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Abstract

The problem of placing known symbols in a data stream for a slowly varying frequency selective channel is considered
from an information-theoretic perspective. Given the amount of redundancy associated with known symbols, placement
schemes that minimize the outage probability are derived by assuming that the transmitted codewords consist of packets
that are constrained to have the same known symbol placement. Under the assumption that each known symbol cluster is
at least as large as @ > 2L +1 (where L is the channel order), we show that the optimal placement is obtained by arranging
the known symbols into as many clusters as possible and placing them such that the unknown symbol blocks are as equal
as possible. It is shown that the optimal placement of known symbol clusters does not depend on the probability density of
the channel. Under some further constraints, it is shown that the placement schemes derived are optimal in the frame work
of error exponents as well. Numerical examples are used to illustrate the ideas and potential gains of using optimal known

symbol placement.
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I. INTRODUCTION

Although information theory does not mandate the separation of the transmitted signal into known and
unknown symbols, training symbols are inserted into the data stream to enable low complexity receiver
implementations. For wireless communication, where the channel can vary significantly over time, a large
portion of the resources might be dedicated to training symbols. It is therefore important for a system
designer to optimize the design of training. This includes optimization of parameters such as percentage
of training symbols and placement of training symbols.

In this paper, we consider the problem of optimal placement of training for a slowly varying frequency
selective channel. We are particularly interested in the case when the decoding delay of the data application
is such that it is not possible to code over multiple fades. The information theoretic performance of such
a system is usually analyzed under a composite channel model, which is a compound channel with apriori
probabilities on the channel states [1], [2]. This model, first analyzed in [3], has gathered a lot of attention.
See for example [4], [5], [6], [7], [8], [9]- In this model, it is assumed that the whole codeword sees a single
fade irrespective of its length. The practical justification of this model is that the decoding delay is such
that the codeword cannot be longer than the coherence time of the channel and the coherence time is
long enough for information theoretic results to be meaningful. How long is long enough depends on the
symbol error rate required and error exponents of this channel model. See [2] for a good discussion about
these issues. Probability of outage is an important measure of performance for this channel model. We
will therefore use outage probability as the performance metric to compare different placement schemes.

We assume that the receiver forms an estimate of the channel based on training alone and the estimate

is then used by the decoder in order to perform decoding. It is assumed that the number of known
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symbols inserted in a codeword is sufficient to form a reliable estimate of the channel.! This assumption
also allows us to utilize the techniques available on outage probability for known channels to address the
problem of training symbol placement. The drawback of this assumption is that it does not allow us to
determine the optimal percentage of known symbols. The optimal percentage of known symbols can be
however be obtained by analyzing the problem in the framework of error exponents because it allows us
to take into account the error due to channel estimate. Problem formulation in terms of error exponents
is also explored in the paper.

We assume that the codebooks used to transmit the bits consist of packetized codewords (PCW). Pack-
etized codewords are constrained to consist of an integral number of packets. Each packet is assumed to
have the same placement scheme and we are interested in optimizing this placement strategy. This model
turns out to be simple to analyze since the restriction of packetization converts the model into a vector
discrete memoryless channel, once we view each packet as a symbol. The optimal placement schemes for
known symbols within the packet are then obtained with ease. The problem of optimal placement for
general codewords where there is no constraint on the placement of known symbols is considered in [10].
For the case of general codewords, since we remove the constraint of packetization, outage probability for
the general codeword model should be defined more carefully.

For the PCW case, we show that under the constraint that known symbols are placed in clusters of
length at least @ > 2L + 1 where L is the order of the channel, the outage probability is minimized by the
family of placement schemes referred to as QPP-a. In this family, the known symbols are broken into as
many clusters as possible under the constraint that each of them is at least a and they are placed such
that the lengths of unknown symbol clusters are as equal as possible. It turns out that the conventional
strategy of placing known symbols together in big clusters carries a penalty in performance. Surprisingly,
the optimal known symbol placement does not depend on the depend on the probability density of the
channel.

We formulate the problem of optimal placement in terms of the error exponents of the channel. We
show that for a > 2L + 1, QPP-a placement schemes are optimal with respect to this metric as well. For
this formulation, unlike in the formulation for outage probability, we do not have any restrictions on the
structure of code words. The advantage of the error exponent formulation is that it allows one to take
into account the error in the channel estimate as well.

