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Abstract—Antenna spacing and the properties of a scattering
environment can create correlation between channel coefficients.
Temporal correlation between fading coefficients may also be
present, because one may be unable or unwilling to fully interleave
the channel symbols. This paper presents a comprehensive analy-
sis of multiple-input multiple-output systems under correlated
fading. We calculate pairwise-error-probability (PEP) expressions
under quasi-static fading, fast fading, block fading, as well as ar-
bitrarily temporally correlated fading, under Rayleigh and Rician
conditions. We use the PEP expressions to calculate union bounds
on the performance of trellis space-time codes, super orthogonal
space-time codes, linear-dispersion codes, and diagonal algebraic
space—time codes.

Index Terms—Correlated channels, diversity, fading channels,
MIMO signaling, pairwise error probability, space—time codes,
uniform error property.

I. INTRODUCTION

N A multiple-antenna system, insufficient antenna spacing,

angle spread, or the lack of rich scattering may cause spatial
correlation between antennas. Fading coefficients may also ex-
hibit temporal correlations. This paper studies the performance
of multiple-input multiple-output (MIMO) radio systems in
correlated fading channels. We begin by calculating pairwise-
error-probability (PEP) expressions in a variety of scenarios,
including quasi-static fading, fast fading, block-fading, general
Rayleigh fading, and Rician fading. We consider spatially
correlated fading on the transmit or receive side (or both), as
well as combined spatially and temporally correlated fading.
We then use the PEPs to develop union bounds for a variety of
MIMO signaling scenarios. In particular, we provide bounds
for trellis space—time codes [1], superorthogonal space—time
(SOSTT) codes [2], linear-dispersion (LD) codes [3], and di-
agonal algebraic space—time (DAST) codes [4].

A brief history of past work in this area is as follows.
Damen et al. [5] studied, via simulations, the effect of para-
meters such as angle spread and Rician factor on the perfor-
mance of various space—time signaling and detection schemes.
Bolcskei and Paulraj [6] studied the quasi-static channel and
found Chernoff bounds that in the high-SNR regime link the
diversity to the rank and eigenvalues of the correlation matri-
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ces. Their analysis yields expressions that are equivalent to,
but different from, the ones we provide in this paper in the
special case of the quasi-static channel. In another work [7],
Bolcskei et al. studied the performance of space—frequency
coded MIMO-orthogonal frequency-division multiplexing
(OFDM) for frequency-selective Rician channels. Uysal and
Georghiades [8] derived PEP expressions for transmit-antenna
correlation (with no receive correlation or temporal correla-
tion). Dogandzi¢ [9] gives PEP expressions with spatial cor-
relation, but does not consider temporal correlation.

This work augments the existing literature in the following
ways. First, instead of focusing on Chernoff bounds, we de-
rive exact expressions in a relatively straightforward manner.
The exact expressions can replace Monte Carlo simulations,
and thus, are helpful in large-scale simulations of wireless
networks. Also, our analysis covers a wider range of channel
conditions (e.g., joint spatio-temporal correlation), as well as
application to a number of MIMO signaling schemes. We also
explore the uniform error property (UEP) of codes in correlated
channels and show that UEP may be lost if there is transmit-side
antenna correlation.

Throughout this paper, we use the following notation. Ma-
trices are shown in boldface uppercase letters, e.g., A, and
vectors are shown in boldface lowercase, e.g., x. The Her-
mitian, the determinant, and the Frobenius norm of A are
denoted by A™, |A|, and ||A||, respectively. The vectorizing
operator vec(A) stacks the columns of the matrix A in a
column vector. The Kronecker product of A and B is shown
as A ® B.

II. SYSTEM MODEL

We consider an MIMO system with nt transmit and ng
receive antennas. The binary data are encoded and modulated
by a space-time encoder. Let x,, = [z\"”) -+ 2{")]T denote
the transmitted signal vector in the nth time interval. Let
H, = {hgf)} be the ng X nr channel matrix at time n, where
each entry hj; is the channel gain between transmit antenna 4
and receive antenna j. The channel gains are assumed to be
circularly symmetric complex Gaussian random variables, so
their magnitude exhibits a Rayleigh distribution. The received-
signal vector at time n is given by r, = vEH,x, + z,,
where z is an ng X 1 independent identically distributed (i.i.d.)
zero-mean Gaussian noise vector and E; = &(||x|?)/nr is
the symbol energy. We assume that the receiver has perfect
knowledge of the channel matrix and performs coherent de-
tection. The maximum-likelihood (ML) metric is given by
m(r,x) = SN | |r, — VEH,x,|%, where N is the total
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frame (codeword) length, r is the received signal in this period,
and x is a given codeword in the same period.

