

∆2
min
M

= L
M

β2
. (16)

Because the optimal LCF precoder proposed by [7] and [8]
ensures that for the case of K = L and ML is an Euler number
or a power of two, β2 = ML, the above equation simplifies to

Gg,c,relative = L
1
L

= 1. (17)

Therefore, under the condition that ML is an Euler number
or a power of two (i.e., the precoder’s ηlcp is maximized), our
SFBC indeed achieves maximum coding gain among linearly
coded systems, i.e., our symbol mapping pattern is optimal.
When ML takes other values (where ηlcp is not maximized),
the achieved relative coding gain is around 0.7–0.78 and de-
creases as ML increases.

III. SPACE–FREQUENCY DECODING

From Fig. 1, for each individual OFDM block time, the
received signal at the jth receive antenna can be expressed as

rj [l ] =
M∑
i=1

Hij [l ]ti[l ]+wj [l ], l = 1, . . . , Nc, j = 1, . . . , N

(18)
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where Hij [l ] denotes the channel frequency response of the
ith transmit and jth receive antenna pair at the lth tone, ti[l ]
denotes the transmitted signal from the ith transmit antenna at
the lth tone. In addition, rj [l ] and wj [l ] denote the received
signal and additive white Gaussian noise component at the jth
receive antenna for the lth tone, respectively.

Let rj , wj denote the size Nc × 1 received signal vector and
noise vector at the jth receive antenna, respectively. Now rj can
be partitioned into KG size M × 1 subvectors {rj,k,g} for g, k
with the same definition as that in Section II-A. Similarly, wj

can be subdivided into KG size M × 1 subvectors {wj,k,g}.
Therefore

rj,k,g =




rj [(k − 1)GM + gM ]
...

rj [(k − 1)GM + (g + 1)M − 1]


 (19)

wj,k,g =




wj [(k − 1)GM + gM ]
...

wj [(k − 1)GM + (g + 1)M − 1]


. (20)

In addition, θT
i denotes the ith row of the CR matrix Θ and

H j
i,l = Hi,j [l ]. Also, we define the diagonal matrix

Λj
k,g = diag




H j
1,(k−1)GM+gM

H j
2,(k−1)GM+gM+1

...
H j

M,(k−1)GM+(g+1)M−1




. (21)

Therefore, for our SFBC, we have

rj = [(rj,1,0)T (rj,1,1)T · · · (rj,K,G−2)T (rj,K,G−1)T ]T

=




bj,1,0

bj,1,1

...
bj,K,G−2

bj,K,G−1


+




wj,1,0

wj,1,1

...
wj,K,G−2

wj,K,G−1


 (22)

where

bj,k,g =




H j
1,(k−1)GM+gMθT

(k−1)M+1sg

H j
2,(k−1)GM+gM+1θ

T
(k−1)M+2sg

...
Hj

M,(k−1)GM+(g+1)M−1θ
T
kMsg




= Λj
k,g




θT
(k−1)M+1

θT
(k−1)M+2

...
θT

kM


 sg (23)

and rj,k,g = bj,k,g + wj,k,g .

Combining those sub-blocks in the gth group, we get

rj,g = [ rj,1,g rj,2,g · · · rj,K,g ]T

=




bj,1,g

bj,2,g

...
bj,K,g


+




wj,1,g

wj,2,g

...
wj,K,g




︸ ︷︷ ︸
w j,g

=




Λj
1,g

. . .
Λj

K,g




︸ ︷︷ ︸
Λj

g

Θsg + wj,g. (24)

Furthermore, we can combine information from the gth
group over the N receive antennas to get




r1,g

r2,g

...
rN,g




︸ ︷︷ ︸
rg

=




Λ1
g

Λ2
g...

ΛN
g




︸ ︷︷ ︸
Λg

Θsg +




w1,g

w2,g

...
wN,g




︸ ︷︷ ︸
wg

. (25)

Left multiplying ΛH
g to both sides of (25), we obtain

ΛH
g rg =

[ (
Λ1

g

)H · · ·
(
ΛN

g

)H ]

 Λ1

g...
ΛN

g


Θsg + ΛH

g wg︸ ︷︷ ︸
ng

(26)

=


 N∑

j=1

(
Λj

g

)H Λj
g


Θsg + ng (27)

=



∑N

j=1

(
Λj

1,g

)H

Λj
1,g

. . . ∑N
j=1

(
Λj

K,g

)H

Λj
K,g




︸ ︷︷ ︸
Σg

× Θsg + ng. (28)

Since ng is no longer white Gaussian, it is prewhitened prior
to decoding.

yg = Σ− 1
2

g ΛH
g rg

= Σ
1
2
g Θsg + ηg (29)

where ηg = Σ−1/2
g ng denotes the whitened Gaussian noise.

