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Abstract— In this letter, we derive analytical expressions for
the bit error rate (BER) of space-time block codes (STBC) from
complex orthogonal designs (COD) using quadrature amplitude
modulation (QAM) on Rayleigh fading channels. We take a bit
log-likelihood ratio (LLR) based approach to derive the BER
expressions. The approach presented here can be used in the
BER analysis of any STBC from COD with linear processing for
any value of M in an M -QAM system. Here, we present the BER
analysis and results for a 16-QAM system with i) (2-Tx, L-Rx)
antennas using Alamouti code (rate-1 STBC), ii) (3-Tx, L-Rx)
antennas using a rate-1/2 STBC, and iii) (5-Tx, L-Rx) antennas
using a rate-7/11 STBC. In addition to being used in the BER
analysis, the LLRs derived can also be used as soft inputs to
decoders for various coded QAM schemes, including turbo coded
QAM with space-time coding as in high speed downlink packet
access (HSDPA) in 3G.

Index Terms— Space-time block codes, transmit diversity,
QAM, bit log-likelihood ratio.

I. INTRODUCTION

THE potential capacity gains achieved by using multiple
antenna systems have led to considerable attention in the

area of space-time coding [1]. Space-time block codes (STBC)
from complex orthogonal designs (COD) are of interest as they
can be used for complex constellations such as quadrature
amplitude modulation (QAM) to achieve higher data rates in
wireless communication systems [2],[3]. Recent works have
reported analytical expressions for the symbol error rate (SER)
and the bit error rate (BER) of orthogonal STBCs. In [4],
Shin and Lee derived expressions for the SER of orthogonal
STBCs on Rayleigh fading channels. They derived the SER by
converting the multiple input multiple output (MIMO) system
model to an equivalent single input single output (SISO)
model. Recently, Simon in [5], and Taricco and Biglieri in
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[6], have reported exact expressions for the pairwise error
probability (PEP) as well as approximate expressions for the
BER for space-time codes.

In this letter, we derive analytical expressions for the BER
for linear STBCs from COD using QAM on Rayleigh fading
channels. We adopt a bit log-likelihood ratio (LLR) based
approach, where we first derive expressions for the LLRs
of the individual bits forming the QAM symbol, and then
use these LLRs to obtain the BER expressions. We point
out that this approach can be used in the BER analysis of
any STBC from COD with linear processing for any value
of M in an M -QAM system. Here, we present the BER
analysis and results for a 16-QAM system with i) (2-Tx, L-
Rx) antennas using the rate-1 Alamouti code, ii) (3-Tx, L-
Rx) antennas using a rate-1/2 code, and iii) (5-Tx, L-Rx)
antennas using a rate-7/11 code. Another major usefulness of
this contribution is that the derived LLRs provide a soft metric
for each bit in the mapping, which can be used as soft inputs
to decoders for various coded QAM schemes with space-
time coding. Examples of such schemes include turbo coded
QAM with transmit diversity in high speed downlink packet
access (HSDPA) in 3G, and convolutionally coded QAM with
orthogonal frequency division multiplexing (OFDM) in digital
video broadcasting (DVB) and IEEE 802.11.

II. SYSTEM MODEL

We consider a wireless communication system with Lt

transmit and Lr receive antennas. We consider space-time
block codes, where each codeword is a matrix with P rows and
Lt columns, with complex valued symbols as its entries. Here,
P is the number of time slots required to transmit one code-
word. For some K information symbols, s1, s2, · · · , sK , which
are selected from the 16-QAM constellation (see Fig. 1)1,
the entries of the codeword X = {xi

t, t = 1, 2, · · · , P ; i =
1, 2, · · · , Lt} are a linear combination of the information
symbols sk, k = 1, 2, · · · ,K , and their complex conjugates.
At time slot t, t = 1, 2, · · · , P , the tth row of the codeword
X (i.e., x1

t , x
2
t , · · · , xLt

t ) is transmitted simultaneously from
Lt antennas. The symbol transmission rate, R, is defined as
the number of information symbols transmitted per time slot,
i.e., R = K/P . The channel fade coefficients are assumed to

1Four bits, (r1, r2, r3, r4) are mapped on to a complex symbol sk =
skI + jskQ. The horizontal/vertical line pieces in Fig. 1 denote that all bits
under these lines take the value 1, and the rest take the value 0.
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Fig. 1. 16-QAM Constellation.