III. PERFORMANCE ANALYSIS

The overall error rates can be approximated via the union
bound, e.g., for the frame error rate

P, gZP(x)ZP(x_nz) 1)

RF#EX

where P(x) is the probability of codeword x (assumed uni-
form) and P(x — X) is the so-called PEP, i.e., the probability
that a codeword x is decoded as x. In this section, we concen-
trate on the development of PEP expressions under a variety of
correlated channel conditions.

Using the methods originated by Craig [10] and widely
applied by Simon and Alouini [11], we first calculate the
conditional PEP and then integrate over channel gain co-
efficients. An error x — X occurs when |[r — /E.Hx| >
|r — VEsHX||, or equivalently, the noise vector z must be
such that R{/EszH" (% — x)*} > E;/2|/H(x — %)||>. Denot-
ing the codeword differences by e,, = x,, — X,,, the PEP for a
given channel realization is [11]

P(x — %[H) = Q

E N
oy, 2 [Haenl? | @
n=1

where Ny is the one-sided noise-power spectral density. Now,
use the alternative integral expression of (J-function [10], [11]

1 [ x?
=— ——— | do
Q@) ™ /exp( 2Sin29>
0

and subsequently integrate over the randomness of the channel
coefficients to obtain the unconditional PEP

1 ; o
P %|H) = — . B H,e,|? | do
(x — <] ﬂ/exp<4Nosm2921' e|>
0 n=

1 / E
Px—%)==[®(—————5-)df 3
(x = %) 7T/ ( 4N0511129> ©)
0

where ®(-) is the moment-generating function (MGF) of the
random variable S |[H,e,|/2. We note that alternative
methods for calculating the PEP using MGF do exist, notably
the residue method [12]-[14], but Craig’s technique is easier
and more versatile.

When channel coefficients are i.i.d., the MGF can be de-
composed into a product of marginal MGFs and (3) is easily
calculated. In the presence of spatial or temporal correlation,
however, the MGF cannot be decomposed, and thus, complica-
tions arise. The remainder of this section is devoted to providing
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analytical tools for the calculation of PEP under correlated
channel conditions.

We first consider spatially correlated antennas. Correlations
can be modeled with an ii.d. “innovations” channel H in
combination with a linear system. One can think of this as
a diagonalization of the correlated channel. The most general
form of such a correlation model is constructed using the
vectorizing operator vec(+) as follows:

vec(H) = R> vec(H)

where R is the spatial correlation matrix. A slightly less gen-
eral, but more useful, model considers correlations on transmit
and receive sides separately. Representing the transmit-side
correlation matrix as Ry and receive-side correlation matrix
as RRy, the correlated channel is represented as [15]

H =R} AR @)

where it can be verified that R = Rpy ® Rgry. We use this
latter spatial correlation model in our analyses.

A. Quasi-Static Fading With Spatial Correlation

In quasi-static fading channels, the matrix channel is as-
sumed to be constant over the duration of a codeword, hence
H, =Hforn =1,..., N. Denote the difference of two code-
word matrices with A =[e; --- ey]. Then, the argument of
the MGF in (3) can be described in terms of Rg, and Ry

N
Z ||HnenH2
n=1

= |HA|?
= tr(HAATHY)
= vec(H")" (I,,, ® AAM) vec(H")

= vec(HY)IRZ (L, ® AAY) R2vec(HY)  (5)

where Ry = Rry ® Ry is the covariance matrix of vec(H™)
(note the difference with the definition of R above). We wish to
calculate the MGF of the above random variable, which consists
of a positive semidefinite quadratic form involving Gaussian
vectors vec(H™M).