Finally, a sphere decoder [11], [17], which can achieve near-
optimum performance (in the maximum likelihood sense) with
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Fig. 3. BER performance of SFBC with different channel taps (M = 2, N = 1).

average polynomial complexity in MK [e.g., O(2MK)3 for
complex value Θ] regardless of the constellation size, is used to
decode sg from yg .

IV. SIMULATION RESULTS

In the simulations, we consider an OFDM system with
parameters conforming to the IEEE 802.16.3 standard. The
FFT size is 256 and the number of subcarriers used is 200
(including 8 for pilots and 192 for data). The one-sided radio
frequency bandwidth assumed in the simulation is 6 MHz with
a sampling rate of 7 MHz. The carrier frequency spacing ∆f

is 0.02734 MHz. The data symbol duration is Tu = 36.57 µs
and the CP duration is Tg = 9.14 µs for total symbol duration
Ttotal = 45.71 µs. 16-QAM with code rate 3/4 achieves a data
rate of 12.6 Mb/s; thus, our rate-one SFBC-OFDM system
would achieve a data rate of 16.8 Mb/s. Modulation sym-
bols used were binary phase-shift keying (BPSK), 4-QAM or
16-QAM where the total average symbol energy on all M
transmit antennas were normalized Es = 1. The variance σ2 of
the white Gaussian noise per dimension is adjusted by the for-
mula σ2 = (1/2)10−(SNR/10). The L-tap frequency-selective
channel for each transmit–receive antenna pair has independent
and identically distributed complex Gaussian coefficients with
total power = 1. 105 independent channel realizations (each
channel realization corresponds to one data packet which con-
sists of one OFDM symbol block for simplicity) were used
to obtain the simulation results. In Fig. 3, we assume that
Nc = M × G × L where Nc, L, M , G denote the number of
tones, the length of the channel impulse response (less than
or equal to the CP), the number of transmit antennas, and the
number of groups the tones are divided into, respectively. For
a given M , performance is unaffected by the choice of G since

the code design ensures that all the diversity is actually achieved
within each group of subcarriers. It is clear from the results
that in L-tap frequency-selective fading channel, the diversity
achieved increases with L increase.

We then compare space–frequency block code-OFDM
(SFBC-OFDM) with circular generalized delay diversity-
OFDM (CGDD-OFDM) proposed in [19] and Bell Labs La-
yered Space-Time-OFDM (BLAST-OFDM) [16] when ML
detection is used for all the three schemes. The performance of
the 802.11a OFDM standard with 16-QAM signaling and rate
1/2 convolutional code using one transmit and receive antenna
and deinterleaving cum Viterbi decoding is also included to
establish a performance baseline and indicate the extent of
additional gains that are achievable. In the simulations, the
number of subcarriers was 64 and two transmit and receive
antennas each were used for BLAST-OFDM, SFBC-OFDM,
and CGDD-OFDM. In order to preserve identical bit rates
for a fair comparison, we chose BPSK for BLAST-OFDM,
16-QAM for convolutional coding + interleaving, while using
quaternary phase-shift keying (QPSK) for CGDD-OFDM and
SFBC-OFDM. From Fig. 4, we can see that SFBC-OFDM
outperforms the other three schemes as only it achieves the
maximum diversity of MNL.

For completeness, we also compared our method to the
STFBC method proposed in [5] and DPS of [20] with two or
four transmit antennas and one receive antenna. In order to
keep the same bit rate when four transmit antennas are used,
we chose QPSK for STF, while using BPSK for both DPS
and SFBC. From Fig. 5, we find that although STFBC [5]
can guarantee maximum coding gain among all STF codes,
both DPS and SFBC have very similar performances; the
performance gap between them is reduced as the number of
transmit antennas increases. In addition, although the code
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Fig. 4. BER performance comparison among CGDD-OFDM, BLAST-OFDM, SFBC-OFDM with ML detection (M = 2, N = 2, 64 subcarriers).

Fig. 5. BER performance comparison among STFBC [7], DPS [26] and proposed SFBC-OFDM.

matrices of DPS and SFBC are quite different, the bit error rate
performances of the two are nearly the same. Since both of them
use precoder of size ML, their decoding complexities are very
similar as well.

