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Rate Maximization in Multi-Antenna Broadcast Channels with
Linear Preprocessing

Mihailo Stojnic, Haris Vikalo, and Babak Hassibi

Abstract— The sum rate capacity of the multi-antenna broad-
cast channel has recently been computed. However, the search
for efficient practical schemes that achieve it is still ongoing. In
this paper, we focus on schemes with linear preprocessing of
the transmitted data. We propose two criteria for the precoding
matrix design: one maximizing the sum rate and the other
maximizing the minimum rate among all users. The latter
problem is shown to be quasiconvex and is solved exactly via
a bisection method. In addition to precoding, we employ a signal
scaling scheme that minimizes the average bit-error-rate (BER).
The signal scaling scheme is posed as a convex optimization
problem, and thus can be solved exactly via efficient interior-
point methods. In terms of the achievable sum rate, the proposed
technique significantly outperforms traditional channel inversion
methods, while having comparable (in fact, often superior) BER
performance.

Index Terms— Multi-antenna broadcast channel, convex prob-
lem, quasiconvex problem, bisection method, interior-point
method.

I. INTRODUCTION

RECENTLY, the achievable limits of performance of
multi-antenna broadcast channels have been intensively

studied (see, e.g., [1], [2], and the references therein). In
[3], [4], non-linear techniques that attempt to approach those
limits have been considered. However, these schemes are
often computationally prohibitive when the number of transmit
antennas is large. In this paper, we limit ourselves to lin-
ear data preprocessing at the transmitter and, under such a
constraint, find a precoding scheme maximizing the sum-rate
of the broadcast channel. We also consider linear precoding
schemes that maximize the minimum rate among the users.
The latter problem is shown to be quasiconvex and is solved
exactly using efficient interior point methods. In addition to
the precoding, we minimize the average BER among the
users by performing an appropriate signal scaling. The best
performance is obtained when the optimal preprocessing and
signal scaling are combined.

We assume a standard system model for the broadcast
channel with M transmit antennas and M users, described
by

r = Hs + w, (1)
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where H is an M ×M fading channel matrix whose entries
are i.i.d. zero-mean, unit variance, complex Gaussian random
variables, and w is an M×1 vector whose entries are also i.i.d.
zero-mean, variance σ2 complex Gaussian random variables
which represent additive noise at each receiver. Furthermore, s
is an M ×1 vector of signals sent from the transmit antennas,
and r is an M × 1 vector whose components are the received
signals at each user. The transmitted vector s is assumed to be
obtained by linear preprocessing of the information vector u,
i.e. s = kGu, where u =

[
u1, u2, ..., uM

]T
, ui is the symbol

intended for the i-th user, 1 ≤ i ≤ M , and where k is a
scaling coefficient which ensures that the power constraint is
satisfied.

We organize the paper in the following way; first in Sec-
tion II we propose two possible schemes for designing the
preprocessing matrix G. In Section III, we propose a possible
scheme for determining the optimal value of the scaling
coefficient k under the constraint of linear preprocessing at
the transmitter. In Section IV, we describe how to combine the
schemes from Sections II and III. Finally, in Sections V and
VI we give simulation results, a brief discussion and several
conclusions.

A preliminary version of this paper appeared in [10].

II. FINDING OPTIMAL PREPROCESSING MATRIX G

In this section, we find the optimal preprocessing matrix G
assuming an average transmit power constraint, E‖s‖2 = 1.
Without loss of generality, we will assume that Euu∗ = I .
Then E‖Gu‖2 = Etr(Guu∗G∗) = tr(G∗G) and thus k =
1/
√

tr(G∗G). Hence, from (1) we obtain

r =
HGu√
tr(G∗G)

+ w. (2)

The matrix G in (2) should be designed to optimize the
performance of the overall system in terms of both the rate as
well as the bit error rate. Often encountered in the literature
is the solution employing a regularized pseudo-inverse of the
channel matrix H , i.e., G = H∗(βI + HH∗)−1, where the
coefficient β is typically chosen to maximize the signal-to-
interference and noise ratio (SINR) (see, e.g., [4]). However,
optimizing for SINR does not necessarily imply that the total
sum rate will be maximized. This justifies the search for a
better choice for the matrix G.