Fact [16]: Let A be a Hermitian matrix and u a cir-
cularly symmetric complex Gaussian vector with mean u
and covariance matrix R,. The MGF of the quadratic form
y = uAu' is

exp (suA(I — sR,A) ta')
T — sRyuA]|

Dy(s) = / e*py (y)dy =
0
(6)

where I is the identity matrix with appropriate size.
Clearly u = vec(H™)! is a zero-mean Gaussian vector with

covariance matrix Ry, = I,,.p,; and RfI/Q(InR ® AAH)R;/2
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is a Hermitian matrix, hence, using the properties of the
Kronecker product [17]

-1

Pl

O(s) = |I — sRy

(Lo, ® AAH) RZ

(7

nRrNT

= |IanT -8 (InR ® AAH) 1{S|71

1

— T — 5 (T © AA™) (Rp © R)| " ®)
= |IanT — sRRrx ® (AAHRTX) ’_1
nT nR
= TITI0 - s ©
i=1j=1

where )\; are the eigenvalues of Rry and p; are the eigenvalues
of AAHR 1. Therefore, the PEP in the quasi-static case is

nT MR -1
/11_[131_[1( 4N0 sin? 9>\]M> a0
nT MR -1
<qq< MJ@ (10)
i=1j

Equation (10) is the Chernoff bound for the PEP. The special
case of the above analysis for the i.i.d. channel has been
reported in [8] and [18]. Also, Bolcskei and Paulraj [6] offer
an equivalent expression for this Chernoff bound. Liu and
Sayeed [19] have reported the Chernoff bound corresponding
to (8).

For the high-SNR approximation of the Chernoff bound,
substitute (9) in (3) to get

9< (BT
2 |1

l171

P(x — (11)

where r = rank(AA"R 1, ) and 7 = rank(Rgy).

In the high-SNR regime, the quality of a code is usually
analyzed via the diversity order and the coding gain [1]. The
diversity order of a pair of codewords is the exponent of SNR,
ie., rf = rank(AAHRTX) - rank(RRy).

B. Fast Fading With Spatial Correlation

We consider the case where H,, are independent across n,
but the entries of each matrix H,, are correlated. In this case,
the unconditional PEP can be calculated as follows:

3y

[T Caxim)
4N,y sin? 0

0

where ®,,(-) is the MGF of the random variable ||H,e,|>.
Similar to the quasi-static case, we use the concept of a virtual

12)
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(innovations) channel and a diagonalizing argument to arrive at
a useful expression for the PEP as follows:

(I>7L(S) = ’IanT — S (InR (39 eneg) R,S|_1
= |IanT - SRRX ® (eneERTx) |71

n

T

(1= sA\jun) " (13)

Il
-

J

The nonzero eigenvalue of eneSRTX is denoted t,,, and \; are
the eigenvalues of Ry

1
ros = f
T
0

Unlike the quasi-static case, this equation shows time diversity
(when A is nonzero). Interestingly, the overall diversity de-
pends only on the rank of Ry, and not that of R,. This is due
to the fact that the rank of e, el is one, and hence, ene, HR oy
has only one nonzero elgenvalue In fact, we will see that to
exploit full antenna diversity, the channel must remain fixed
over nt symbol durations. Finally, the coding gain depends on
the eigenvalues of both Rgy and Rr. It is possible to obtain a
coding-gain expression in this case in a manner similar to [6].
It is insightful to evaluate (14) for the special case where the

antennas are uncorrelated. In this case, the nonzero eigenvalue
‘x(n) Az('n) 2

[ME]

E)jpin

N
] 4Ny sin? 0

(-

-1
) dh. (14)

and we have

R
2)

Substituting in (12) and setting s = —E, /4Ny sin? 6 yields a
result similar to the one reported in [18].

of epell is equal to Y 7T

nr
D, (s) = (1 — SZ ‘xfn) — :%En)
i=1

C. Block Fading With Spatial Correlation

The block fading model is a useful approximation for a time-
varying fading channel when fading is not fast enough to be
represented with a temporally i.i.d. process, but also not slow
enough to be well approximated with a quasi-static model. The
block fading model has been widely used in the literature. In
this model, time is divided into intervals of M symbol trans-
missions. Fading remains constant over each interval, and is
statistically independent from one interval to another. Denoting
the length of a codeword with IV, we assume for simplicity
that a codeword length consists of an integer number of block-
fading intervals, i.e., N = K M.

Using a combination of the methods already described for
fast and quasi-static cases, the PEP under block fading can be
calculated as

s

2

R EXjuns \

p _ 14 B2IRe do (15
w/kHlUlJHl< +4Nosin29> (15)
0 ==
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where Ay = [eg1 -+ ex,a], and g ; are the eigenvalues of
AkAERTX. We notice that the time diversity in this case is
at most K. The rank of Ry affects the diversity directly. But
the rank of AkAI,;IRTX is equal to nr only if block size M >
nr. Thus, in order to achieve full transmit-antenna diversity,
the channel must be constant for at least nt symbol durations.
Both Ry and Ry affect the coding gain.