There has been some prior work reported on the effect of training and channel estimation errors on
mutual information that does not consider the placement issue[11], [12], [13]. Medard [11] has obtained
lower and upper bounds on mutual information that are a function of the variance of the error in the

fTechnically, since the channel stays constant over the duration of the code word and the code word can be as large as
possible, it should be possible to obtain an estimate of the channel to the desired accuracy by placing an arbitrarily small
percentage of known symbols. The importance of placement can then be questioned. In reality, however, the coherence time
of the channel places a limit on the length of the codeword and thus in order to obtain a reliable estimate of the channel, it

might be necessary to dedicate a significant percentage of the time to transmitting known symbols.
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channel estimate formed at the receiver. Hassibi and Hochwald [12] have optimized training in multiple-
antenna systems with quasi-static flat fading by maximizing a tight lower bound on the ergodic capacity.
They considered issues such as amount of training, choice of training symbols and power allocation. For
the channel model considered in their work, the performance is independent of placement. The training
issues for quasi-static frequency selective fading were addressed in [13]. In this paper, the placement issue
was not considered and the known symbols were placed at the beginning of the packet.

We have addressed the problem of optimal placement of known symbols for ergodic block frequency
selective fading with i.i.d Gaussian taps in [14]. We use the framework derived in [12], [13] to obtain a tight
lower bound on the channel capacity and maximize this lower bound to obtain optimal placement schemes
for both OFDM and single carrier systems. We show that in OFDM placing known symbols periodically
in frequency is optimal where as periodic placement in time (QPP-a placement schemes) turns out to be
optimal for single carrier systems. We have also previously considered the problem of joint optimization
of known symbol placement and equalizer for a symbol-by-symbol decision feedback receiver [15]. The
performance criterion used was Average Mean Square Error (AMSE). It turns out that the optimal symbol
placement is to separate the known symbols by at least d, the detection delay of the decision feedback
receiver. It was shown that substantial gain could be achieved by spreading the known symbols in the
data stream instead of clustering them.

For the quasi-static block fading model with independent fades, tracking of the channel is not an issue.
Training issues for tracking in Gauss-Markov channels was considered in [16], [17], [18]. In [16] Medard
et al.optimized the spacing between consecutive pilot symbols by maximizing the capacity with binary
signaling. In [17], optimal placement schemes for finite packet transmission over Gauss-Markov channels
was considered. Placement schemes for continuous transmission over Gauss-Markov channel were studied
by Dong et al.in [19].

The optimal placement problem has been explored for other metrics and models too. Optimal placement
of known symbols for minimizing the variance of the error in channel estimate for OFDM systems has
been addressed in [20]. The optimal placement for the more general setting of block precoded transmission
systems with cyclic prefix was addressed with the channel estimate as the metric in [21] and at high SNR,
with block length going to infinity, and with ergodic capacity as the metric in [22]. The channel was
assumed to be Gaussian with independent but not identical taps and was assumed to under go quasi-
static frequency selective fading. All these papers showed that periodic placement in frequency is optimal.
Placement issues for multiple-antenna systems employing orthogonal space-time codes with the CRLB for
channel estimation as the metric has been considered in [23]. The placement that minimizes the Cramer-
Rao Lower Bound (CRLB) for semi-blind channel estimators was found in [24]. It was shown here that
QPP-aplacement is optimal under some constraints. It is quite surprising that the QPP-aplacement
schemes turn out to be optimal for a variety of metrics.

This paper is organized as follows. In Section II, we introduce the channel model, the model for
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the codebook, the receiver structure and training structure and define outage probability. In Section
IIT we formulate the problem of optimal known symbol placement. In Section IV, we obtain optimal
placement schemes. In Section V, we explore the problem formulation of optimal placement in terms of
error exponents for the composite channel. Section VT illustrates the ideas proposed in the paper through
different simulations. We finally conclude in VII. The appendix contains proofs of some of the results

stated in the paper.