We consider two optimization criteria for the design of
the preprocessing matrix G. First, we maximize the total
sum rate over the space of all M × M complex matrices
G. As we shall see, this optimization results in a strategy
where at each channel use, a subset of users is chosen and
data transmitted only to those users. Second, we consider
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the problem of optimal preprocessing that maximizes the
minimum rate among all of the users. Extensive simulations
imply that the best BER performance of the system is achieved
when the two strategies are combined, i.e., when a subset of
users is selected and then the minimum rate among the users
in that subset is maximized.

A. Maximizing the Sum Rate over G

We assume that each user treats the interference as noise.
Therefore the sum rate of the broadcast channel (2) is given

by R =
∑M

m=1 log
(

1 + |�p HmpGpm|2
σ2tr(G∗G)+

�
n �=m|�p HmpGpn|2

)
.

The optimal choice for the matrix G is the solution to the
optimization problem

max
G

R (3)

A closed-form analytic solution to (3) does not appear easy
to find. In fact, even an efficient algorithm that is guaranteed
to numerically solve (3) does not seem within reach. We
thus will present an iterative scheme that may converge to
a local optimum. Before proceeding any further, we will

find it useful to define numm =
∣∣∣∑M

p=1HmpGpm

∣∣∣2, and

denm = σ2tr(G∗G) +
∑M
n=1,n�=m

∣∣∣∑M
p=1HmpGpn

∣∣∣2. The
following lemma gives a necessary condition for the optimal
G.

Lemma 1: Denote

Δ = diag(
(HG)11

den1
, ..,

(HG)ll
denl

, ...,
(HG)MM

denM
)

and

D = diag(
num1

den1(den1 + num1)
, ...,

numl

denl(denl + numl)
, ...,

numM

denM (denM + numM )
).

Then any G which is a solution of (3) is of the form G =
((σ2trD)I +H∗DH)−1H∗Δ.

Proof: It is sufficient to show that ∂R
∂Gkl

= 0 ⇒
G = ((σ2trD)I + H∗DH)−1H∗Δ. It is straightforward to
show that ∂R

∂Gkl
= Hlk(HG)∗ll

denl
−∑M

m=1
nummHmk(HG)∗ml

denm(numm+denm)
−∑M

m=1
σ2G∗

klnumm

denm(denm+numm)
. Setting each of these derivatives

to zero, we obtain H∗Δ − H∗DHG − (σ2trD)G = 0, or
equivalently G = ((σ2trD)I +H∗DH)−1H∗Δ.

Thus ∂R
∂Gkl

= 0 ⇒ G = ((σ2trD)I + H∗DH)−1H∗Δ,
which concludes the proof.
Using Lemma 1, we state the following iterative algorithm for
solving (3).
D0 = I,Δ0 = I, i = 0, R−2 = 107, R−1 = 108

Repeat while |Ri−2 −Ri−1| ≥ 10−3

1) Gi = ((σ2trDi)I + H∗DiH)−1H∗Δi, Ri =∑M
m=1 log

(
1 + |(HGi)mm|2

σ2tr(G∗
iGi)+

�
n �=m|(HGi)mn|2

)
2) numm = |(HGi)mm|2, denm = σ2tr(G∗

iGi) +∑M
n=1,n�=m |(HGi)mn|2

3) Di+1 = diag( num1

den1(den1+num1)
, ..., numl

denl(denl+numl)
, ...,

numM

denM (denM+numM )
),

4) Δi+1 = diag( (HGi)11

den1
, .., (HGi)ll

denl
, ..., (HGi)MM

denM
), i=i+1
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Fig. 1. Comparison of the sum rate of Method 2.1 to the sum rate of reg.
pseudo inverse and to the sum capacity of broadcast channel.

end
We refer to using the matrix G obtained from the previous
iterative procedure as Method 2.1. Since H∗((σ2trD)I +
HH∗)−1 = ((σ2trD)I + H∗H)−1H∗, the initial value G0

coincides with the one obtained by the regularized pseudo-
inverse (see, e.g., [4]). Simulation results presented in the
following sections imply that such a choice of initial value
leads to an iterative process that converges to a local optimum
after a fairly small number of iterations (roughly 15 on
average), although we have no formal proof of convergence
at this time. In Figure 1, the comparison of the sum rate
achieved by Method 2.1 and the sum rate achieved by the
regularized pseudo inverse are compared to the sum capacity
of the broadcast channel. As it can be seen, although we have
no formal proof for that Method 2.1 significantly decreases the
gap between regularized pseudo inverse and the sum capacity.
In addition, as illustrated in Figure 1, the plain channel inverse,
obtained for α = 0, is significantly outperformed by the
regularized pseudo inverse.