V. CONCLUSION

In this paper, we proposed a novel rate-one SF code that
achieves the maximum diversity over frequency-selective chan-
nels. Moreover, the code design shows robustness when the

channel order is not known exactly at the transmitter and allows
an easy tradeoff between diversity and decoding complexity. In
addition, the processing delay is smaller compared to that of
STFBC.

APPENDIX

A. K < L

For K < L, rank(Sg) = MK. From (11), it follows that
GgG

H
g is a full-rank matrix with size MK × MK, and since
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∏rank(Sg)−1
i=0 λi(Sg) = det[Gg(Cg, Eg)Gg(Cg, Eg)H], the coding

gain is

Gg,c = min
∀Cg �=Eg

{
det
[
Gg(Cg, Eg)Gg(Cg, Eg)H

]} 1
MK (30)

since GgG
H
g would yield the expression shown in (31) at

the bottom of the page. Exploring the commutative property
of diagonal matrices, we can rewrite Di

sub,g(Cg − Eg)T

(Cg − Eg)∗DH
sub,g as in (32) shown at the bottom of the page.

Therefore

GgG
H
g = BgW1WH

1 BH
g (34)

where size MK × ML W1 is defined as

W1 =




IM Dg · · · DL−1
g

IM DG+g

... DL−1
G+g

...
...

IM D(K−1)G+g · · · DL−1
(K−1)G+g


. (35)

Noting that both Bg and W1WH
1 are of size MK × MK and

using the property det(AB) = det(A) det(B) = det(BA) for
square matrices, we get

det
(
GgG

H
g

)
= det

(
BH

g Bg

)
det
(
W1WH

1

)
. (36)

After some derivation, we arrive at (37) shown at the bottom
of the page. The elements of the K × K matrix J defined
above satisfy ai,j = ai+k,j+k and ai,j = a∗

j,i, ∀i j, k; hence
matrix J is Hermitian Toeplitz. Moreover, am,K = am+1,1

∀m = 1, . . . , K since
∑L−1

i=0 exp(−j{[2π(K − m)i]/K}) =∑L−1
i=0 exp[ j(2πmi/K)]; hence matrix J is also circulant

(Hermitian). Therefore, from a well-known result for the deter-
minant of a circulant matrix, det(J) =

∏K−1
n=0 a{exp[ j(2πn/

K)]} [21], where a(x) = L +
∑K−1

k=1 {
∑L−1

i=0 exp[−j(2πki/

K)]}xk. Using the property that
∑K−1

k=0 exp[ j(2πki/K)] =
0, 1 ≤ i ≤ K − 1 and exp{ j[2πk(lK)/K]} = 1 for any
integer l, it follows that a{exp[ j(2πn/K)]} = (�(L − 1 −
n)/K
 + 1)K, K < L. Therefore, det(J) =

∏K−1
n=0 [(�(L −

1 − n)/K
 + 1)K] ≤ LK where the equality holds only when

GgG
H
g = [ (Cg − Eg)T Dsub,g(Cg − Eg)T · · · DL−1

sub,g(Cg − Eg)T ]




(Cg − Eg)∗[
(Cg − Eg)∗DH

sub,g

]
...[

(Cg − Eg)∗
(
DL−1

sub,g

)H
]


 (31)

Di
sub,g(Cg − Eg)T(Cg − Eg)∗DH

sub,g =




AT
g

AT
G+g

. . .
AT

(K−1)G+g




︸ ︷︷ ︸
Bg




Di
g

Di
G+g

...
Di

(K−1)G+g


 (32)

×
[
D−i

g · · · D−i
(K−1)G+g

]



A∗
g

A∗
G+g

. . .
A∗

(K−1)G+g


 (33)

W1WH
1 =




L
∑L−1

i=0 e−j 2πi
K

∑L−1
i=0 e−j 2π2i

K · · ·
∑L−1

i=0 e−j
2π(K−1)i

K∑L−1
i=0 e j 2πi

K L
∑L−1

i=0 e−j 2πi
K

. . .
. . .

...
. . . L

. . .
∑L−1

i=0 e−j 2πi
K∑L−1

i=0 e j
2π(K−1)i

K
. . .