II. SYSTEM MODEL

In this section we first define the channel model. We then describe in detail the PCW model. The
training schemes used are then described. We also give the structure of the receiver employed by each

user. We then introduce the metric that is used for optimizing placement in each case.

A. Channel Model

We assume that the channel h = [hg, h1,- -+, hr]! to a user is random and is governed by the density
function pn(-). We also assume that the channel stays constant for over the duration of the code word.
We assume that neither the receiver nor the transmitter knows the propagation coefficients. The channel
output to each user is corrupted by the additive, zero mean, white Gaussian noise wy, with variance 1.

We assume that the average energy of the unknown symbols is equal to p.

B. Packetized Codewords

We assume that the codeword consists of packets that belong to the class P,. A packet is in the class
Py if
A1: The length of each packet is (N + P + L) where N is the number of unknown symbols and (P + L)
is the number of known symbols.

A2: The known symbols come in clusters of length equal to at least a > 2L + 1.

A8: Each packet starts with at least L known symbols.

The assumption A2 is introduced primarily from the point of view of channel estimation. A2 makes it
possible to employ channel estimators based on training only. A3 implies that there is no inter-packet
interference.

As shown in Fig. 2, every placement in the packet can be specified by r = (m, n), that is, two tuples
m = (my,---,my) and n = (ny,---,ny41) where m gives the lengths of unknown symbol blocks and n
the lengths of known symbol clusters. For placements that end with unknown symbols we have nyy; = 0.
Further A3 implies that nqy > L. We also have Z;.Izl m; = N and ZIJ:JT n; = (P + L). It should be noted
that the number of elements in each of these tuples is a variable and depends on the placement scheme.
We refer to the symbols between any two consecutive known symbol clusters as unknown symbol blocks.

A code of rate R whose codewords consist of k packets each is denoted as (k, R). A rate R is said to

be achievable with a placement r if there exists a sequence of codes {(k,R)},k = 1,2--- such that the
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placement of known symbols in each packet is r and the probability of error tends to zero.

C. Training Structure

For simplicity, we constrain the training symbol clusters to a specific structure. We assume that each
training cluster contains only one non-zero training symbol. This symbol can be placed at any position in
the cluster that is at least L away from either edge. Since we restrict ourselves to the case a > 2L+ 1, this
is always possible. A sample training cluster is shown in Fig. 3. This structure on training plays two roles.
Firstly, channel estimation becomes simple to implement and analyze. The structure also ensures that the
training is orthogonal. It is well known that orthogonal training has many desirable properties. Secondly,
separating the training symbols into multiple clusters does not come with a penalty in performance. If
equal energy training symbols are used, then splitting a training cluster into multiple cluster carries a
penalty in performance (assuming training only estimators are employed). The use of training clusters
with this structure allows us to decouple the problem of channel estimation from that of known symbol

placement to a certain extent.

D. Receiver Structure and Performance

We assume that the transmitter uses a codebook € = {s™),s(®) ... s(M)} to transmit the data, and
every codeword contains known symbols that enable the receiver to estimate the channel. Fig. 4 illustrates
the receiver structure, the channel estimator is given by h= 9(y,s¢) where y is the vector containing the
received output due to the codeword and s; is the vector containing the non-zero known symbols. The
codeword is decoded as

§ = arg min p(ys, h), (1)
sE

where p(y|s, ﬁ) is the conditional probability density of y conditioned on the transmitted code word and

the estimated channel.

E. Outage Probability as Performance Metric

Due to the constraint that each code word undergoes a single fade, it is possible that the Shannon
capacity of this channel is equal to zero. A meaningful metric for this channel is therefore outage proba-
bility. The interpretation of outage probability is the one given in [6] and the references therein. Given
a transmitted SNR p and rate R, O(R,p) is the largest possible set for which Cg, the capacity of the
compound channel with the parameter h € O(R, p), satisfies Co > R. The outage probability is then
defined as P,y (R, p) = Pr(h ¢ O(R,p)). Hence there exists a sequence of codes C,, of rate R that sat-
isfies the power requirement p, and for which the supremum of the probability of error over all channels
h € O(R, p) tends to zero.

