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Abstract

Transmission of information over a discrete-time memoryless Rician fading channel is con-

sidered where neither the receiver nor the transmitter knows the fading coefficients. The

spectral-efficiency/bit-energy tradeoff in the low-power regime is examined when the input has

limited peakedness. It is shown that if a fourth moment input constraint is imposed or the

input peak-to-average power ratio is limited, then in contrast to the behavior observed in av-

erage power limited channels, the minimum bit energy is not always achieved at zero spectral

efficiency. The low-power performance is also characterized when there is a fixed peak limit

that does not vary with the average power. A new signaling scheme that overlays phase-shift

keying on on-off keying is proposed and shown to be optimally efficient in the low-power regime.

Index Terms: Fading channels, memoryless fading, Rician fading, peak constraints, spectral

efficiency, low-power regime.
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1 Introduction

Emerging wireless systems, such as wideband code division multiple access (WCDMA) and Impulse

Radio, operate at wide bandwidths. These systems can achieve higher data rates, are more immune

to the deleterious effects of multipath fading, and require low power consumption. Many other

wireless communication systems such as satellite, deep space, and sensor networks, also operate

in the low-power regime where both spectral efficiency (rate in bits per second divided by band-

width in Hertz) and energy-per-bit are low. For these systems, information theoretic results on

the spectral-efficiency/bit-energy tradeoff, which reflects the fundamental tradeoff between band-

width and power, provide insightful results leading to the more efficient use of resources in the low

signal-to-noise ratio (SNR) regime.

Verdú [4] has recently analyzed the spectral efficiency of a general class of average power limited

channels characterizing the optimal bandwidth-power tradeoff in the wideband regime. In partic-

ular, it is shown in [4] that when the receiver has imperfect fading side information, input signals

with increasingly higher peak power is required to achieve the capacity as SNR → 0. On the other

hand, limiting the peakedness of the input signals, when neither the receiver nor the transmitter

knows the fading, is known to have a significant impact on the achievable spectral efficiency in

the low-power regime [11], [12], [13]. In this paper, we continue our study of noncoherent Rician

fading channels begun in Part I [1] and consider the minimum energy per bit required for reliable

communication when the input signals have limited peakiness. The organization of the paper is as

follows. In Section 2, we review the basic measures of interest in the low-power regime proposed in

[4]. In Section 3, we analyze the spectral-efficiency/bit-energy tradeoff in the noncoherent Rician

fading channel when, in addition to the average power limitation, the input is subject to a fourth

moment or a peak power constraint. Finally, in Section 4, we show efficient signaling schemes in

the low-power regime, while Section 5 contains our conclusions.

2 Preliminaries

In the low-power regime, the spectral-efficiency/bit-energy tradeoff is the key concept capturing

the tradeoff between bandwidth and power. We will denote the spectral efficiency as a function of

bit energy by C

(

Eb

N0

)

. If we assume without loss of generality that one complex symbol occupies

a 1s × 1Hz time-frequency slot, then the maximum achievable spectral efficiency can be obtained
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from the Shannon capacity (bits/symbol)

C

(

Eb

N0

)

= C(SNR) bits/s/Hz (1)

where

Eb

N0
=

SNR

C(SNR)
(2)

is the bit energy normalized to the noise power. However, the Shannon capacity, giving the full

characterization of the spectral-efficiency/bit-energy function, is either not known or must be nu-

merically computed for most fading channels whose realizations are not fully known at the receiver.

Hence one needs to resort to approximation methods to examine the spectral efficiency of a wide

class of fading channels. In the low-SNR regime, first-order linear approximation of the spectral

efficiency function provides an excellent match, and involves only the slope of the spectral efficiency

curve and the bit-energy at zero spectral efficiency. The bit-energy at zero spectral efficiency which

depends only on the first derivative of the capacity at zero SNR, i.e.,

Eb

N0

∣

∣

∣

∣

C=0

= lim
SNR→0

SNR

C(SNR)
=

loge 2

Ċ(0)
, (3)

is a relevant measure only in the asymptotic regime of infinite bandwidth. Verdú [4] has recently

given the following formula for the wideband slope defined as the slope of the spectral efficiency

curve C

(

Eb

N0

)

in bits/s/Hz/3dB at zero spectral efficiency:

S0
def
= lim

Eb
N0

↓ Eb
N0

∣

∣

∣

C=0

C

(

Eb

N0

)

10 log10
Eb

N0
− 10 log10

Eb

N0

∣

∣

∣

C=0

10 log10 2

=
2
(

Ċ(0)
)2

−C̈(0)
, (4)

where Ċ(0) and C̈(0) denote the first and second derivatives of capacity at zero SNR in nats. The

wideband slope closely approximates the growth of the spectral efficiency curve in the low-power

regime and hence is proposed as a new tool providing insightful results when bandwidth is a resource

to be conserved.

For average power limited channels, the bit energy required for reliable communications decreases

monotonically with decreasing spectral efficiency, and the minimum bit energy is achieved at zero
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spectral efficiency, Eb

N0 min
= Eb

N0

∣

∣

∣

C=0
. Hence for fixed rate transmission, reduction in the required

power comes only at the expense of increased bandwidth. By assuming an ergodic fading process of

finite second moment, Lapidoth and Shamai [5] have shown that the minimum received bit energy

for an average power limited discrete-time single-input single-output fading channel with Gaussian

noise is −1.59 dB. Recently, Verdú [4] has independently proven that the minimum received bit

energy of −1.59 dB is achieved in a general class of average power limited multiple-input multiple-

output fading channels as long as the additive background noise is Gaussian. This result holds

regardless of the availability of the fading knowledge at the receiver and transmitter. On the other

hand, it is shown in [4] that having imperfect receiver side information has a tremendous effect on

the wideband slope. Although there is a positive slope when there is perfect receiver channel side

information, imperfect fading knowledge at the receiver results in zero wideband slope, and in this

case flash signaling is required to achieve the capacity in the low-power regime. Hence, achieving the

minimum bit energy becomes very demanding in terms of both bandwidth and the peak-to-average

ratio of the transmitted signal.