B. Maximizing the Minimum Rate over G

Instead of maximizing the sum rate, one may demand that
the worst (active) user gets as large rate as possible. This
criterion leads to the following optimization problem

max
G

min
i

log

(
1 +

|(HG)ii|2
σ2tr(G∗G) +

∑
j,j �=i |(HG)ij |2

)
. (4)

The previous problem (or problems similar to it) have been
studied and various algorithms for solving it have been sug-
gested throughout the literature (see, e.g. [6]–[9]). Here we
suggest another way of solving it based on interior point
methods. Define B = HG. Then (4) can be written as

max
B

min
i

|Bii|2
σ2tr(B∗H−∗H−1B) +

∑
j,j �=i |Bij |2

. (5)

Without loss of generality, we can assume that the opti-
mal Bii are real and positive. Let vec(B) denote a vector
comprised of columns of matrix B. Then we can write
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σ2tr(B∗H−∗H−1B) = σ2vec(B)∗(I ⊗ H−∗H−1)vec(B).

Denoting F = I ⊗ H−∗H−1, x =
[�(vec(B))
�(vec(B))

]
and

T =
[�(F ) −�(F )
�(F ) �(F )

]
, σ2tr(B∗H−∗H−1B) = σ2x∗Tx.

Define 2M2×2M2 matrix K(ij) with K(ij)
(j−1)M+i,(j−1)M+i =

K
(ij)
M2+(j−1)M+i,M2+(j−1)M+i = 1 and zeros otherwise. Com-

bining all of the above, (5) can be rewritten as

min
x

max
i

x∗Wix
x2

(i−1)M+i

subject to x(i−1)M+i > 0, 1 ≤ i ≤M

xM2+(i−1)M+i = 0, 1 ≤ i ≤M, (6)

where Wi = σ2T +
∑M
j=1,j �=iK

(ij). Note that Wi is pos-
itive semidefinite because matrices T and K(ij) are positive
semidefinite. To solve (6), we first prove the following lemma.

Lemma 2: The optimization problem (6) is quasiconvex.
Proof: We first need to prove that function fi(x) =

x∗Wix
x2
(i−1)M+i

is quasiconvex. We can write fi(x) = gi(x)
x(i−1)M+i

,

where gi(x) = x∗Wix
x(i−1)M+i

. Let us show that the function
gi(x) is convex for x(i−1)M+i > 0. To do so, we need
to show that gi(θx + γy) ≤ θgi(x) + γgi(y), where θ +
γ = 1, 0 ≤ θ, γ ≤ 1. This is equivalent to showing that
y(i−1)M+i

x(i−1)M+i
x∗Wix − 2x∗Wiy + x(i−1)M+i

y(i−1)M+i
y∗Wiy ≥ 0. Since

Wi is symmetric and positive semidefinite, it can be written as
Wi = R∗

iRi. From Cauchy-Schwartz inequality it follows that
x∗Wiy = x∗R∗

iRiy ≤ ||Rix||2||Riy||2 =
√

x∗Wixy∗Wiy,
from which it follows that

y(i−1)M+i

x(i−1)M+i
x∗Wix− 2x∗Wiy +

x(i−1)M+i

y(i−1)M+i
y∗Wiy

≥
(√

y(i−1)M+i

x(i−1)M+i
x∗Wix −

√
x(i−1)M+i

y(i−1)M+i
y∗Wiy

)2

≥ 0

therefore, function gi(x) is convex for x(i−1)M+i > 0. Since
the ratio of a convex and a linear function is qausiconvex
and since pointwise maximum of quasiconvex functions is
quasiconvex (see, e.g., [5]) we conclude that the objective
function in (6) is quasiconvex.

Remark: When preparing the final version of this paper,
we became aware of related work [9], where the authors deal
with a similar problem. There they present another proof of
quasiconvexity of (6), using a different approach.

We use the bisection method combined with the interior-
point method (implemented in software package SeDuMi) to
solve (6). Once we find the optimal x in (6), we determine

B such that x =
[�(vec(B))
�(vec(B))

]
. Then we calculate G as

G = H−1B. We refer to using the matrix G found by the
aforementioned procedure as Method 2.2.