D. Joint Spatio-Temporal Correlation

In the previous sections, the channel was modeled either as
fast fading (interleaved) or quasi-static. In many cases, due to
the size of the codewords or other constraints, one may not be
able to use interleaving. In the absence of interleaving, block
fading is only an approximation to a slowly fading channel. A
more accurate model of channel variations must describe gen-
eral sample-to-sample correlations. In this section, we consider
this general case.

For calculating PEP, we are interested in codeword coordi-
nates where x and X are not identical. Assume that among the
N time indices, the two codewords x and X are different in the
time instances {k1,...,kq}. Let the channel matrix at time k;
be denoted as H;, and define H = [H; --- H,]. Each H; may
be spatially correlated with vec(H;) modeled by a matrix Rs =
R ® Rrx. We assume the statistics to be stationary (time
invariant), therefore only one spatial correlation matrix suffices.
Let e; =xp, — Xy, and let A =e; @ --- @ eq4, according to
the notation of [17], i.e., A is the block diagonal matrix whose
diagonal elements are vectors e;. The PEP for a given channel
realization is

1 /2 E,
= [ exp s
T 4N0 sin?

0

thus, the unconditional PEP depends on the MGF of the random
variable ||7{Al|?. Assume that the temporal correlation of the
channel is modeled by Ry, that is, R¢(4,7) is the correlation
of the channel between two time instances ¢ and j. After some
algebra, H can be described as follows:

P(x — %[H) = SIHAI)

1 -
H=RZHR, ®Rp)? (16)
where H is a (npng) x d matrix with ii.d. elements.
Note that vec(H™) = RY?vec(H"), where R = Rgy®
R; ® Ry. Using arguments similar to those in Section III-A

H -1

D(5) = |Tangny — SRrx © (AAY(R; © Rry)) | (17)
We can substitute this expression in (3) to obtain the appro-
priate PEP. High-SNR approximations of the Chernoff bound
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corresponding to this PEP is

oot () M

1=17=1

) (18)

where the ; are the nonzero eigenvalues of AAH (R ® Rpy).
The high-SNR bounds can be used, as usual, for deriving design
criteria.

E. Performance Under Rician Fading

The presence of a line-of-sight component creates a nonzero
mean component for the complex Gaussian channel, leading to
Rician fading. We denote the mean value of the matrix channel
as H. The matrix channel can be represented as H + H, where
H is a circularly symmetric complex Gaussian matrix. The
innovations of the channel gain coefficients is calculated in the
same manner as before to give Rg = (1/1 + K)L, ., Where
K is the Rician factor.

Recall that the key to the developments for the Rayleigh case
was an expression for the MGF of a quadratic form, namely
(6). The calculations in the Rician case follow the same general
procedure, except that the numerator of the MGF expression,
which simplified to unity in the Rayleigh case, will be more
complicated in the Rician channel. For the sake of brevity, in
the following we omit the details and give only the final PEP
expressions.

For the quasi-static case, define I' = R/ 2( L., ® AAM)

;/ 2 Then, the PEP is as represented by (19) found at the
bottom of the page.

H/2 /2.

For the fast-fading case, let T';, = Ry “ (I, ® e ell)Rs
In this case, the PEP as represented by (20), found at the bottom
of the next page.

One may verify the validity of (20) in the special case of
an uncorrelated channel, by setting I'), = I,,, ® eneg, which
leads to a result that has been reported in [18].

For the spatially and temporally correlated Rician channel,
using existing definitions, the PEP expression is given by (21)
and (22), found at the bottom of the next page, where I" =
RA/2(1,, @ AATYRY? and R = R, @ R; @ Rryy.

In the high-SNR regime, (22) can be written as

<1 L o
~ 2 \4Ny(1+ K)

HH

7,1]1

P(x — %) (23)

~op (~(1+ K)IHI7) 24)

us 1\ H -1 =
| Eex <_4NOE?HQOVCC(HH) L (Lunnr + srrmiioeeal) VCC(HH)>
m /

0

I”RnT + 4(1+K)Ng sin? 0

- do (19)
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where \; are the eigenvalues of Rgy, and p; are the eigenvalues
of AAMRr,. It can be shown that |H|?> = dnrngr K/(1 +
K). Thus, in high SNR, the line-of-sight component offers a
fixed coding gain, but no diversity advantage. Note that the
result of [7], when specialized to a frequency-flat case, is
similar to (24).