For problem formulation in terms of outage probability, we assume that number of training symbols

inserted is sufficient to form a reliable estimate. This allows us to use the literature for known channels
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to obtain the expression for outage probability. In this paper, we consider outage probability only for i.i.d
inputs. This makes the problem tractable and it also implies that the capacity achieving codes will have

a flat transmit spectrum.

III. PROBLEM FORMULATION

The use of packetized codewords turns the model into the vector discrete memoryless channel shown
in Fig.5 Since the first L symbols of a packet are known, the contribution due to these symbols can be
subtracted without any loss of generality. The column vector s = [s1,---, sy4+p]¢ contains the symbols in
the packet excluding the first (L + 1) and y is the output obtained after subtracting the contribution due
to the starting (L + 1) known symbols. The relation between s and y is given by

y=Hpnyps+w, ?
where [ ]
hi  hg
hy 0
S ho : (3)
0 hg hy
0
0 - - g (N4 P+L)x(N+P)

The probability of outage for this model is a function of the placement scheme r in the packet. The

expression for P, (R, p,r) is given by [5]
POUt(Ra P I‘) = P(‘I’(I‘, Ps h) < R), (4)

where

U(r, p,h) = log det(I + pHn pJ HY  p). (5)

The matrix J, is a square diagonal selection matrix of order (N + P). It has ones in those positions that

have unknown symbols and zeros in those that have known symbols. If r = (m, n), then

J
U(r,p,h) = log []det(I+ pH,, HE) (6)
=1
J
i=1

This is possible due to A3 (each non-zero element of n is at least as large as L, which implies that there
is no inter-symbol interference between two unknown symbol blocks). We see that the outage probability

depends only on m. The placements corresponding to all the permutations of the elements of the tuple
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m have the same outage probability. We can thus conclude that the order in which the unknown symbol
blocks or the known symbol clusters are transmitted is immaterial. In fact the exact values of n are also
irrelevant as long as Al is satisfied and the channel estimator is consistent.

The objective is to minimize the outage probability with respect to the size of unknown symbol blocks

m. Formally, our objective is to examine the following optimization :
m* = arg min P, (R, p,r). (8)
mepPe

IV. Quasi PERIODIC PLACEMENT AND ITS OPTIMALITY

In this section, we define a family of placement schemes for the PCW model called Quasi Periodic
Placement (QPP) and prove that they are optimal. We also give some alternate placement schemes that
have good performance.

The family of QPP placement schemes is divided into different classes on the basis of the smallest
allowable length of any known symbol cluster. The class of schemes for which « is the smallest allowable
known symbol cluster length is denoted as QPP-a. Formally, we define Q, as the set of all placement
schemes belonging to the class QPP-a.

Definition 1: Given an a and a packet with N unknown symbols and (P + L) known symbols, let
J = [££L]. A placement scheme belongs to Q, if and only if
1. n € N where N = {(n1,---,ns,0) : >, n; = (P + L),min({n1,---,ns}) > a}

2. m € M where M = {(mq,---,my) : 3, m; = Nom; € {| 5], (|1 F] +1)}}

In other words, in a QPP-a placement scheme, the known symbols are divided into as many clusters as
possible under the constraint that each of them is no less than «, and these clusters are placed such that
the unknown symbol blocks are as “equal” as possible. An element in Q, is denoted as r®.

We state some fairly straight forward properties of QPP-a schemes without proof.

P1: All QPP schemes have at most two different unknown symbol block sizes. If there are two distinct
unknown symbol block sizes, they differ by one.

P2: Under assumptions Al and A2, given a > 2L + 1, all the placement schemes in Qy,have the same
outage probability. For all other «, such a claim is not true in general.

We now state a property of the function G(n,p,h), defined in (7), that will be useful in proving the
optimality of QPP-a schemes.