3 Spectral Efficiency vs. Bit Energy

In this section, we consider the noncoherent Rician fading channel model

yi = mxi + aixi + ni (5)

studied in Part I of this paper [1] and investigate the spectral-efficiency versus energy-per-information

bit tradeoff in the low-power regime when the peakedness of the input signals is limited by a fourth

moment or a peak power constraint. Moreover, at the end of this section, we comment on the

spectral efficiency in the low-SNR regime of the average power limited Rician channel with phase

noise.

3.1 Second and Fourth Moment Limited Input

We first consider the case in which the input is subject to the following second and fourth moment

amplitude constraints:
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E{|xi|2} ≤ Pav ∀i (6)

E{|xi|4} ≤ κP 2
av ∀i, (7)

where 1 < κ < ∞. We have seen in the previous section that the first-order linear approximation

of the spectral-efficiency/bit-energy function in the low-power regime is determined by the first and

second derivatives of the capacity at zero SNR. Under quite general conditions on the input and the

channel, Prelov and Verdú [6] obtained the exact asymptotic second-order behavior of the mutual

information between the channel input and the output for vanishing SNR,

I(x,Hx+ n) =E
{

||H̄(x− E[x])||2
} log e

N0
+ E

{

trace
(

cov2(Hx|x)
)} log e

2N2
0

− trace
(

cov2(Hx)
) log e

2N2
0

+ o(N−2
0 ) (8)

where H is an m× n complex matrix of random fading coefficients satisfying E {||H||4+α} < ∞ for

some α > 0, H̄ = E{H}, N0 is the one-sided noise spectral level, and o(x)/x → 0 as x → 0. The

only assumption on the input is that its probability distribution satisfies

P (‖x‖ > δ) ≤ exp{−δv} (9)

for all sufficiently large δ > 0, where v > 0 is a positive constant. Using the above result, we can

obtain the first and second derivatives of the mutual information at zero SNR for the noncoherent

Rician fading channel (5) with second and fourth moment input constraints.

Proposition 1 For the Rician channel model (5) with the Rician factor K = |m|2
γ2 > 0 and input

constraints (6) and (7), the first and second derivatives of capacity at SNR = 0 are

Ċ(0) = |m|2 and C̈(0) = κγ4 − (|m|2 + γ2)2, (10)

respectively.

Proof : For the noncoherent Rician fading channel model, we have established in [1] that the

capacity-achieving input distribution has finite support. Hence, the optimal input distribution

satisfies the condition (9). Therefore, the proposition follows easily by specializing the general
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result (8) of Prelov and Verdú to the Rician channel model (5), i.e.,

I(x,mx+ ax+ n) =|m|2E{|x|2}
N0

+
1

2
γ4E{|x|4}

N2
0

− 1

2

(

|m|2 + γ2
)2
(

E{|x|2}
N0

)2

+ o(N−2
0 ). (11)

Since, by our assumption, |m| > 0, the first term on the right hand side of (11) is maximized

by having E{|x|2} = Pav. Note that since the other terms characterize the second- and higher-

order behavior, the average power constraint should be satisfied with equality to achieve the first

derivative of the capacity at zero SNR . Notice also that the second term is maximized by having

E{|x|4} = κP 2
av, and hence the asymptotic capacity expression becomes

C = |m|2
(

Pav

N0

)

+
1

2

(

κγ4 −
(

|m|2 + γ2
)2
)

(

Pav

N0

)2

+ o(N−2
0 )

= |m|2SNR +
1

2

(

κγ4 −
(

|m|2 + γ2
)2
)

SNR
2 + o(SNR

2), (12)

from which the result follows. �

Remark 1 It can be easily seen from the asymptotic expression (11) that for the Rayleigh channel

(K = 0) with input constraints (6) and (7), Ċ(0) = 0. We also note that Rao and Hassibi [16] have

recently obtained the second-order asymptotic expression of the mutual information in the multiple

antenna Rayleigh block fading channel when the fourth-order moment of the input is finite, and

shown that the mutual information is zero to first order in SNR .

Remark 2 Note that the first derivative depends only on the strength of the line of sight compo-

nent, |m|2. Hence, for fixed |m|, capacity curves under fourth moment constraints with different but

finite κ values have the same slope at zero SNR. On the other hand, the second derivative depends on

both |m|2 and κ and is positive if κ > (1+K)2 where K = |m|2
γ2 is the Rician factor. Therefore, unlike

the average power limited channels where the capacity is a concave function of the SNR, the capacity

curve in this case is a convex function locally around SNR = 0. Finally, as a comparison, if there is

no fourth moment constraint (i.e., κ = ∞), it is shown in [4] that Ċ(0) = |m|2 + γ2 , C̈(0) = −∞.

The above proposition reveals an interesting property. According to [19],

Ċ(0) = |m|2 = N0 lim
|x0|→0

D(fy|x=x0
||fy|x=0)

|x0|2
(13)

= N0 lim
|x0|→0

|m|2+γ2

N0
|x0|2 − loge

(

γ2

N0
|x0|2 + 1

)

|x0|2
, (14)
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which shows that any on-off signaling scheme that satisfies the second and fourth moment input

constraints and whose on level approaches the origin as SNR → 0 achieves the first derivative of the

capacity.

Moreover, imposing a fourth moment or a peak power constraint is essentially the same as far

as the first derivative of the capacity is considered. In [14], it is shown that for a general class of

memoryless channels with average and peak power constraints, E{|x|2} ≤ Pav , |x|2
a.s.
≤ κPav where

κ < ∞, the capacity has the following asymptotic expression as SNR → 0:

C(SNR ) =
1

2
N0 Λ SNR + o(SNR) (15)

where Λ is the largest eigenvalue of the Fisher information matrix [21]. We note that the limiting

expression on the right hand side of (13) is equal to one half the largest eigenvalue of the Fisher

information matrix which, in our case, is K = Efy|x=0
{v(y, 0)v(y, 0)T} = 2|m|2

N0
I where

v(y, x) =





∂ log fy|x
∂xr

∂ log fy|x
∂xi



 , (16)

xr and xi denote the real and imaginary parts of x respectively, and I is the 2× 2 identity matrix.