F. Insights and Design Issues

In the high-SNR regime, the quality of a code is usually
analyzed via the diversity order and the coding gain [1]. The
diversity order of a pair of codewords is the exponent of
SNR, ie., 7 = rank(AAT(R; ® Rry)) - rank(Rgy) in (24).
Thus, there is loss in diversity if the receive-side correlation
is rank deficient. The transmit-side correlation appears via
r < 7, where 7 = min(rank(AA™), rank(R; ® Rery)). If Ry
is full rank, then for the quasi-static channel » < min(d, nr),
and for the fast-fading channel r < d, where d = rank(AAH).
The coding gain depends upon |(I,, ® AA")(Rr, ® R; ®
Rry)|= |AAH|”R |Rrx ® Rt ® Rpy|. Thus, the code-design
criteria can be formalized as follows.

1) Diversity advantage: Maximize the minimum of 7 over all
codeword pairs. If Rpy and R; are full rank, maximize
the minimum of rank(AA™) = d. That is, the minimum
symbolwise Hamming distance over all pairs of code-
words should be maximized.

2) Coding advantage: Maximize the minimum |AA™| over
codeword pairs.

For full-rank Ry and R, irrespective of the channel correla-
tion, these design criteria are the same as in [1]. We note that as
long as the receive- and transmit-side correlation matrices are
full rank, there is no loss in diversity, but only in coding gain.
A nonidentity temporal correlation matrix also introduces loss
in coding gain.

IV. UEP UNDER TRANSMIT-SIDE CORRELATION

In general, space-time signaling is nonlinear, thus it does
not immediately follow that one can use the all-zero codeword
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Fig. 1. STT code, 2-Tx, 2-Rx, fast Rayleigh fading, py = pr = 0.7.

as reference. However, in many cases, the symmetries in the
code (and its corresponding trellis) leads to a condition where
the error event probabilities as well as their multiplicities are
independent of the transmitted codeword. This class, known as
UEP codes [11], includes many of the interesting and practical
scenarios. The past analyses have mostly relied on this property.

Interestingly, we found that transmit-side correlation may
destroy the UEP property of a code. For example, consider the
eight-state QPSK space—time trellis (STT) code of [1], which is
ordinarily a UEP code. In Fig. 1, we show the error performance
over a spatially correlated channel, for the all-zero codeword
with numeral (I), the codeword 02, 20, 02, 20, . . ., with numeral
(II), and a random codeword with numeral (IIT). Clearly, the
error probability depends on the transmitted codeword, thus,
the UEP property has been destroyed.

This phenomenon can be explained as follows. When the
channel is spatially uncorrelated, the phase of the received
signals are random, so the signals from the multiple transmit
antennas may add constructively or destructively with equal

E, my\H B, -1 H
exp ( — i vee () T (Lupons + sk Tn)  vee(HMY)

P
P(x -2 / 11 — do (20)
n=1 MRNT 4(14K)Nosin26~— "
x E ~H\H E - H
| Foxp (—WVGC(H )T (IannT + mf) vec(H ))
P(x — %) :7/ - do @21)
7'r S
0 ’IannT + WI‘
exp (— B yec(HMHT (I + #F) o VCC(HH))
1 2N, dnonr T 41+ K)Ng
<1 (22)

[Linens, + esfiey

B, I“
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Fig. 2. Received constellation with transmit correlation py = 1.

probabilities. But a positive correlation coefficient means that
signals add constructively more often than destructively. For ex-
ample, consider the case of two transmit antennas, one receive
antenna, and QPSK modulation, where the modulation symbols
are denoted {0,1,2,3}. In this case, transmission vectors that
send the same signal from two antennas (e.g., 00) have an
advantage over vectors that send opposite values (e.g., 02 or
13). Worst case codewords are those that are made entirely of
these worst case segments. Best case codewords are those made
entirely of the same symbol, e.g., the all-zero codeword. A
random codeword will contain a mixture of both, and therefore,
will fall somewhere in between.!