Lemma 1: The function G(n, p,h), defined in (7), has following property :

G(na P h)2 > G(TL + ka P h)G(TL - ka P h) Vn € Z+7 S {Oa 1; T n} (9)
Proof: Refer to the Appendix.
We now state and prove the optimality properties of the QPP-aschemes. For any p and h, placement

schemes in QPP-a maximize ¥(r, p, h).
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Lemma 2: If r* € Qythen under A1-A3

¥(r%p,h) = max ¥(r,p,h) (10)
J

= maxlog [ G(mi, p,h) (11)
i=1

= (J*—n)logbn, +nlogbn,+1, (12)

where J* = |B£L| Ny = [ X ], n= N — J*Ny, and b, 2 [L, + pHZH,,|.
Proof : Using the property of the function G(n, p,h) stated in Lemma 1, we can say that for any given
r,¥(r, p,h) reaches a maximum when J is as large as possible, and every element of the tuple m; is as

small as possible. Therefore we must have J = J* = L(PQLL)J and m € M where
N N
M= {(ma,--ymg) = 3 oms = Noma € (L] (L7 ] + D3 (13)

All the placement schemes belonging to the class QPP-a satisfy this criterion.
From the property P1, we have that there are at most two distinct unknown symbol block sizes. Let
the length of the smaller unknown symbol block be Nj. Let the number of blocks with length (N; + 1) be

equal to n. Then we can easily show that Ny = | 2| and n = N — Ny J*. From (7), it can be seen that

lIl(ra’p’ h) = (J* - TL) IOgG(NI;P: h) + nlOgG(Nl + 17/’7 h)

= (J* —n)logbn, +nlogbn, 1.

O

Using Lemma 2 with the definition of outage probability in (4), we can show that all placement schemes
in QPP-aminimize the outage probability.

Theorem 1: If r* € Q,, then under A1-A3, for any given pn(-), R and p

Pout(R, p,x%) = min Poy (R, p, r). (14)
Furthermore, P,,;(Rp,r%) is a monotonically increasing function of «. Hence

Pout(R, p, ") = aerI}irelPa Pout(R, p,1). (15)
Theorem 1 shows that if we allow all possible & > 2L + 1, the placement schemes belonging to QPP-2L +1
are optimal. Conventionally known symbols have been placed in big clusters. Theorem 1 indicates that
there is some gain to be achieved by spreading them. The algorithm for placing the known symbols is also
quite simple. The optimal placement is independent of the probability density of the channel coefficients.
This property makes the scheme highly attractive for the broadcast scenario. The intuition in placing the

known symbols in small clusters is that known symbol clusters reduce the inter-symbol interference (ISI)

and one should thus maximize the number of known symbol clusters in the data stream.
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A. An Example
We explain the algorithm further with an example. Consider a transmission system for which N =

116,P = 29,and L = 2. If a = 5, then the optimal placement scheme belong the class QPP-5. Then, we

have total number of unknown symbol blocks

P+ L
2L+1

J = | =6. (16)

The minimum number of unknown symbols in each block is equal to |2 | = 19. So unknown symbols
come in clusters of length equal to either 19 or 20. There are 4 blocks of length 19 and 2 blocks of length

20. The order in which these unknown symbol blocks are sent is immaterial.

V. ERROR EXPONENTS

In this section, we will formulate the problem of optimal placement in terms of error exponents. This
formulation has the advantage that it is possible to take into account the error in channel estimate. In
addition to optimal placement of training, this formulation can be potentially used to determine the
optimal percentage of known symbols. However, in this paper, we will focus on obtaining a simple upper
bound on the average probability of error of a random code book. We will then optimize the placement
of known symbols based on the upper bound.

Consider a code book such that each code word is of length 7', the number of unknown symbols is equal
to N and the number of known symbols is equal to P. Further we assume that each codeword start with
L zeros and ends with L zeros. Thus T = N + P + 2L. We assume that T'> 2L + 1 and P > 2L +1
and that orthogonal training is employed. It is assumed that the total energy in the training symbols is
given by Pp and the data symbols is given by Np. Let the placement of known symbols be given by the
tuple r ¥. For the purposes of this section, we will assume that the channel coefficients are i.i.d circularly
complex Gaussian with mean 0 and variance equal to %H We assume that the channel estimator forms
an MMSE estimate of the channel and the decoder performs ML-decoding based on the channel estimate.
If p is the average energy of the data and training we will show that P,.(p, R, N, P, L,r), an upper bound