For the average power limited Rician fading channel (without fourth moment constraint) the

following derivative can be obtained: Ċ(0) = |m|2+γ2 = N0 lim|x0|→∞
D(fy|x=x0

||fy|x=0)

|x0|2 , where in this

case, the on level should escape to infinity to achieve the first derivative of the capacity.

Having obtained analytical expressions for the first and second derivatives of capacity at zero

SNR, we now find the bit energy required at zero spectral efficiency and the wideband slope. We

first note that the normalized received bit energy in the Rician channel has the following formula:

Er
b

N0
=

E{|m+ a|2}SNR

C(SNR)
=

(|m|2 + γ2)SNR

C(SNR)
. (17)

Corollary 1 For the Rician fading channel (5) subject to input constraints (6) and (7), the nor-

malized received bit energy
Er

b

N0
required at zero spectral efficiency and the wideband slope are

Er
b

N0

∣

∣

∣

∣

C=0

=

(

1 +
1

K

)

loge 2 and S0 =
2K2

(1 + K)2 − κ
, (18)

respectively, where K = |m|2
γ2 is the Rician factor.
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Proof : The received bit energy required at zero spectral is obtained by letting SNR → 0:

Er
b

N0

∣

∣

∣

∣

C=0

= lim
SNR→0

(|m|2 + γ2)SNR

C(SNR)
=

(|m|2 + γ2) loge 2

Ċ(0)
=

(

1 +
γ2

|m|2
)

loge 2.

The wideband slope expression is obtained by inserting the first and second derivative expressions

in (10) into (4). Moreover, for the Rayleigh channel where Ċ(0) = 0, it can be easily seen that

Er
b

N0

∣

∣

∣

C=0
= ∞ and S0 = 0. �

Remark 3 As long as a fourth moment constraint is imposed, the bit energy required at zero

spectral efficiency (or equivalently at infinite bandwidth) depends only on the Rician factor K, and

Er
b

N0

∣

∣

∣

C=0
→ ∞ as K → 0

Er
b

N0

∣

∣

∣

C=0
→ −1.59 dB as K → ∞

(19)

which also appeals intuitively because as K increases, the channel becomes more Gaussian, and

for the unfaded Gaussian channel
Er

b

N0

∣

∣

∣

C=0
= loge 2 = −1.59 dB. For the Rayleigh fading channel,

i.e., |m| = 0, the bit energy required at zero spectral efficiency is infinite. Therefore reliable

communications is not possible at this point. This is in stark contrast with the behavior observed

in average power limited channels where the bit energy required at zero spectral efficiency is indeed

the minimum one. On the other hand, for the Rician fading channel where |m| > 0, the required

bit energy is finite.

Remark 4 For average power limited channels, the wideband slope is always nonnegative. In the

noncoherent Rician fading channel subject to second and fourth moment input limitations, we again

observe a markedly different behavior. From (18), we see that if κ > (1 + K)2, then the wideband

slope is negative, leading to the conclusion that the minimum bit energy is achieved at a nonzero

spectral efficiency C
∗ > 0. In this case, as observed in [4, p.1341], one should avoid operating in

the region where the spectral efficiency is lower than C
∗ because decreasing the spectral efficiency

further in this region (i.e., increasing the bandwidth for fixed rate transmission) only increases the

required power.

The following bounds on the minimum received bit energy are easily obtained: loge 2 ≤ Er
b

N0 min
≤

(

1 + 1
K

)

loge 2, where the lower bound is the minimum received bit energy when there is only an

average power constraint, and the upper bound is the received bit energy required at zero spectral

7



efficiency when the input is subject to a fourth moment constraint. Note that the upper bound

is loose in the Rayleigh case where K = 0. However, the larger the Rician factor K, the smaller

the gap between the upper and lower bounds. If κ ≤ (1 + K)2, then the wideband slope is positive

and, based on numerical evidence, we conjecture that for large enough value of K, the minimum bit

energy is achieved at zero spectral efficiency and is equal to the bit energy expression in (18).

Figures 1 and 2 plot the
Er

b

N0
(dB) vs. C(

Er
b

N0
) bits/s/Hz curves for the Rayleigh and Rician (K = 1)

channels, respectively, for various values of κ. In the Rayleigh fading channel, for any finite κ, the bit

energy curve is bowl-shaped, achieving its minimum at a nonzero spectral efficiency C
∗. Therefore,

for any Eb

N0
> Eb

N0min
, there are two spectral efficiencies C1 < C2 such that Eb

N0
= Eb

N0
(C1) =

Eb

N0
(C2).

In this case, one should avoid the low-power regime and operate at C2 where for the same power

and rate, less bandwidth is required. In the Rician fading channel (K = 1), we observe the same

behavior when κ > (1 + K)2 = 4. The minimum bit energy is achieved at a nonzero spectral

efficiency. However note that now the bit energy required at zero spectral efficiency is finite and is

the same for all finite κ. If κ ≤ 4, the bit energy decreases monotonically with decreasing spectral

efficiency and the minimum bit energy is achieved at zero spectral efficiency. Therefore in this case,

the bandwidth-power tradeoff is the usual one that we encounter in average power limited channels;

i.e., for fixed rate transmission, increasing the bandwidth decreases the power required for reliable

communications. Similar conclusions are drawn by observing Fig. 3 where the Rician factor has

increased to K = 2. We note that all the minimum bit energy points other than that attained in the

Rayleigh channel with κ = 2 are achieved by a two-mass-point distribution in the following form:

F (|x|) =
(

1− 1

κ

)

u(|x|) + 1

κ
u(|x| −

√

κN0SNR). (20)

An interesting observation is that in the Rayleigh channel for sufficiently low SNR values, the

optimal input satisfies E{|x|2} < Pav and E{|x|4} = κP 2
av, and hence has a kurtosis higher than κ.