The technique described in Subsection II-A maximizes the
sum rate of the multi-antenna broadcast system under the
linear data processing constraint. The individual rates resulting
from the maximization (3), however, may differ significantly.
This disparity is inherent to the optimization (3) since (3)
essentially denotes the maximization of ‖v‖1 (i.e., norm-1
of the vector v). It is well known that in the process of

maximizing the norm-1 of a vector, a few components of the
vector are suppressed while the remaining ones are boosted
up. Thus in Subsection II-A the sum rate is maximized at
the expense of the weakest few users which are ignored.
[Note: Transmitting data over many channel uses provides
fairness.] The symbols intended for the remaining strong
users may be modulated with higher modulation schemes,
thus overcompensating for the sum rate seemingly lost by
transmitting only to a subset of users.

On the other hand, as a result of the disparity among
the individual rates (and hence among the SINRs and BERs
of individual users), the average BER of the system may
suffer. To compensate for the loss in average BER, we
employ Method 2.2 on the subset of strong users selected for
transmission by Method 2.1. We formalize this combination
of Method 2.1 and Method 2.2 in the following way

1) obtain G using Method 2.1
2) denote the set of indices which correspond to zero-

columns of G by I0

3) denote a submatrix of H comprised of rows 1 ≤ i ≤M ,
i /∈ I0 by Hsub

4) Apply Method 2.2 on Hsub to obtain B; set G =
H∗

sub(HsubH
∗
sub)−1B.

As it turns out, maximizing the minimum individual rate
among the selected strong users results in fairly equal (and
high) SINRs. We refer to the previous combination of Method
2.1 and Method 2.2 as Method 2.

III. FINDING THE OPTIMAL SCALING COEFFICIENT k

We start with the basic model (1) and assume that the
preprocessing matrix G is obtained by simple inversion of
the channel matrix H , i.e., G = H−1. For this choice of G,
in this section, we propose a way of scaling the magnitudes
of the information signal u so as to minimize the average
BER. [Note that in Section 4 we will show how to employ
this signal scaling technique to the more general case of the
optimal G obtained in Section II.]

To minimize the average BER, one needs to maximize
the minimum SINR at receivers. To this end, in [4] authors
suggest perturbation of information signals by appropriately
translating original M -QAM signal constellation in complex
space. In this section we suggest a similar idea but focus on
perturbations (in fact, radial scaling) of M -PSK constellation.
An advantage of constraining ourselves to PSK constellations
is in the simplicity of decoding. Since the signal points are per-
turbed only radially, rather than vertically or horizontally as in
QAM, the angular information has not changed. Therefore, no
side information about the signaling scheme (i.e., the nature of
the perturbation) is needed at the receiver. In other words, each
user’s decoder makes simple angular decisions. The decoder is
no longer necessarily ML but it is efficient and practical since
it requires no additional information from the transmitter. [Our
simulation results indicate that the performance of this sub-
optimal ML decoder is almost identical to the optimal one.]

By fixing G = H−1 and representing u via its phases and
magnitudes, we can rewrite (1) as

r = kHH−1Φum + w, (7)
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Fig. 2. Comparison of BER, M=6 antennas/users, 8PSK-Method 2, 8PSK-
Method 2.1, 4-PSK-Method 2.2, 4PSK-regularized pseudo inverse.

where u = Φum and Φ is the diagonal matrix of phases of
u, and where um is the vector of magnitudes of u. Note that
due to the use of a PSK modulation scheme, the information
to be transmitted is contained in Φ. We are concerned with
designing optimal magnitudes of the signals, i.e., designing the
um. The relevant power constraint now becomes the one on
instantaneous, rather than average, transmission power. This
means that the corresponding form to (2) can be written as

r =
HH−1Φum√

u∗
mΦ∗H−∗H−1Φum

+ w (8)

where u∗
mΦ∗H−∗H−1Φum = 1

k2 . Now we want to optimize
scaling coefficient while keeping magnitudes of u greater or
equal to 1. This will result in magnitudes of the components of
the received vector r that are at least as large as if there were
no signal scaling at all. This requires solving the following
optimization problem

min u∗
mΦ∗H−∗H−1Φum

subject to umi ≥ 1, 1 ≤ i ≤M. (9)