remain constant over P time slots. The received codeword, Y,
can be written as

Y = XH + N, (1)

where Y = {yj
t : t = 1, 2, · · · , P ; j = 1, 2, · · · , Lr} is a

matrix of size P × Lr, whose entry yj
t is the signal received

at antenna j at time slot t; H = {hi,j} is the channel matrix
of size Lt × Lr, whose entry hi,j is the complex channel
coefficient from the transmit antenna i to the receive antenna j.
The random variables |hi,j |’s are assumed to be i.i.d Rayleigh
distributed with E(|hi,j |2) = Ω. N = {nj

t} is the noise matrix
of size P×Lr, whose entries are i.i.d complex Gaussian noise
with zero mean and variance σ2.

Let C(.) be a mapping from a K-tuple complex message
vector s = (s1, s2, · · · , sK) to the columnwise orthogonal P×
Lt codeword X = C(s). Due to the columnwise orthogonality
of the linear orthogonal space-time block codes considered,
the Lt × Lt matrix C(s)H C(s) is given by

C(s)H C(s) = diag

{
K∑

k=1

(gk,1|sk|2), · · · ,
K∑

k=1

(gk,Lt |sk|2)
}
,

(2)
where (.)H denotes the Hermitian operator, and G = {gm,n}
is a matrix of size K × Lt whose entries can take non-
negative integer values (for example, for the Alamouti code
[7] gm,n = 1, ∀m,n). Assuming perfect knowledge of the
channel coefficients at the receiver, the combined signal output
for the symbol sk is given by

ŝk = Δk sk + ζk, (3)

where

Δk =
Lr∑
j=1

[
gk,1|h1,j |2 + gk,2|h2,j|2 + · · · + gk,Lt |hLt,j|2

]
,

(4)
and ζk is a complex Gaussian random variable with zero mean
and variance Δk σ

2.

III. BIT LOG-LIKELIHOOD RATIOS

We define the LLR for the bit ri, i = 1, 2, 3, 4, of symbol
sk, k = 1, 2, · · · ,K , as

LLRsk
(ri) = log

(
Pr
(
ri = 1|Y,H)

Pr
(
ri = 0|Y,H)

)

= log

(
Pr
(
ri = 1|ŝk,H

)
Pr
(
ri = 0|ŝk,H

)). (5)

Assuming that all the symbols are equally likely and that the
fading is independent of the transmitted symbols, using Bayes’
rule, we have

LLRsk
(ri) = log

(∑
α∈S

(1)
i

fŝk|H,sk

(
ŝk|H, sk = α

)∑
β∈S

(0)
i

fŝk|H,sk

(
ŝk|H, sk = β

)) .
(6)

Since fŝk|H,sk

(
ŝk|H, sk = α

)
= 1

πσ̂2
k

exp
(

−1
σ̂2

k

∥∥ŝk − Δk α
∥∥2
)

where σ̂2
k = Δk σ

2, (6) can be written as

LLRsk
(ri) = log

(∑
α∈S

(1)
i

exp
(−1

σ̂2
k

‖ŝk − Δkα‖2
)∑

β∈S
(0)
i

exp
(−1

σ̂2
k

‖ŝk − Δkβ‖2
)) . (7)

Using the approximation log

(∑
j
exp(−Xj)

)
≈ −minj(Xj),

LLRsk
(ri) can be approximated as2

LLRsk
(ri) =

1
σ̂2

k

(
min

β∈S
(0)
i

∥∥∥ŝk − Δk β
∥∥∥2

− min
α∈S

(1)
i

∥∥∥ŝk − Δk α
∥∥∥2
)
. (8)

Define k complex variables, ẑk, k = 1, 2, · · · ,K , as

ẑk
�
=

ŝk

Δk
. (9)

Using (9) in (8) and normalizing by 4/σ̂2
k, LLRsk

(ri) is
written as

LLRsk
(ri) =

Δk

4

(
min

β∈S
(0)
i

‖ẑk − β‖2 − min
α∈S

(1)
i

‖ẑk − α‖2

)
.