In the case where κ = 2, a two-mass-point distribution with E{|x|2} < Pav achieves the minimum

bit energy. Note that for the Rayleigh channel, the second-order asymptotic term in (11) is increased

by decreasing the second moment while satisfying the fourth moment constraint with equality

3.2 Average and Peak Power Limited Input

In this section, we impose a peak power constraint, which is a more stringent approach than

constraining the fourth moment of the amplitude. We analyze two cases: limited peak-to-average

8



power ratio and limited peak power. In contrast to the first case, no constraint on the peak-to-

average ratio is imposed in the second case where the input is subject to a fixed peak power limit

that does not vary with the average power constraint.

3.2.1 Limited Peak-to-Average Power Ratio

We first consider the case in which the transmitter peak-to-average power ratio is limited, and hence

the input, in addition to the average power constraint (6), is subject to

|xi|2
a.s.
≤ κPav ∀i (21)

where 1 ≤ κ < ∞. The following result characterizes the spectral-efficiency/bit-energy tradeoff in

the low power regime.

Proposition 2 For the Rician fading channel (5) with average and peak power limitations (6) and

(21) respectively, the normalized received bit energy
Er

b

N0
required at zero spectral efficiency and the

wideband slope are

Er
b

N0

∣

∣

∣

∣

C=0

=

(

1 +
1

K

)

loge 2 and S0 =
2K2

(1 + K)2 − κ
, (22)

respectively, where K = |m|2
γ2 is the Rician factor.

Proof : Note that since the input is subject to a peak constraint (21), the condition (9) is satisfied,

and hence the input-output mutual information has again the same asymptotic expression (11). It

is easily observed from (11) that in the Rayleigh channel where |m| = 0, Ċ(0) = 0. If K > 0, then to

achieve the first derivative of the capacity at zero SNR , we must have E{|x|2} = Pav. The following

lemma gives the maximum value of the fourth moment of the amplitude when the input is subject

to (6) and (21).

Lemma 1 Consider a nonnegative real random variable |x|. Then we have

sup
F|x|

E{|x|2}≤Pav

|x|2≤κPav a.s.

E{|x|4} = κP 2
av . (23)

9



Furthermore, the two-mass-point discrete distribution (24) achieves this supremum.

F ∗
0 (|x|) =

(

1− 1

κ

)

u(|x|) + 1

κ
u(|x| −

√

κPav). (24)

Proof : Following the approach in [2] to find the Kuhn-Tucker condition, it is easily established that

a sufficient and necessary condition for the distribution F0 to achieve the supremum in (23) is that

there exists λ ≥ 0 such that

|x|4 − λ|x|2 ≤ M − λPav ∀|x| ∈ [0,
√

κPav] (25)

= M − λPav ∀|x| ∈ E0 (26)

where E0 is the set of points of increase of F0 and M is the supremum value. The two-mass-point

distribution F ∗
0 defined in (24) satisfies these constraints and achieves M = κP 2

av. �

By the above Lemma and the fact that the average power constraint has to be satisfied with

equality to achieve the first derivative, the asymptotic capacity expression for the Rician channel

with K > 0 becomes

C(SNR) = |m|2SNR +
1

2

(

κγ4 −
(

|m|2 + γ2
)2
)

SNR
2 + o(SNR

2). (27)

from which we see that Ċ(0) = |m|2 and C̈(0) = κγ4 − (|m|2 + γ2)
2
. Then the result in (22) is

easily obtained from these derivative expressions similarly as in the proof of Corollary 1. �

Remark 5 Note that with average and peak power constraints, we obtain the same bit energy and

wideband slope expressions as in (18) where the input is subject to E{|x|2} ≤ Pav and E{|x|4} ≤
κP 2

av. Thus, we conclude that imposing a fourth moment (7) or a peak constraint in the form (21)

has the same effect in the low-power regime.

3.2.2 Limited Peak Power

In this section, we assume that the transmitter is limited in peak power and there is no constraint

on the peak-to-average power ratio. Hence, the input, in addition to the average power constraint

(6), is subject to

|xi|2
a.s.
≤ ν ∀i (28)

10



where ν is a fixed peak limit that does not vary with the average power constraint Pav. Notice in this

case that as Pav ↓ 0, the peak-to-average ratio increases without bound. Recently, Sethuraman and

Hajek [15] analyzed the capacity per unit energy of Gaussian fading channels with memory under

similar average and peak power constraints. Considering the memoryless Rician fading channel, we

obtain the following result on the minimum bit energy and wideband slope.

Proposition 3 For the Rician fading channel (5) with input constraints (6) and (28), and fixed

noise density N0
1, the minimum received bit energy and wideband slope are

Er
b

N0min

=
loge 2

1− 1
K+1

loge(1+η)
η

and S0 =











2(η(K+1)−loge(1+η))2

−1+ 1

1−η2
exp

(

2Kη2

1−η2

)

I0

(

2Kη

1−η2

) η < 1

0 η ≥ 1

, (29)

respectively, where K = |m|2
γ2 is the Rician factor, η = γ2

N0
ν is the normalized peak power limit, and I0

is the zeroth order modified Bessel function of the first kind. Moreover, input signaling that satisfies

E{|xSNR|2} = Pav = N0SNR , |xSNR|2
a.s.

≤ ν, (30)

and

lim
SNR→0

E {|xSNR|2 1{|xSNR|2 > ν − ǫ}}
E{|xSNR|2}

= 1 ∀ǫ > 0 (31)

is necessary to achieve the minimum bit energy, and hence the wideband slope.

Proof : See Appendix A.

Remark 6 The minimum bit energy decreases to −1.59 dB as we approach the unfaded Gaussian

channel, i.e., K → ∞; or the peak constraint is relaxed, i.e., ν → ∞. We also note that for the

Rayleigh case where K = 0, the minimum bit energy expression can easily be obtained as a special

case of the capacity per unit energy result of [15]. The wideband slope is zero for η ≥ 1 as in

the average power limited case, and hence we conclude that achieving the minimum bit energy is

extremely demanding in bandwidth.