. . .
∑L−1

i=0 e j 2πi
K L




︸ ︷︷ ︸
J

⊗ IM (37)
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L = mK, m is a positive integer. Hence, det(W1WH
1 ) =

{
∏K−1

n=0 [(�(L − 1 − n)/K
 + 1)K]}M ≤ LMK . Because

A∗
(i−1)G+g AT

(i−1)G+g

=



∣∣∣θT

(i−1)M+1(sg − s̃g)
∣∣∣2

. . . ∣∣θT
iM (sg − s̃g)

∣∣2


 (38)

it is easy to prove that

det
(
BH

g Bg

)

= det






A∗
gA

T
g

. . .
A∗

(K−1)G+gA
T
(K−1)G+g






=
MK∏
k=1

∣∣θT
k (sg − s̃g)

∣∣2 . (39)

Since ηlcp = min{sg,s̃g}
∏MK

k=1 |θT
k (sg − s̃g)|2 = (∆2

min/β
2)MK

[23], we conclude that min∀Cg �=Eg
det(GgG

H
g ) = (∆2

min/

β2)MK{
∏K−1

n=0 [(�(L − 1 − n)/K
 + 1)K]}M ≤ [(∆2
min/β2)

L]MK .

B. K > L

For K > L, rank(Sg) = ML. Note that Gg(Cg, Eg)H

Gg(Cg, Eg) is now a full-rank matrix with size ML × ML,

and since
∏rank(Sg)−1

i=0 λi(Sg) = det[Gg(Cg, Eg)HGg(Cg, Eg)],
the coding gain

Gg,c = min
∀Cg �=Eg

{
det
[
Gg(Cg, Eg)HGg(Cg, Eg)

]} 1
ML (40)

where Gg(Cg, Eg)T is of size ML × MK and given by

Gg(Cg, Eg)T =




(Cg − Eg)
[(Cg − Eg)Dsub,g]

...[
(Cg − Eg)DL−1

sub,g

]


. (41)

From the definition of Gg(Cg, Eg)T, we get (42) shown at the
bottom of the page. After some manipulation, the jth column
in the last step of (42) can be rewritten as shown in (43) at the
bottom of the next page.

Processing each column in the last step of (42) in this
way, we get Gg(Cg, Eg)HGg(Cg, Eg) and is written as GH

g Gg

for simplicity in the sequel) shown in (44) at the bottom of
the next page.
Note: Because the matrix W (size ML × MK) is not square

for K > L, we have to resort to Ostrowski’s Theorem [25], [31]
that is quoted here for completeness.
Theorem (Ostrowski) 1: Let A and S be n × n matrices with

A Hermitian and S nonsingular. Let the eigenvalues of A and
SSH be arranged in increasing order λmin = λ1 ≤ λ2 ≤ · · · ≤
λn−1 ≤ λn = λmax. For each k = 1, 2, . . . , n, there exists a
nonnegative real number θk such that 0 < λ1(SSH) ≤ θk ≤
λn(SSH) and λk(SASH) = θkλk(A).

Repeatedly using the properties: 1) det(A) =
∏

λi(A) and
2) for A(m × n), B(n × m), n ≥ m, λ1, . . . , λm are the eigen-
values of AB, −→ λ1, . . . , λm, 0, . . . , 0 are the eigenvalues of
BA [21], [25] and Ostrowski’s Theorem [25], [31], we can get

det
(
GH

g Gg

)
= det

(
WΛgWH

)
= det

(
WΛ

1
2
g Λ

H
2

g WH
)

=
ML∏
i=1

λi

[
WΛ

1
2
g

(
WΛ

1
2
g

)H
]

=
ML∏
j=1

λj

(
Λ

H
2

g WHWΛ
1
2
g

)

=
ML∏
j=1

βjλj(WHW) =
ML∏
j=1

βj ×
ML∏
j=1

λj(WHW)

=
ML∏
j=1

βj ×
ML∏
j=1

λj(WWH) =
ML∏
j=1

βj × det(WWH),

where 0 < λmin(Λg) ≤ βj ≤ λmax(Λg).

Using (38), we can simplify the above to yield 0 <
mink∈1,...,MK |θT

k (sg − s̃g)|2 ≤ βj ≤ maxk∈1,...,MK |θT
k (sg −

s̃g)|2.
Next, we evaluate det(WWH) in detail in (45) at the bottom

of the next page. In (46), we use the property of the matrices

Gg(Cg, Eg)HGg(Cg, Eg) =




(Cg − Eg)∗[
(Cg − Eg)∗DH

sub,g

]
...[

(Cg − Eg)∗
(
DL−1

sub,g

)H
]


 [ (Cg − Eg)T Dsub,g(Cg − Eg)T · · · DL−1

sub,g(Cg − Eg)T ]

=




(Cg − Eg)∗(Cg − Eg)T · · · (Cg − Eg)∗DL−1
sub,g(Cg − Eg)T

(Cg − Eg)∗DH
sub,g(Cg − Eg)T · · · (Cg − Eg)∗DL−2

sub,g(Cg − Eg)T

...
. . .