To further demonstrate this effect, we study the case where
the two antennas are perfectly correlated. Assuming channel
knowledge at the receiver, the equivalent receive constella-
tion is as shown in Fig. 2. Although the minimum distance
for all codewords is the same, some codewords (e.g., 00)
have a smaller number of nearest neighbors compared to
some others (e.g., 02). This effect is further demonstrated
in Fig. 3, which depicts the scaled Chernoff bound P, =
Tprng + (Es/4No) AATR1, |~ for the PEPs, as well as the
corresponding multiplicities. On the left-hand side, we see that
when p = 0, the PEP multiplicities are the same for the two
codewords 00 and 02. When p = 1 the multiplicities of Py, for
the two codewords are different, hence the UEP does not hold.
A similar effect is seen for other nonzero values of p.

We note that PEP analysis may not reveal the effect of
channel correlation on UEP, because in our examples, the
minimum distances are not affected by correlation; only the
multiplicity varies. This calls for special care in analyzing codes
in the presence of transmit-side correlation.

There are exceptions to the loss of UEP property. For ex-
ample, the two-state superorthogonal code of [20] with np = 2
and BPSK modulation preserves the UEP property even in the
presence of transmit correlation, because all trellis paths trans-
mit space—time block (STB) codewords that are symmetric with
respect to spatial correlations; therefore, they are all affected
similarly.

UIn the presence of negative correlation, the role of the best case and worst
case codewords will be reversed.
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V. APPLICATION AND RESULTS

In this section, we use the PEP expressions to calculate
union bounds for a variety of multiple-antenna signaling and
coding schemes, including the space—time trellis (STT) codes
[1], SOSTT codes [2], LD codes [3], and DAST block codes
[4]. The evaluation of the union bound is possible via either the
transfer function or the weight enumerating function. We use
the partial weight enumerating function? of the codes for all
our results.

Union bounds for the quasi-static channel are often loose
[21], due to the fact that each codeword experiences only a
single fading coefficient. Malkdmaki and Leib [21] proposed a
method of limit before averaging to tighten the bounds in quasi-
static fading.? Nevertheless, the bounds are still not as tight as
the fast-fading case, a fact widely recognized and reported. In
the presence of diversity (either temporal or spatial) the union
bounds will be tighter and limit before averaging is not needed.
This can happen in MIMO channels, thus some of the MIMO
quasi-static bounds are tighter than the single-input single-
output (SISO) case.

In the following figures, dashed lines denote simulations and
solid lines denote bounds. In the case of two antennas, R, and
RpRrx are each fully defined by a single correlation coefficient:
p¢ for the transmit antenna, and p, for the receive antenna.
When a higher number of transmit or receive antennas are used,
we consider the exponential correlation structure [11] that may
correspond to the case of equi-spaced antennas with decaying
factor p,.

A. STT Codes

We present the results for STT codes in the context of the
eight-state QPSK-STT code in [1], with a spectral efficiency
of 2 bits/s/Hz and 130 information symbols per codeword (260
information bits).

Consider the performance of the STT code in quasi-static
fading with four receive antennas (see Fig. 4). The results
for the uncorrelated quasi-static channel are also included for
comparison. We notice that the code has a 2-dB loss due to
antenna correlation on the transmit and receive sides.

The union bounds in Fig. 4 are relatively tight, thanks to high
diversity. However, the union bound can be loose whenever
diversity is low, e.g., if the number of receive antennas is small.
For spatially correlated cases, we present the union bound for
the worst case reference codeword, as well as for the best
codeword. Simulations are shown for both the best codeword
or random codeword cases.

B. SOSTT Codes

Simon and Jafarkhani [20] analyzed the performance of
SOSTT codes under spatially and temporally uncorrelated

2Error events on the order of hundreds were used for the union bounds
reported in this paper.

3Limit before averaging is relatively straight forward in uncorrelated chan-
nels. In correlated channels, limit before averaging requires the multidimen-
sional integration of a nonlinear function that cannot be decomposed, thus, one
must use Monte Carlo integration.