Remark 7 It is also interesting to note that as η ↓ 0 while keeping the fading variance γ2 fixed

(i.e., ν ↓ 0 or N0 ↑ ∞),
Er

b

N0 min
→
(

1 + 1
K

)

loge 2 and S0 → 2K2

(1+K)2
. We notice that the limiting values

1
N0 is fixed so that SNR varies only with Pav, and the peak SNR constraint is kept constant at ν

N0

.
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are the expressions for the bit energy at zero spectral efficiency and wideband slope with κ = 0 in

the limited peak-to-average power ratio case.

Remark 8 A class of input signals that satisfy the conditions (30) and (31) are identified to be

first order optimal, thereby achieving the minimum bit energy. Noting that these conditions are

also necessary to achieve the wideband slope, we show in Appendix A that the two-mass-point

amplitude distribution

F (|x|) =
(

1− Pav

ν

)

u(|x|) + Pav

ν
u(|x| −

√
v), (32)

achieves both the minimum bit energy and the wideband slope. Indeed, a recent independent

analysis by Huang and Meyn [10] has shown that the two-mass-point distribution with one mass at

the peak level and the other at the origin is capacity-achieving for sufficiently low SNR values for

a general class of channels, including the Rician channel, with fixed peak constraints.

3.3 Average Power Limited Rician Channel with Phase Noise

Finally, we comment on the spectral efficiency of the average power limited Rician fading channel

with phase noise which is introduced in [1]. Lapidoth and Shamai [5] have proven that for a general

class of average power limited single-input single-output fading channels, the bit energy at zero

spectral efficiency is loge 2 = −1.59 dB. If there is imperfect receiver side information, Verdú [4] has

shown that the wideband slope is zero. Figure 4 plots the spectral-efficiency/bit-energy function

for the noncoherent Rician channel with phase noise for K = 0, 1 and 2. Indeed, we observe that

the for all K, the bit energy curves are approaching −1.59 dB with zero slope.

4 Efficient Signaling in the Low-Power Regime

Having analyzed the spectral-efficiency/bit-energy tradeoff in the low-power regime, we have seen

that if the input is subject to second and fourth moment constraints (6) and (7), or average and

peak power constraints (6) and (21) with κ ≤ (1 + K)2, then the wideband slope is positive and

the numerical results indicate that for large enough Rician factor K, the minimum bit energy is

achieved at zero spectral efficiency. Furthermore, if the noise spectral density N0 and the peak

power constraint is fixed as the average power varies, the capacity curve is a concave function of the

12



SNR , and hence the minimum bit energy is also achieved at zero spectral efficiency. Motivated by

these observations, we will now investigate efficient signaling schemes in the low-power regime when

the input has limited peakedness. Verdú [4] defines an input distribution to be first-order optimal

if it satisfies the input constraints and achieves the first derivative of the capacity at zero SNR, and

second-order optimal if in addition it achieves the second derivative of the capacity at zero SNR. So,

a first-order optimal input achieves the energy per bit at zero spectral efficiency (which as noted

before, need not be the minimum energy per bit) and a second-order optimal input achieves both the

bit energy at zero spectral efficiency and the wideband slope. We have observed in [1] that for the

noncoherent Rician fading channel with second and fourth moment input constraints, a particular

two-mass-point input distribution (20) is capacity-achieving for sufficiently small SNR. Based on this

observation, we define the following signaling schemes which overlay phase-shift keying on on-off

keying:

Definition 1 An OOBPSK signal, parametrized by 0 < p ≤ 1, has the following constellation

points with the corresponding probabilities

x1 = 0 with prob. 1− p

x2 = +
√

Pav/p
′′ p/2

x3 = −
√

Pav/p
′′ p/2

(33)

where Pav is the average power of the signal.

Definition 2 An OOQPSK signal, parametrized by 0 < p ≤ 1, has the following constellation

points with the corresponding probabilities

x1 = 0 with prob. 1− p

xi =
√

Pav

2p
(±1± j) ′′ p/4 i = 2, 3, 4, 5

(34)

where Pav is the average power of the signal.

From the above definitions, we immediately notice that 1/p is the kurtosis of the signals and

having p = 1 reduces the signaling schemes to ordinary BPSK and QPSK respectively. Next we

investigate the performance of these schemes in the wideband regime when the input amplitude is

subject to second and fourth moment limitations.
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Proposition 4 For the Rician fading channel (5) with input constraints (6) and (7), an OOBPSK

input with average power Pav and 1
κ
≤ p ≤ 1 is first-order optimal. Furthermore the first and second

derivatives at zero SNR of the mutual information achieved by this input are given by

İ(0) = |m|2 and Ï(0) = κγ4 − (|m|2 + γ2)2 − |m|4, (35)

respectively.

Proof : First note that an OOBPSK input (33) with average power Pav and 1
κ
≤ p ≤ 1 satisfies the

input constraints (6) and (7). The input-output mutual information is given by

I(x, y) =

∫

C

∫

C

fy|x(y|x) ln
fy|x(y|x)
fy(y)

dy dF (x) (36)

where dF (x) = (1− p) δ(x)+ p

2
δ
(

x−
√

Pav

p

)

+ p

2
δ
(

x+
√

Pav

p

)

, and fy|x is given in [1, Eqn. 5]. Direct

differentiation of (36) with respect to SNR gives (35). Achieving the first derivative of capacity at

zero SNR, OOBPSK input is first order optimal. �

Proposition 5 For the Rician fading channel model (5) with input constraints (6) and (7), the

OOQPSK input with average power Pav and p = 1
κ
is second-order optimal, i.e., the first and second

derivatives at zero SNR of the mutual information achieved by this input are given by

İ(0) = |m|2 and Ï(0) = κγ4 − (|m|2 + γ2)2, (37)

respectively.

Proof : The steps in the proof are essentially the same as in the proof of Proposition 4. The

OOQPSK input (34) with average power Pav and p = 1
κ
satisfies the input constraints (6) and (7),

and the input distribution in the mutual information expression (36) now becomes

dF (x) = (1− p) δ(x) +
p

4
δ

(

x−
√

Pav

2p
(1 + j)

)

+
p

4
δ

(

x−
√

Pav

2p
(1− j)

)

p

4
δ

(

x−
√

Pav

2p
(−1 + j)

)

+
p

4
δ

(

x−
√

Pav

2p
(−1− j)

)

. (38)

Similarly, direct differentiation of the mutual information with respect to SNR provides (37). Achiev-

ing both the first and the second derivatives of capacity at zero SNR, OOQPSK input is second-order
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optimal. �

Remark 9 Note that the results of Proposition 4 and 5 hold when the fourth moment constraint

(7) is replaced by a peak power constraint (21).