...

(Cg − Eg)∗
(
DH

sub,g

)L−1

(Cg − Eg)T · · · (Cg − Eg)∗(Cg − Eg)T


 (42)
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


D j−1
g D j−1

G+g · · · D j−1
(K−1)G+g

D j−2
g D j−2

G+g · · · D j−2
(K−1)G+g

...
...

...
...(

DH
g

)L−j (
DH

G+g

)L−j · · ·
(
DH

(K−1)G+g

)L−j







A∗
gA

T
g

A∗
G+gA

T
G+g

...
A∗

(K−1)G+gA
T
(K−1)G+g




︸ ︷︷ ︸
Zg

=




IM IM · · · IM

DH
g DH

G+g · · · DH
(K−1)G+g

...
...

...
...(

DH
g

)L−1 (
DH

G+g

)L−1 · · ·
(
DH

(K−1)G+g

)L−1







D j−1
g

D j−1
G+g

. . .
D j−1

(K−1)G+g


Zg (43)

GH
g Gg =




IM IM · · · IM

DH
g DH

G+g · · · DH
(K−1)G+g

...
...

...
...(

DH
g

)L−1 (
DH

G+g

)L−1 · · ·
(
DH

(K−1)G+g

)L−1




︸ ︷︷ ︸
W

×




IM Dg DL−1
g

IM DG+g DL−1
G+g

. . .
. . . · · · . . .

IM D(K−1)G+g DL−1
(K−1)G+g






Zg

Zg

. . .
Zg




=W




A∗
gA

T
g

. . .
A∗

(K−1)G+gA
T
(K−1)G+g






IM Dg · · · DL−1
g

IM DG+g · · · DL−1
G+g

...
...

...
...

IM D(K−1)G+g · · · DL−1
(K−1)G+g




=W




A∗
gA

T
g

. . .
A∗

(K−1)G+gA
T
(K−1)G+g




︸ ︷︷ ︸
Λg

WH (44)

WWH =




IM IM · · · IM

DH
g DH

G+g · · · DH
(K−1)G+g

...
...

...
...(

DH
g

)L−1 (
DH

G+g

)L−1 · · ·
(
DH

(K−1)G+g

)L−1







IM Dg · · · DL−1
g

IM DG+g · · · DL−1
G+g

...
...

...
...

IM D(K−1)G+g · · · DL−1
(K−1)G+g


 (45)

=




KIM

∑K−1
i=0 DiG+g · · ·

∑K−1
i=0 DL−1

iG+g∑K−1
i=0 D−1

iG+g KIM

∑K−1
i=0 DL−2

iG+g

...
. . .∑K−1

i=0 D
−(L−1)
iG+g · · · KIM


 (46)

= K × IML (47)
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{Di}’s that DH
i = D−1

i . Equation (47) is the result of
DiG+g = exp[ j(2π/Nc)MGi]Dg = exp[ j(2π/K)i]Dg and∑K−1

i=0 exp[ j(2πil/K)] = 0, where 0 < l ≤ L − 1 ≤ K − 1.
Therefore

det(WWH) = KML. (48)

Inserting (48) into (40), and using det(GH
g Gg) =

det(WWH) ×
∏ML

j=1 βj , we get

Gg,c = min
∀Cg �=Eg


K ×


ML∏

j=1

βj




1
ML


. (49)

C. K = L

In this case, starting from (40), and noting that in (44), the
matrix W is now square and allows the use of the property
that A, B(m × m), det(AB) = det(A) det(B) = det(BA);
hence, det(GH

g Gg) can be exactly evaluated, thereby obviat-
ing the need for Ostrowski’s Theorem. Thus det(GH

g Gg) =
det(WΛgWH) = det(WWH) det(Λg) = LML det(Λg)
where (48) with K = L was used in the final step. Using (39),
the definition of ηlcp, and noting that for the case K = L,
ηlcp = [∆2

min/β2]ML [23], we finally get

Gg,c = L × ∆2
min

β2
. (50)
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