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 6, NOVEMBER 2005

2888
8 25
Codeword (00,00,...) Codeword (00,00,...)
p,=0 20t p,=1
6 t t
= 2
(3] o 15
S 4 s
5 S 10
= 0 =
0 | L] |
0 0.05 0.1 0 0.05 0.1 0.15 0.2
P
sC sC
8 25 Codeword (p2,2
Codeword (02,20,...) odewor (92.20....)
6 p=0 20t Pi=
2 2
S S 15
o 4 s
g 5 10
=
0 | 0
0 0.05 0.1 0 0.05 01 0.15 0.2
Psc Psc
Fig. 3. PEP versus multiplicities for transmitted codewords 00, 00 and 02, 20, and p; = 0, i.e., Rpx = I, and p; = 1, codewords with lengths up to 4,
SNR = 10 dB.
0 0 __
i ST 108 Ny
. *;“833w )
10 | * E
(0] -2 Lo 4 [0} -1 L 0 N 4
< 10 = 10
T 4
g 3] ] o
w 10 5
[0)
£ : g
o -4 - © 2
C 10 H e Bound pt:pr:O .......... Lt 10 L i
-o- Bound correlated (1) -o- Bound p=p =0
_5[| —=— Bound correlated (I1) 1 —+— Bound correlated (1)
10 H-%. Sim pt:pr:O S R o Sim correlated (II) -
~-O- Sim correlated (1) +. Sim correlated (1) :
/v Sim correlated (lll) JLo Sim p=p =0
10 ¢ 2 4 6 8 10 12 14 10 5 10 15 20
SNR (dB) SNR (dB)
Fig. 4. STT code, 2-Tx, 4-Rx, quasi-static Rayleigh fading, p; = pr = 0.7.  Fig. 5. SOSTT code, 2-Tx, 1-Rx, fast Rayleigh fading, px = 0.7.

channel, for which they developed a specialized analysis. Un-
like [20], we evaluate the performance of an SOSTT with
the same PEP expressions reported in Section III simply by a
change of notation, which is as follows. The subscript n in the
definition of x,, and A,, now stands for the nth time-interval
with length n, i.e., the nth trellis section. For example, for

nt = 2, we have
) (25)

where z,,; and z, o are the two signals transmitted by the
STB code in the nth trellis section, and 8,, is the corresponding
phase shift, which depends on the encoder state. Using this
modification, the PEP in each trellis section (i.e., each block)

77’7
ok

A — (mn,lejen — B0l kel @2,263971
n=— A *
Tn2 — Tn,2 Tp1— Tpa

is given by (15). This change of notation does not affect the
results for the quasi-static channel.

For demonstration purposes, we consider the two-state
SOSTT code [2] with nT = 2 and BPSK modulation, which
has a spectral efficiency of 1 bit/s/Hz. Unlike the STT code in
Section V-A, this code preserves its UEP property even when
Ry # I, because all trellis paths transmit STB codewords that
are symmetric with respect to spatial correlations, therefore
they are all affected similarly. This may not be true for all block
space—time codes, however. The results for fast Rayleigh fading
for one receive antenna are shown in Fig. 5. The numeral (I)
refers to the all-zero transmitted codeword, and (II) refers to a
random codeword. Simulations show no difference, thus con-
firming UEP property. For comparison, the results for spatially
independent fast fading are presented. We see a loss of about



HEDAYAT et al.: ANALYSIS OF SPACE-TIME CODING IN CORRELATED FADING CHANNELS

Frame Error Rate

-
o
&

>
&

{| - Boundp=0.7

—g— Boundp=p =0

_o— Boundp=p =07

10.5 g. Smp=p=0 | NG X
v Sim pt=0.7
) _ v
. o Sim ptl_pr_0.7 | |

2889

4 6
SNR (dB)

Fig. 6. SOSTT code, 2-Tx, 4-Rx, quasi-static Rayleigh fading, pt =
pr =0.7.

10°
R

1078 R N

N
OI

Frame Error Rate

—g— Bound p=p =0
5 Bound pt=0.7, pr=0
4l e B.ound pt=pr=0.7
10 §. 4. Sfm p=p =0

v Sim p=0.7, p =0

o Sim p=p=0.7 v
0 2 4 6 8 10
SNR (dB)
Fig. 7. SOSTT code, 2-Tx, 4-Rx, temporally correlated Rayleigh fading,
faTs = 0.01.

2 dB in coding gain due to transmit-side correlation, but no
change in diversity.

The performance of the SOSTT code with four receive
antennas in a quasi-static spatially correlated channel is shown
in Fig. 6 and for the temporally and spatially correlated channel
is presented in Fig. 7.