Remark 10 An interesting observation is that OOBPSK with p ∈ [ 1
κ
, 1) is, to first order, no better

than ordinary BPSK (i.e., OOBPSK with p = 1) because the first derivative does not depend on

the kurtosis of the signal. Since no information transfer takes place with phase modulation over

the unknown Rayleigh fading channel, this explains why reliable communication over this channel

is not possible in the asymptotic regime of zero spectral efficiency. For second order optimality, we

need OOQPSK signaling with p = 1
κ
. Therefore, in the low-power regime, we need both amplitude

and phase modulation schemes in order to be spectrally efficient.

For the average-power limited unfaded AWGN channel, [4] has shown that ordinary QPSK,

which has unit kurtosis, is second-order optimal. Hence, for the unfaded channel, introducing an

additional peak or fourth moment constraint on the channel input does not degrade the performance

in the wideband regime.

As a natural next step, we look at the wideband slopes achieved by OOBPSK and OOQPSK

signaling.

Corollary 2 In the Rician fading channel (5) with input constraints (6) and (7), OOBPSK and

OOQPSK signaling schemes with p = 1
κ
, achieve the following wideband slopes :

S0,OOBPSK =
2K2

K2 + (1 + K)2 − κ
and S0,OOQPSK =

2K2

(1 + K)2 − κ
, (39)

respectively.

Since the OOQPSK is second-order optimal, it achieves the optimal wideband slope. Note also

that, for fixed κ and K, when both slopes are positive, OOBPSK achieves smaller slope than that

of OOQPSK. Hence for the same bit energy and rate, OOBPSK needs more bandwidth in the

low-power regime, or equivalently, for the same bandwidth and rate it requires more bit energy. We

need to be careful when the slopes are negative because in this case we want to avoid operating in

the very low-power regime as discussed previously.

Figure 5 plots the spectral efficiency-bit energy curve for optimal, OOQPSK and OOBPSK

signaling with p = 1
κ
in the Rician fading channel (K = 1) when the input is subject to E{|x|2} ≤ Pav
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and E{|x|4} ≤ κP 2
av with κ = 4. Note that for this value of κ, the wideband slope is positive. Both

OOBPSK and OOQPSK achieve the minimum bit energy (first order optimality). Being second-

order optimal, OOQPSK also achieves the wideband slope and is very close to the optimal curve in

the low-SNR regime. Therefore, we conclude that OOQPSK signaling is optimally efficient in the

low-power limit. Note that OOBPSK achieves a smaller slope and hence for fixed rate and power

it requires more bandwidth. In Fig. 6, κ is increased to 10. In this case, the wideband slope is

negative and the minimum bit energy is achieved at a nonzero spectral efficiency, which implies

that the very low-power regime ought to be avoided. However, we observe that OOQPSK is still an

efficient scheme achieving very close to the minimum bit energy. Moreover, Fig. 7 shows how we

increase the wideband slope when we use OOQPSK signaling with higher and higher kurtosis κ as

long as κ ≤ (1 + K)2. Finally for the Rayleigh fading channel, Fig. 8 plots the bit-energy/spectral-

efficiency curve for the optimal and OOK signaling, which is in the form given by (20), for κ = 2, 5

and 10. We observe that OOK is an efficient signaling scheme achieving the minimum bit energy in

the cases of κ = 5 and 10. For κ = 2, the minimum bit energy is again achieved by on-off keying,

however as discussed in Section 3.1, with E{|x|2} < Pav. Therefore in this case OOK signaling in

the form (20) is suboptimal achieving a higher minimum bit energy.

Up to now, we have considered the cases in which the fourth moment or the peak power constraint

varies with the average power of the signal. When there is a fixed peak limit, we have seen in Section

3.2.2 that the two-mass-point input amplitude distribution (68) is required to achieve the minimum

bit energy. Therefore, when the input is subject to (6) and (28), OOK signaling where the on-

level is at
√
ν with probability Pav

ν
is first-order optimal. Moreover, it can be easily seen that this

signaling scheme is second-order optimal in the Rayleigh channel and in the Rician channel when

the wideband slope is zero i.e., ν ≥ N0

γ2 . We also investigate the low-power performance of OOQPSK

signaling. Note that by choosing p = Pav

ν
, we obtain OOQPSK signals whose on-level amplitudes

are fixed at
√
ν. Since the proof of the following result is similar to those of Proposition 4 and 5,

and only involves differentiating the mutual information with respect to the SNR , it is omitted.

Proposition 6 For the Rician fading channel (5) with input constraints (6), (28) and fixed noise

density N0, the OOQPSK input with average power Pav and p = Pav

ν
is first-order optimal. Further-

more the first and second derivatives at zero SNR of the mutual information achieved by this input

are given by
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İ(0) = (|m|2 + γ2)−N0

loge

(

γ2

N0
ν + 1

)

ν
and Ï(0) =







N2
0

ν2

(

1− 1
16

∑5
i,j=2

∫ fy|x=xi
fy|x=xj

fy|x=0
dy
)

ν < N0

γ2

−∞ ν ≥ N0

γ2

,

respectively, where fy|x=a =
1

π(γ2|a|2+N0)
exp

(

− |y−ma|2
γ2|a|2+N0

)

.

Remark 11 We note that the OOQPSK signaling is second-order optimal in the Rician channel

only when the wideband slope is zero i.e., ν ≥ N0

γ2 , and achieves a smaller slope if ν < N0

γ2 .

5 Conclusion

For the noncoherent Rician fading channel, we have analyzed the spectral-efficiency/bit-energy

tradeoff in the low-power regime when the input peakedness is limited by a fourth moment or a

peak power constraint. We have found analytical expressions for the bit energy required at zero

spectral efficiency and wideband slope.