(10)
Note that the set partitions S

(1)
i and S

(0)
i are delimited

by horizontal or vertical boundaries. As a consequence, two
symbols in different sets closest to the received symbol always
lie either on the same row (if the delimiting boundaries are
vertical) or on the same column (if the delimiting boundaries
are horizontal). Using the above fact, the LLRs for each of
the bits forming the symbol, sk, are obtained as

LLRsk
(r1) =

⎧⎨⎩
−dẑkIΔk, |ẑkI | ≤ 2d
2d(d− ẑkI)Δk, ẑkI > 2d
−2d(d+ ẑkI)Δk, ẑkI < −2d

(11)

LLRsk
(r2) =

⎧⎨⎩
−dẑkQΔk, |ẑkQ| ≤ 2d
2d(d− ẑkQ)Δk, ẑkQ > 2d
−2d(d+ ẑkQ)Δk, ẑkQ < −2d

(12)

2As we will see in Sec. V, the analytical BER evaluated using this ap-
proximate LLR is almost the same as the BER evaluated through simulations
without this approximation.
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LLRsk
(r3) = d(|ẑkI | − 2d)Δk (13)

LLRsk
(r4) = d(|ẑkQ| − 2d)Δk. (14)

In the above equations, ẑkI and ẑkQ are the real and imaginary
parts of ẑk, respectively, and 2d is the minimum distance
between pairs of signal points. We note that, likewise, the
LLR expressions for other values of M in M -QAM can be
derived. For example, we have derived the bit LLR expressions
for the 32-QAM constellation in Fig. 4 of [10] as well as the
64-QAM constellation in Fig. 4 of [11] and presented them
in Table I. These LLR expressions can be used to derive the
BER expressions for M -QAM as illustrated in the following
section.

IV. DERIVATION OF BER

In this section, we derive the probability of error for the bit
ri, i = 1, 2, 3, 4, forming a 16-QAM symbol. The probability
of error for bit r1 in symbol sk, P k

b1, can be written as

P k
b1 = P k

b1|skI=−d Pr (skI = −d) + P k
b1|skI=−3d Pr (skI = −3d)

+ P k
b1|skI=d Pr (skI = d) + P k

b1|skI=3d Pr (skI = 3d) , (15)

where skI represents the real part of sk. Let us first consider
P k

b1|skI=−d, which is given by

P k
b1|skI=−d = P k

b1|skI=−d,H (16)

where the overline indicates averaging over the complex
random variables {hi,j}. P k

b1|skI=−d,H can be written as

P k
b1|skI=−d,H = Pr

(
LLRsk

(r1) < 0 | skI = −d,H
)

= Pr

(
ζkI

Δk
≥ d

)
= Q

(
d
√

Δk

σI

)
, (17)

where σ2
I = σ2/2. Let us define

ξ =
1
P

Lt∑
i=1

K∑
k=1

gk,i. (18)

We then have d
σI

=
√

4Eb R
5NoLr ξ , where Eb is the energy per

bit per transmit antenna and R is the rate of the STBC used.
From the above, we can write

P k
b1|skI=−d,H = Q

(√
4EbRΔk

5NoLr ξ

)
. (19)

To obtain P k
b1|skI=−d, we need to uncondition P k

b1|skI=−d,H

w.r.t Δk, which is given by

Δk =
Lr∑
j=1

(
gk,1|h1,j|2 + gk,2|h2,j |2 + · · · + gk,Lt |hLt,j |2

)

= gk,1

(
Lr∑
j=1

|h1,j|2
)

+ · · · + gk,Lt

(
Lr∑
j=1

|hLt,j|2
)
.(20)

Let us define θn =
∑Lr

j=1 |hn,j |2, n = 1, 2, · · · , Lt. Since
|hi,j |2 are i.i.d exponential with mean Ω, the random variables
θn are i.i.d Gamma random variables with density function

fθn(x) =
1

Γ(Lr)ΩLr
exp

(
− x

Ω

)
xLr−1, (21)

and the moment generating function (MGF) is given by

Mθn(s) =

(
1

1 + sΩ

)Lr

. (22)

Since Δk =
∑Lt

n=1 gk,nθn, its MGF, MΔk
, is given by

MΔk
=

Lt∏
n=1

(
1

1 + sΩgk,n

)Lr

. (23)

Using the above and Craig’s formula [8], we can show that

P k
b1|skI=−d = Q

(√
4EbRΔk

5NoLr ξ

)