on the average probability of error is given by

Pe(p, R7 N7 P,L,I‘) S eXP(_TEr(Pa R7 Na P7L7r))7 (17)
where
Er(pa Ra N; P,L,I‘) = tn%oa)f) EO(t7p7 N: P,L,I‘) - tR: (18)
€(0,
and
J P Pp —t
Eo(t,p,N,P,L,xr) = —logE det ( I+ HH,Hm.)
o(tp r) & {g ( (1+t)Pp+ (L+1)(p+1) ™ ™ }

fNote that in this formulation, there is no restriction on the placement of known symbols with in the codeword
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J —t
1
= —?logE{HG(mi,pt,h)} : (19)
i=1
where
P Pp
= i 20
=T+t T+ )(p+ 1)+ Pp (20)
In what follows we will show that QPP-a placement is optimal based on P.(p, R, N, P,L,r). That is :
Theorem 2: If r® refers to a QPP-aplacement scheme and a > (2L + 1),
E.(p,R,N,P,L,r%) = max E.(p,R,N,P,L,r). (21)
That is,
P.(p,R,N,P,L,r*) = m7iDn P.(p,R,N,P,L,r) (22)
rcpoe

A. Channel Estimation

The channel model assumed and the structure of the training allows us to estimate each tap separately.
The model for estimation is given by

y§") = s;h; +ny, (23)

where s; is a column vector containing all the non-zero training symbols and h; is the i*? coefficient of

the channel. The MMSE estimate h; is equal to

7 1 H (z)
4 (L+1)+sfstst vi (24)

The mean square error of the estimate is given by

1

E{h}} = .
{h} sfls; + (L+1)

(25)

It is easy to see that the auto-correlation of h which is the error in the channel estimate is diagonal and
is given by

R, = E{A?}L (26)
B. Data Model

The relationship between the output due to unknown symbols y; and unknown symbols s4 is given by

Yid H, 0 0 S1d
Y24 0 H 0 Sa4
YJd 0 H,, SJd

—_—— -~ e —
Yd H, Sd
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The matrix H,,, is a toeplitz matrix of size (m; + L) x m; given by

[ he 0O -~ 0 |
h1  ho
hy 0
Hp =1 p, ho . (28)
0 hg hy
0
0 - - hgp

- = (mi+L)x(m:)
The matrix Hy has this structure because of the structure imposed on the training clusters. The input

output relation can be further written as

V4 = I:Idsd + I:Idsd +ng. (29)
~————
Vd
The matrix Hy refers to the matrix formed by the estimate of the channel. The decoder has access to
both y4 and H,. We assume that ML decoding is performed. That is,
84 = arg max p(yq|sq, Ha). (30)
sq€C

C. Upper Bound on Probability of Error

An upper bound on the probability of error of this decoder averaged over codes can be found by the

method of error exponents [25], [8], [9]. It is given by

Pe(p,R,N, PJLJr) = exp(_T(ET(pa Ra N; P,L,I'))), (31)
where
Er(pﬂ Ra N: P,L,I') = tn%g‘}l() EO(tapa N; P,L,I‘) —tR (32)
€(0,
and
1 Y (1+t)
Fo(t,p NP Lx) = = og Y [ ([ plsaptralsa oy Hdsa) dvay. (33)
Yd Sd

We fix the input distribution be i.i.d Gaussian. However, it is difficult to evaluate Eg(-) analytically
because the distribution of v; conditioned on s4; and ﬂd is Gaussian whose mean and covariance depend
on sy. Hence, we upper bound the average probability of error by choosing the distribution of v4 as a

worst case distribution. We know that for a given p(sq), Er(---) > 0 if and only if
0 < R < I(sq;y|Ha). (34)

We choose the distribution of v4 to be that distribution which minimizes I(sq; y|Hg). In order to obtain

a tight bound, we constrain the set of distributions to be those that retain some first order and second
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order properties of vq = Hysq + wg. It can be seen that

E{Vd|I:Id} = 0
E{vevi|Hs} = R+1 (35)
E {sdvdH|I:Id} =0 (36)

The last property follows due to the MMSE nature of the estimate. The matrix R is given by

pE{H,, HE 0 0
- 0 pE{H,,,HZ 0
pE{HHY} = _ (HmaElm, _ (37)