We first considered the case in which the input, in addition to the average power constraint, is

subject to a fourth moment constraint E{|x|4} ≤ κP 2
av. We have shown that if κ > (1 + K)2, the

wideband slope is negative. Hence, the minimum bit energy is achieved at some nonzero spectral

efficiency, C∗. In this case, we have identified a forbidden region where one should not operate. In

this region where C < C
∗, decreasing the spectral efficiency further (i.e., increasing the bandwidth

for fixed rate transmission) increases the bit energy required for reliable communications. Indeed,

for the unknown Rayleigh fading channel, the bit energy at zero spectral efficiency is infinite.

If κ ≤ (1 + K)2, the wideband slope is positive and we have conjectured that for large enough

Rician factor K, the minimum bit energy is achieved at zero spectral efficiency. This bit energy can

be achieved by BPSK signaling.

We have also analyzed the case where the input peakedness is restricted by a peak power

constraint. If the input peak-to-average power ratio is limited, i.e., the input is subject to |x|2
a.s.
≤

κPav, the same expressions for the bit energy at zero spectral efficiency and wideband slope are

found as in the fourth moment limited case. Therefore the same conclusions as above are drawn.

If the input subject to a fixed peak limit, i.e., |x|2
a.s.

≤ ν, we have obtained the minimum bit energy

and wideband slope. We have shown that if γ2

N0
ν ≥ 1, then the wideband slope is zero, and hence

achieving the minimum bit energy is very demanding in bandwidth.

We have defined the OOBPSK and OOQPSK signaling schemes and analyzed their low-power

performance. We have shown that when the input is subject to E{|x|4} ≤ κP 2
av or |x|2

a.s.
≤ κPav,
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OOQPSK is second-order optimal while OOBPSK is first-order optimal. Therefore, achieving the

optimal wideband slope, OOQPSK signaling turns out to be a very efficient scheme in the low-power

regime. In the case of the fixed peak limit, we have seen that OOK signaling with on-level fixed at

the peak level achieves the minimum bit energy.

A Proof of Proposition 3

Since the capacity curve is a concave function of the SNR in this case, the minimum received bit

energy is achieved at zero spectral efficiency and can be obtained from
Er

b

N0min
= (|m|2+γ2) loge 2

Ċ(0)
. Ċ(0)

is easily found using the following formula [19]

Ċ(0) = N0 sup
|x0|≤ν

D(fy|x=x0
‖fy|x=0)

|x0|2
= N0 sup

|x0|≤ν

|m|2+γ2

N0
|x0|2 − loge

(

γ2

N0
|x0|2 + 1

)

|x0|2
(40)

= |m|2 + γ2 −N0

loge

(

γ2

N0
ν + 1

)

ν
. (41)

Next we show that input signaling that satisfies (30) and (31) is required to achieve the minimum

bit energy, and hence the optimal wideband slope. We adopt an approach similar to that of [4]

where flash signaling is shown to be necessary to achieve the minimum bit energy in the absence of

the peak constraint (28).

i) We first prove that signaling that satisfies (30) and (31) achieves the first derivative of the

capacity. Note that in general we have

İ(0) = lim
SNR→0

I(xSNR; y)

SNR
(42)

= lim
SNR→0

N0

E{D(fy|x=xSNR
‖fy|x=0)}

E{|xSNR|2}
(43)

= |m|2 + γ2 − lim
SNR→0

N0

E
{

loge

(

γ2

N0
|xSNR|2 + 1

)}

E{|xSNR|2}
. (44)

Fix some ǫ ∈ (0, ν). Then we can write

E

{

loge

(

γ2

N0
|xSNR|2 + 1

)}

=E

{

loge

(

γ2

N0
|xSNR|2 + 1

)

1
{

|xSNR|2 > ν − ǫ
}

}

+ E

{

loge

(

γ2

N0
|xSNR|2 + 1

)

1
{

|xSNR|2 ≤ ν − ǫ
}

}

. (45)
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Using loge(1 + x) ≤ x, we have

lim
SNR→0

E
{

loge

(

γ2

N0
|xSNR|2 + 1

)

1 {|xSNR|2 ≤ ν − ǫ}
}

E{|xSNR|2}
≤ γ2

N0

lim
SNR→0

E {|xSNR|2 1{|xSNR|2 ≤ ν − ǫ}}
E{|xSNR|2}

= 0 (46)

where (46) follows from (31). Moreover using the fact that loge(1+x)
x

is monotonically decreasing,

|xSNR|2
a.s.

≤ ν, and (31), we easily observe that

loge

(

γ2

N0
ν + 1

)

ν
≤ lim

SNR→0

E
{

loge

(

γ2

N0
|xSNR|2 + 1

)

1 {|xSNR|2 > ν − ǫ}
}

E{|xSNR|2}
≤

loge

(

γ2

N0
(ν − ǫ) + 1

)

ν − ǫ
.

(47)

From (44), (45), (46) and (47), we have

|m|2 + γ2 −N0

loge

(

γ2

N0
(ν − ǫ) + 1

)

ν − ǫ
≤ İ(0) ≤ |m|2 + γ2 −N0

loge

(

γ2

N0
ν + 1

)

ν
. (48)

Since ǫ is arbitrary, we conclude that input signaling satisfying (30) and (31) achieves Ċ(0).

ii) Now we will show that (30) and (31) are necessary conditions to achieve Ċ(0). Note that (30) is

dictated by the input constraints (6) and (28). Using again the monotonicity of loge(1+x)
x

, we observe

for arbitrary ǫ ∈ (0, ν) that

E

{

loge

(

γ2

N0
|xSNR|2 + 1

)

1
{

|xSNR|2 > ν − ǫ
}

}

≥
loge

(

γ2

N0
ν + 1

)

ν
E
{

|xSNR|2 1
{

|xSNR|2 > ν − ǫ
}}

,

(49)

E

{

loge

(

γ2

N0
|xSNR|2 + 1

)

1
{

|xSNR|2 ≤ ν − ǫ
}

}

≥
loge

(

γ2

N0
(ν − ǫ) + 1

)

ν − ǫ
E
{

|xSNR|2 1
{

|xSNR|2 ≤ ν − ǫ
}}

.