=
1
π

∫ π
2

φ=0

Lt∏
n=1

(
sin2φ

sin2φ+ μ1gk,n

)Lr

dφ, (24)

where μ1 = 2 γb R
5Lrξ and γb = ΩEb

No
. Similarly, the conditional

error probability P k
b1|skI=−3d,H is given by

P k
b1|skI=−3d,H = Pr

(
LLRsk

(r1) < 0 | skI = −3d,H
)

= Pr

(
ζkI

Δk
≥ 3d

)
= Q

(√
36EbRΔk

5NoLr ξ

)
.(25)

Unconditioning P k
b1|skI=−3d,H w.r.t Δk, it can be shown that

P k
b1|skI=−d = Q

(√
36EbRΔk

5NoLr ξ

)

=
1
π

∫ π
2

φ=0

Lt∏
n=1

(
sin2φ

sin2φ+ μ2gk,n

)Lr

dφ, (26)

where μ2 = 18 γb R
5Lrξ . It can further be shown that P k

b1|skI=−d =
P k

b1|skI=d and P k
b1|skI=−3d = P k

b1|skI=3d. Moreover, for the 16-
QAM constellation considered, it can be shown that P k

b1 = P k
b2

and P k
b3 = P k

b4. With the above, the BER expressions for the
bits r1, r2, r3, r4 of the symbol sk can be written as

P k
b1 = P k

b2 =
1
2

(
P k

1 + P k
2

)
(27)

P k
b3 = P k

b4 =
1
2

(
2P k

1 + P k
2 − P k

3

)
, (28)

where P k
j , j = 1, 2, 3, are given by

P k
j =

1
π

∫ π
2

φ=0

Lt∏
n=1

(
sin2φ

sin2φ+ μjgk,n

)Lr

dφ, (29)

and

μ1 =
2 γbR

5Lrξ
, μ2 =

18 γbR

5Lrξ
, μ3 =

10 γbR

Lrξ
. (30)

Note that for STBCs where gk,n = g, ∀k, n, the integral in
(29) has a closed-form expression given by [9]

P k
j =

(
1 − λj

2

)LrLt

.

LrLt−1∑
k=0

(
LrLt − 1 + k

k

)(
1 + λj

2

)k

,

(31)
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TABLE I

BIT LLR EXPRESSIONS FOR THE 32-QAM CONSTELLATION IN FIG. 4 OF [10] AND THE 64-QAM CONSTELLATION IN FIG. 4 OF [11] IN RAYLEIGH

FADING. FOR 32-QAM, THE MAPPING OF BITS ri’S TO BITS ij ’S AND qj ’S IN FIG. 4 OF [10] IS AS FOLLOWS:

r1 = i1, r2 = q1, r3 = i2, r4 = q2, r5 = i3 .

Bit LLR Expressions for 32-QAM Expressions for 64-QAM

r1 LLRsk
(r1) = −dẑjIΔk, |ẑjI | ≤ 2d −dẑjIΔk, |ẑjI | ≤ 2d

2d(d− ẑjI)Δk, 2d < ẑjI ≤ 4d 2d(d− ẑjI)Δk, 2d < ẑjI ≤ 4d
3d(2d− ẑjI)Δk, 4d < ẑjI ≤ 6d 3d(2d− ẑjI)Δk, 4d < ẑjI ≤ 6d
4d(3d− ẑjI)Δk, ẑjI > 6d 4d(3d− ẑjIΔk, ẑjI > 6d
−2d(d+ ẑjI)Δk, −4d ≤ ẑjI < −2d −2d(d+ ẑjI)Δk, −4d ≤ ẑjI < −2d
−3d(2d+ ẑjI)Δk, −6d ≤ ẑjI < −4d −3d(2d+ ẑjI)Δk, −6d ≤ ẑjI < −4d
−4d(3d+ ẑjI)Δk, ẑjI < −6d −4d(3d+ ẑjI)Δk, ẑjI < −6d

r2 LLRsk
(r2) = −dẑjQΔk, |ẑjQ| ≤ 2d −dẑjQΔk, |ẑjQ| ≤ 2d

2d(d− ẑjQ)Δk, ẑjQ > 2d 2d(d− ẑjQ)Δk, 2d < ẑjQ ≤ 4d
−2d(d+ ẑjQ)Δk, ẑjQ < −2d 3d(2d− ẑjQ)Δk, 4d < ẑjQ ≤ 6d