Each of the matrix E{ﬁmf{g} is a diagonal matrix, since errors in the estimates of the taps are uncor-
related.
Given p(sq), we define Q(p(sq)) the set of all the conditional probability distributions that retain the

properties of v, listed above. That is
Q(p(sd)) = {p(nd/sd,ﬂd) :E {nd|ﬂd} = O,E {ndnfﬂ:ld} =E {vdvf|f{d} 5
E {ndsfﬂ:ld} =E {vdsg|ﬂd} = 0} . (38)
We choose the probability distribution of the residual noise as the one in the set Q(p(sg) which minimizes
I (sd;y|ﬂd). It can be shown that the worst case distribution is independent Gaussian with zero mean

and covariance equal to Ry SR+I [12], [13], [14]. For a detailed proof of this result on the lines of [12],
[11], see [10]. For this choice of residual noise, it can be easily shown [5] that

1 p —197 .7 H B
TlogE{det (I+ 1+th Hde>

Eo(t’ p’ NJ P’ L’ r)

1 p SHS -
< ——logE{det(I+ ¢ >t HHH)
=TT { ( A+ T+ +sfls ¢

1 P Pp H )_t
= ——logE{det {I+ H; H

T % {( A+ T+Dp+D+Pp ¢ ¢

J —t

1 P Pp H )
= ——logE{ [ det (1 HZ H,

T % {1:[1 © ( MR N (PRSI

1 J B
= _TIOgE{zl_[lG(muptah)} J (39)

where
p Pp

=T+t T+ )(p+ 1)+ Pp
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The second inequality follows because’

(L+1)

< ety (41)

sfls; + (L +1)
The reason we use this particular inequality is because it is simpler to analyze. Such a technique was first
used in [13]. The matrix Hy is obtained from Hy by scaling each element such that the variance of the
channel coefficients is equal to L%rl The third equality follows because sf's; = Pp.

The problem of optimal placement can now formulated as one that maximizes the quantity E.(p, R, N, P, L,r).
In order to perform this maximization, first consider the variation of Ey(t, p, N, P, L,r) with placement.

Due to the results in Lemma 1 and Lemma 2 and the fact that Ey(t, p, N, P, L,r) is an increasing function

of
J

[1 G(mi, pe, b), (42)

i=1
it easy to see that Ey(t,p, N, P, L,r) reaches a maximum only if r € r* and now since the optimal

placement for Ey(t, p, N, P, L,r) does not depend on ¢, we have
Ev(p, R,N, P, L,x%) = max E,(p, R, N, P, L,). (43)
Theorem 2 then follows.

VI. SIMULATIONS

The composite model that is used in this paper can be used to model a broadcast communication system
where the transmitter is transmitting common information to all the receivers. Qutage probability in this
context refers to the probability that a user is unable to receive the transmission. In our simulations, we

will consider the broadcast system example.

A. Ricean Fading Channels

We assume that the receiver might belong to one of three different geographical locations, each of
which has a different multi-path structure. Each geographical region is assumed to have line of sight
but distinctly different kind of ISI channel. The specular component in region A is assumed to be flat.
The specular component in region B is assumed to have nulls on the unit circle where as the specular
component in region C is assumed to have a deep null in the spectrum. The goal of the transmitter is to
minimize the outage probability for a given rate.

We assume that the channel in each region has L + 1 taps. The channel in region A is given by

hA(l) = \/BQA(Z) +v1- /BTA(l) l= 07 la o -,L (44)

where 3 gives the power of the specular component. If g4(z) denotes the z-transform of g4 (1), then we have

ga(z) = 1. Hence the specular component is just the delta function. The channel {r(l)}[, is generated

$Given two Hermitian matrices A and B, we say A > B if and only if the matrix (A — B) is positive semi-definite.
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from i.i.d. complex Gaussian with zero mean and variance equal to L+-1 We have analogous equations
for channels for region B and region C. For region B, the z-transform of the specular component is given
by gg(2) = k1 lL:_Ol (z‘l — exp(jzl:—”l)). The constant k; is selected so that the norm of the channel is
equal to one. For region C, the z-transform of the specular component is given by gc(z) = ko (2:_1 + l)L
where once again the constant ks is selected so that the norm of the channel is equal to one.