(50)
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Combining (44), (45), (49) and (50), we have

İ(0) ≤ |m|2 + γ2 −
loge

(

γ2

N0
ν + 1

)

ν

−





loge

(

γ2

N0
(ν − ǫ) + 1

)

ν − ǫ
−

loge

(

γ2

N0
ν + 1

)

ν



 lim
SNR→0

E {|xSNR|2 1 {|xSNR|2 ≤ ν − ǫ}}
E{|xSNR|2}

, (51)

from which we notice that the condition limSNR→0
E{|xSNR|2 1{|xSNR|2≤ν−ǫ}}

E{|xSNR|2} = 0 for all 0 < ǫ < ν,

which is equivalent to (31), is required to achieve Ċ(0).

iii) In this part, we obtain the optimal wideband slope by evaluating C̈(0). For the input xSNR that

achieves both Ċ(0) and C̈(0), we can write

C̈(0) = 2 lim
SNR→0

I(xSNR; y)− Ċ(0)SNR

SNR2
= −2 lim

SNR→0

D(fy‖fy|x=0)

SNR2
. (52)

Furthermore by Proposition 1 of [1], we can assume without loss of optimality that xSNR has

uniformly distributed phase independent of the amplitude. With this assumption, it can be easily

verified that

D(fy‖fy|x=0) = D(fR‖fR|r=0) (53)

where, as in [1], R = |y|2
N0

and r = γ√
N0

xSNR, and therefore fR =
∫∞
0

g(R, r) dFr(r) with g(R, r) =

1
1+r2

exp
(

−R+Kr2

1+r2

)

I0

(

2
√
Kr

√
R

1+r2

)

, and fR|r=0 = exp(−R). Following the approach employed in the

proof of Theorem 16 in [4], we write

D(fR‖fR|r=0) = E{(1 + SNR(W + V )) loge(1 + SNR(W + V ))} (54)

where

V =
P (r2 > η − ǫ)

SNR

(

f̃R
fR|r=0

− 1

)

and W =
1− P (r2 > η − ǫ)

SNR

(

f̂R
fR|r=0

− 1

)

. (55)

In the above formulation f̃R and f̂R are the distributions ofR conditioned on r2 > η−ǫ and r2 ≤ η−ǫ,

respectively, for some fixed ǫ ∈ (0, η). Using the facts that (x + 1) loge(1 + x) = x + 1
2
x2 + o(x2),
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and (V +W ) has zero mean, and converges to a nonzero random variable for vanishing SNR when

(30) and (31) are satisfied, we have

lim
SNR→0

D(fR‖fR|r=0)

SNR2
= lim

SNR→0

E{(1 + SNR(W + V )) loge(1 + SNR(W + V ))}
SNR2

(56)

=
1

2
lim

SNR→0
E{(W + V )2}. (57)

Noting that (30) and (31) are necessary to achieve the minimum bit energy, and hence the optimal

wideband slope, we will first consider E{V 2}.

lim
SNR→0

E{V 2} = lim
SNR→0

P 2(r2 > η − ǫ)

SNR2
E

{

f̃ 2
R

f 2
R|r=0

− 1

}

(58)

≥ N2
0

ν2
lim

SNR→0
E

{

f̃ 2
R

f 2
R|r=0

− 1

}

(59)

=
N2

0

ν2
lim

SNR→0

(
∫

eRf̃ 2
R dR− 1

)

(60)

≥ N2
0

ν2

(
∫

Ω1

eRg2(R,
√
η) dR +

∫

R+\Ω1

eRg2(R,
√
η − ǫ) dR− 1

)

, (61)

where Ω1 = {R : g(R,
√
η) ≤ g(R,

√
η − ǫ)}, and R

+ = [0,∞). (59) follows by assuming (31) and

noting that

1 = lim
SNR→0

E{|xSNR|2} 1{|xSNR|2 > ν − ǫ}
E{|xSNR|2}

= lim
SNR→0

P (|xSNR|2 > ν − ǫ)E{|xSNR|2} | |xSNR|2 > ν − ǫ}
E{|xSNR|2}

≤ ν lim
SNR→0

P (|xSNR|2 > ν − ǫ)

E{|xSNR|2}
(62)

=
ν

N0
lim

SNR→0

P (|xSNR|2 > ν − ǫ)

SNR
. (63)

(61) follows by noting that

f̃r =

∫

g(R, r) dF̃r(r) (64)

≥ min{g(R,
√
η), g(R,

√
η − ǫ)} (65)

where F̃r is the distribution of r conditioned on r2 > η− ǫ. (65) follows from the fact that g(R, r) is

either a monotonically decreasing or a first monotonically increasing and then decreasing function

of r.
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Similar analysis leads to limSNR→0E{WV } = 0. Therefore from (52), (57), and (61), we have

C̈(0) ≤ −N2
0

ν2

(
∫

Ω1

eRg2(R,
√
η) dR +

∫

R\Ω1

eRg2(R,
√
η − ǫ) dR− 1

)

. (66)

As ǫ ∈ (0, η) is arbitrary, we have

C̈(0) ≤ −N2
0

ν2

(
∫ ∞

0

eRg2(R,
√
η) dR− 1

)

. (67)

It can be easily shown that the two-mass-point input amplitude distribution

F (|x|) =
(

1− Pav

ν

)

u(|x|) + Pav

ν
u(|x| −

√
v), (68)

achieves both Ċ(0) and the upper bound in (67). Therefore we conclude that (67) is indeed satisfied

with equality, and therefore we have

C̈(0) =















−N2
0

ν2

(

1

1− γ4ν2

N2
0

exp

(

2
|m|2γ2ν2

N2
0

1− γ4ν2

N2
0

)

I0

(

2 |m|2ν
N0

1− γ4ν2

N2
0

)

− 1

)

ν < N0

γ2

−∞ ν ≥ N0

γ2

(69)

where (69) is obtained by evaluating a closed form expression for the integral in (67). The wideband

slope is obtained by inserting (41) and (69) into (4). �

References
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