C. STB Codes

Orthogonal STB codes are introduced in [22] as the general-
ization of the simple Alamouti signaling for nt > 2. A related
class of block codes with rate-1, entitled quasi-orthogonal
codes was later produced by Jafarkhani. It is noteworthy that,
for orthogonal STB codes under correlated fading, exact perfor-
mance analysis (as opposed to bounds) is possible via methods
presented in a companion paper [23]. For nonorthogonal block
codes, however, the methods in this paper are necessary.

For demonstration purposes, we consider the orthogonal STB
code of [22] for nT = 4. The time span of this code is 8, thus the
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Fig. 8. STB code, 4-Tx, 2-Rx, QPSK, Rayleigh fading.

code has rate 1/2. Using QPSK modulation, this code provides
1-bit/s/Hz spectral efficiency. Fig. 8 presents the symbol error
rate of this code for two receive antennas. The bounds are
calculated with respect to all codewords. The loss in coding
gain is about 1.5 dB when the transmit antennas are correlated
with factor p; = 0.7.

D. LD Codes

LD codes [3] transmit codeword matrices (in time and space)
that have the following structure

X =
q

Q
(agAq +j BeBq)

=1

where 4 = a5 + 7 B, is a signal chosen from a multitone
phase-shift keying (MPSK) or M-order quadratic amplitude
modulation (M-QAM) modulation, and A, and B, are com-
plex spreading matrices with size n x T, where T is the time
span of each codeword. We analyze an LD code reported in [3],
withny =2,ng = 2,7 =2,and Q = nt x T = 4. We apply
the block fading model, i.e., fixed fading coefficient over each
block, varying independently between blocks. For QPSK, we
have 256 codewords and a rate of 4 bits/s/Hz. The simulated
and analytical frame-error-rate (FER) results of this code are
shown in Fig. 9 for uncorrelated as well as spatially correlated
antennas. When correlation exists in both the transmit and
receive sides, the loss in performance is about 3 dB. We note
that LD codes are not UEP, thus, all codeword pairs must be
considered for error analysis. For larger constellations (e.g.,
16-QAM) this may be cumbersome, and we discovered that
considering only adjacent constellation points often gives an
acceptable approximation.

E. DAST Codes
The DAST codeword is given by

X = Hydiag (z1, ..., Tny)



2890

0
10 ! = Bound p,=p,=0
[N . o BQund pT=pR=O.7
S 5. Sim pT=pR=O
10"t X ©
2l e N
w 10
10_ b e TN e Y NG
10' 1 1 1
5 10 15 20 25

SNR (dB)

Fig. 9. LD code, 2-Tx, 2-Rx, QPSK, Rayleigh fading.

0
10 HI} Bounclj P, :O.OI
-z Simp =0.0
16
10 &7
L 2
= Lo T NG R
S 10
S
L‘G -
5 10 P S A D NU TR NG
-4
T S RITIER RTRTTONS RETRIIOF SRURPRYI SRR AR E NPT W
L L L L 1 1 1 1 I\

6 8 10 12 14 16 18 20 22
SNR (dB)

Fig. 10. DAST code, 2-Tx, 2-Rx, QPSK, Rayleigh fading.

where (21, ...,2,.)T = M, a, in which a is the information
symbol vector, M,, . is a rotation in dimension nr as defined in
[4], and H,,. is a Hadamard matrix of size nT X nr.

We choose a DAST code with nt = 4 and ng = 1 reported
in [4] with QPSK modulation. We again assume a block fading
channel, where the fading coefficient is fixed over no symbol
periods, and varies independently between blocks. The number
of codewords is 256, and the rate is 2 bits/s/Hz. The simulated
and analytical BER for the case are shown in Fig. 10 for
uncorrelated as well as spatially correlated antennas. We can
see that the loss in performance due to transmit correlation of
0.7 is about 2 dB.

VI. CONCLUSION

This paper presents a comprehensive analysis of MIMO
signaling and coding in the presence of correlated fading. We
calculate PEP expressions for a variety of spatially and tem-
porally correlated Rayleigh and Rician channels. Our analysis

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 6, NOVEMBER 2005

includes quasi-static and fast fading, block fading, and arbi-
trarily temporally correlated fading. PEP expressions are then
used to generate union bounds on the error probabilities of
STT codes, SOSTT codes, and LD codes. Other space—time
codes may also be analyzed with the methods presented in
this paper.
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