Fig. 6 compares the performance of the QPP-2L + 1 placement scheme with placing all the known
symbols at the beginning of the packet(preamble scheme). We assume that N =112,(P+L) =48, L =3
and the transmitted SNR is equal to 20 dB. The user is assumed to belong to one of regions with equal
probability. As expected the QPP-(2L + 1) scheme is better than the preamble scheme at every rate.
We also find that the gain of the QPP-(2L + 1) scheme is higher at lower outage probabilities. This is
because at lower outage probabilities, the bottle neck channels belong to region C, which is where the IST
is greatest. The optimal known symbol placement, being primarily a measure to decrease ISI, provides
the maximum gain for these channels.

Fig. 7 plots the variation of the rate achieved with SNR. We find that the gain from optimal placement
increases with SNR. This is to be expected since at low SNR, performance degradation is primarily due
to noise and at high SNR the performance bottle neck is ISI.

Fig. 8 illustrates the performance of various placement schemes for L = 1 scenario. Here we assume
that the user can belong to either region A or region C with equal probability.

Fig. 9 shows the variation of the outage probability with SNR for the rate R = 3.5 bps per hertz and
L = 1. We see that it is possible to obtain large gains in outage probability using the optimal placement

scheme. This has a direct implication on the coverage that can be obtained at a given SNR.

B. Rayleigh Fading Channels

In this section, we compare the performance of the various placement schemes for the packet codeword
scenario for the Rayleigh fading model. We assume that the channel of each user is of length (L + 1).
Each tap of the channel is chosen i.i.d complex Gaussian with mean zero and variance %ﬂ Fig. 10 shows
the performance for this scenario. We see that even though the QPP-(2L + 1) scheme is optimal here, the
gain achieved is quite small. This is because for this channel model, unlike the previous channel model,
the performance degradation due to ISI is quite small. This example illustrates that the gain achieved

from the optimal placement scheme depends on the channel model used.

VII. CONCLUSIONS

In this paper we studied the optimization of placement of known symbols in the data stream for a slowly
varying frequency selective channel. The performance metric used is outage probability with i.i.d inputs.
We examined the optimization of the position of known symbols in the data stream under the assumption

that each codeword consists of packets and each packet contains the same number of known symbols and
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the same placement. We show that under the constraint each known symbol cluster is at least of length
a > (2L + 1) the outage probability is minimized by breaking the known symbols into as many clusters
as possible and by doing the best for placing these clusters periodically in the data stream. In particular
the placement schemes belonging to the class QPP-a are optimal.

In [10], we have also addressed the problem of optimal known symbol placement removing the constraint
of packetization. We have shown that given the percentage of known symbols ¥, the optimal placement
schemes are those that belong to the class RQPP-a. These are periodic placement schemes in which the
percentage of known symbols is equal to 7 in each period. Further each known symbol cluster is of length
exactly a. The known symbol clusters are placed such that the unknown symbol block lengths are as
equal as possible.

We also formulated the problem of placement in terms of error exponents and showed that under some
further constraints QPP-a schemes remain to be optimal.

Simulations indicate that there is gain to be obtained by optimizing the position of known symbols.
The gain in optimization increases with SNR since the optimizing the placement is primarily a tool to
decrease ISI. For the same reason, we see that the gain is higher in channel ensembles that are more
severely affected by ISI. The placement schemes are optimal given any probability density pn(-) governing

the channel realization.

APPENDIX

I. PROOF OF LEMMA 1

We have
G(n,p,h) = [, + PHEHM (45)
= |I, + pHH,,| (46)
A
= |Dnl. (47)

We have used the fact that [I + BC| = |I + CB| in deriving the above equations [26]. D, is a toeplitz
matrix of size n x n. The matrix D,, is the n*® order principal sub-matrix of the toeplitz matrix Dy. Tt is

known that if K is a positive definite toeplitz matrix and K,, denotes the n*® order principal sub matrix

of K, then | Il(lj’ill‘ is decreasing in n [27]. From this it follows that

1Dul? 2 |Drsa|| Do (48)

This proves the lemma for £ = 1. The result can be proved formally for all £ using mathematical induction.
O
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