4d(3d− ẑjQ)Δk, ẑjQ > 6d
−2d(d+ ẑjQ)Δk, −4d ≤ ẑjQ < −2d
−3d(2d+ ẑjQ)Δk, −6d ≤ ẑjQ < −4d
−4d(3d+ ẑjQ)Δk, ẑjQ < −6d

r3 LLRsk
(r3) = 2d(−3d+ |ẑjI |)Δk, |ẑjI | ≤ 2d 2d(−3d+ |ẑjI |)Δk, |ẑjI | ≤ 2d

d(−4d+ |ẑjI |)Δk, 2d < |ẑjI | ≤ 6d d(−4d+ |ẑjI |)Δk, 2d < |ẑjI | ≤ 6d
2d(−5d+ |ẑjI |)Δk, 2d < |ẑjI | > 6d 2d(−5d+ |ẑjI |)Δk, 2d < |ẑjI | > 6d

r4 LLRsk
(r4) = d (|ẑjQ| − 2d)Δk 2d(−3d+ |ẑjQ|)Δk, |ẑjQ| ≤ 2d

d(−4d+ |ẑjQ|)Δk, 2d < |ẑjQ| ≤ 6d
2d(−5d+ |ẑjQ|)Δk, 2d < |ẑjQ| > 6d

r5 LLRsk
(r5) = d(2d− |ẑjI |)Δk, |ẑjI | ≤ 4d d(2d− |ẑjI |)Δk, |ẑjI | ≤ 4d

d(−6d+ |ẑjI |)Δk, |ẑjI | > 4d d(−6d+ |ẑjI |)Δk, |ẑjI | > 4d
r6 LLRsk

(r6) = d(2d− |ẑjQ|)Δk, |ẑjQ| ≤ 4d
d(−6d+ |ẑjQ|)Δk, |ẑjQ| > 4d

where λj =
√

gμj

1+gμj
. It is noted that, for STBCs including

rate-1 Alamouti code (C1 given in the next section) and rate-
1/2 STBC (C2 given in the next section), gk,n are constants
(g = 1 for C1 and g = 2 for C2), and hence the closed-
form expression in (31) can be used to compute the BER
for these STBCs. For STBCs where gk,n is not a constant
(e.g., rate-7/11 STBC C3 given in the next section), (29) can
be evaluated numerically and accurately using the Gauss-
Chebyshev Quadrature rule. The average BER for symbol
sk, k = 1, 2, · · · ,K , P k

b , is then given by

P k
b =

1
4
(
P k

b1 + P k
b2 + P k

b3 + P k
b4

)
. (32)

Finally, the average BER of the system, Pb, is given by

Pb =
1
K

K∑
k=1

P k
b . (33)

The BER expressions for other values of M in M -QAM can
be derived likewise.

V. RESULTS AND DISCUSSIONS

We computed the BER performance of 16-QAM on
Rayleigh fading channels as a function of average SNR for

the following space time block codes:

C1 =
(

s1 s2
−s∗2 s∗1

)
, C2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1 s2 s3
−s2 s1 −s4
−s3 s4 s1
−s4 −s3 s2
s∗1 s∗2 s∗3
−s∗2 s∗1 −s∗4
−s∗3 s∗4 s∗1
−s∗4 −s∗3 s∗2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

C3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1 s2 s3 0 s4
−s∗2 s∗1 0 s3 s5
s∗3 0 −s∗1 s2 s6
0 s∗3 −s∗2 −s1 s7
s∗4 0 0 −s∗7 −s∗1
0 s∗4 0 s∗6 −s∗2
0 0 s∗4 s∗5 −s∗3
0 −s∗5 −s∗6 0 s1
s∗5 0 s∗7 0 s2
−s∗6 −s∗7 0 0 s3
s7 −s6 −s5 s4 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

C1 is the well known Alamouti code with parameters P =
K = Lt = 2, R = 1, and CH

1 C1 is a 2×2 diagonal matrix with
the (i, i)th diagonal element,D(i, i), of the form

∑2
k=1 ‖sk‖2.

C2 is a rate-1/2 STBC with parameters P = 8,K = 4, Lt = 3,
R = 1/2, and CH

2 C2 is a 3×3 diagonal matrix with the (i, i)th
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Fig. 2. Comparison of the analytical BER evaluated using approximate LLRs
vs the simulated BER using the LLRs without approximation. 16-QAM with
rate-1 STBC (Alamouti code) in Rayleigh fading. 2-Tx/2-Rx and 2-Tx/1-Rx
antennas.

diagonal element, D(i, i), of the form
∑4

k=1(2 · ‖sk‖2). C3 is
a rate-7/11 STBC with parameters P = 11,K = 7, Lt = 5,
R = 7/11, and CH

3 C3 is a 5 × 5 diagonal matrix with the
(i, i)th diagonal element, D(i, i), of the form

D(1, 1) = D(2, 2) = D(3, 3) = D(4, 4) =
7∑

k=1

‖sk‖2,(34)

D(5, 5) =
3∑

k=1

(2.‖sk‖2) +
7∑

k=3

‖sk‖2. (35)

In Fig. 2, we compare the analytical BER evaluated using
the approximate LLRs derived versus the simulated BER using
the LLRs without approximation for rate-1 STBC (Alamouti
code) using 16-QAM for 2-Tx/2-Rx and 2-Tx/1-Rx antennas.
It is observed that the analytically computed BER is almost the
same as the simulated BER, indicating that the approximation
to the LLRs results in insignificant difference between the
analytically computed BER and the true BER. We would like
to point out that the BER obtained using the approximate
LLR expression is the same as that of the ‘traditional BER
results for M -QAM’ (as published, for example, in the paper
by Cho and Yoon [10]). The reason for this observation is that
the decision statistic for each bit forming the QAM symbol
with Gray coding and approximate LLR is the same as that
of the conventional symbol-to-bit demapping approach. In
other words, without the approximation, the average BER
performance for M -QAM will be slightly better than the
conventional symbol-to-bit demapping approach. In [12], it
is shown that for all practical values of the bit SNR this
improvement can be negligible. We further point out that [13]
presents BER results for Gray-coded M -QAM by dividing
the SER by the number of bits per symbol. However, this
result is only approximate, as the exact BER analysis requires
evaluating the number of bit errors occurring for each possible
transmitted symbol. We also note that the approximate BER
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Fig. 3. BER performance of 16-QAM with 5 transmit antennas and Lr =
1, 2, 4, 10 receive antennas using rate-7/11 STBC in Rayleigh fading.

0 2 4 6 8 10 12 14
10−6

10−5

10−4

10−3

10−2

10−1

100

γb (dB)

A
ve

ra
ge

 P
ro

ba
bi

lit
y 

of
 B

it 
E

rr
or

  

No diversity (1Tx, 1Rx)
2Tx, 2Rx, Alamouti code
3Tx, 2Rx Scheme (rate−1/2)
5Tx, 2Rx Scheme (rate−7/11)
AWGN

Fig. 4. BER performance of 16-QAM with different STBCs in Rayleigh
fading; i) 2 Tx antennas using rate-1 STBC (Alamouti code), ii) 3 Tx antennas
using rate-1/2 STBC, iii) 5 Tx antennas using rate-7/11 STBC. Number of
receive antennas, Lr = 2.

results in [13] match the exact BER only at large-enough SNR
values.

In Fig. 3, we present the analytical results of the average
BER performance as a function of the average SNR, γb, for
the rate-7/11 STBC, C3. The number of receive antennas
considered include Lr = 1, 2, 4, 10. Figure 4 presents the
comparative BER performance of the different STBCs C1,
C2 and C3 when the number of receive antennas Lr = 2.
The performance in AWGN is also shown for comparison.
As we pointed out earlier, in addition to being used in the
BER analysis, the derived LLRs for the individual bits in the
QAM symbols can be used as soft inputs to the decoders in
various coded QAM schemes. As an example, we employed
the LLRs as soft inputs to the turbo decoder in a rate-1/3 turbo
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Fig. 5. BER performance of rate-1/3 turbo coded 16-QAM with two transmit
antennas and Lr = 1, 2 receive antennas using rate-1 STBC (Alamouti code)
in Rayleigh fading. LLRs of bits in QAM symbols used as soft inputs to the
turbo decoder.

coded 16-QAM scheme on Rayleigh fading without and with
transmit diversity using Alamouti code C1. Figure 5 shows
the simulated BER performance of the turbo coded 16-QAM
system using the derived LLRs as soft inputs to the decoder.
The turbo code used in the simulations is the one specified
in the 3GPP standard. Likewise, the LLRs can be used as
soft inputs to decoders in DVB and IEEE 802.11a, where
convolutionally coded QAM with OFDM is used.
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