This problem is convex and can easily be solved exactly by
a host of numerical methods (see, e.g., [5] and the references
therein). More importantly, we can show that the solution of
this problem is equal to the solution to

max
um1 ,um2 ,...,umM

min
i

u2
mi

u∗
mΦ∗H−∗H−1Φum

subject to umi ≥ 1, 1 ≤ i ≤M, (10)

which is the problem of maximizing the minimum SINR in
system (8). Denoting by ûm the solution to (10), we see
that the transmitted signal should have the form of s =

H−1Φ�um√
�um

∗Φ∗H−∗H−1Φ�um

. We refer to this signal scaling policy as

Method 3. As said earlier, although the magnitudes of optimal
u will generally be different from 1, the receivers will still be
able to decode the received signals by considering their angle,
since s has the same phase matrix Φ as u.
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IV. COMBINED METHOD

In Section 3, we employed the signal scaling scheme to
optimize the BER in a system that uses G = H−1 for data
preprocessing. In this section, we combine the signal scaling
with the optimal preprocessing matrices G found in Section 2.
This is done in stages. In particular, assume that Method 2.1 is
used to find G which maximizes the sum rate of the channel.
Then to minimize the average BER of the users, we employ
signal scaling for such G. Instead of solving (9) (which
assumed G = H−1), we now need to solve optimization

min u∗
mΦ∗Ĝ∗ĜΦum

subject to umi ≥ 1, 1 ≤ i ≤M (11)

where Ĝ is G found by Method 2.1. The above problem is
convex and thus can be solved exactly via efficient convex op-
timization techniques. If we denote solution of (11) by ûm, the
optimal transmitted signal s is given by s = �GΦ�um√

�um
∗Φ∗ �G∗ �GΦ�um

.

We refer to the above algorithm as Method 4.
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V. SIMULATION RESULTS

In this section we briefly discuss simulation results of the
suggested methods for linear preprocessing. Figures 2 and
3 show that Method 2.1 performs at least as good as the
regularized pseudo inverse in terms of BER while, due to
the use of a higher modulation scheme, provides significantly
higher sum rate. Figure 2 also shows that Method 2, due
to the additional minmax optimization of SINRs, performs
even better than Method 2.1 in terms of BER. Figure 4

shows that the simple scaling strategy gives a better BER
performance than the pseudo inverse. Finally, Figures 5 and
6 show that both, Method 2 and Method 4, outperform the
pseudo inverse in terms of both, the BER and the sum rate.
All plots were done using uncoded sequences of information
bits at the transmitter modulated with symbols from standard
PSK constellations as denoted below the figures.

VI. CONCLUSION

In this paper, we have proposed two criteria for the design
of the precoding matrix in a multi-antenna broadcast system.
First, we maximized the sum rate, and then we showed how
to maximize the minimum rate among all users. The latter
problem is shown to be quasiconvex and solved exactly. The
precoding techniques are constrained to linear preprocessing
at the transmitter. In addition to precoding, we have employed
a signal scaling scheme that minimizes the average BER of
the users. The signal scaling scheme is posed as a convex
optimization problem, and solved exactly via interior-point
methods. Finally, we have combined the precoding with signal
scaling. The combined scheme can be efficiently applied
in practice. In terms of the achievable sum rate, the pro-
posed technique significantly outperforms traditional channel
inversion methods, while having comparable (in fact, often
superior) BER performance.

REFERENCES

[1] G. Caire and S. Shamai, “On the achievable throughput of a multiantenna
Gaussian broadcast channel,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp.
1691–1706, July 2003.

[2] S. Wishwanath, N. Jindal, and A. Goldsmith, “Achievable rates, and sum-
rate capacity of Gaussian MIMO broadcast channels,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2658–2668, Oct. 2003.

[3] R. Zamir, S. Shamai, and U. Erez, “Nested linear/lattice codes for
structured multiterminal binning,” IEEE Trans. Inf. Theory, vol. 48, no.
6, pp. 1250–1276, June 2002.

[4] C. Peel, B. Hochwald, and A. Swindlehurst, “A vector-perturbation tech-
nique for near-capacity multiantenna multiuser communication,” IEEE
Trans. Commun., vol. 53, no. 3, pp. 537–544, Mar. 2005.

[5] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univer-
sity Press, 2003.

[6] J.-H. Chang, L. Tassiulas, and F. Rashid-Farrokhi, “Joint transmitter
receiver diversity for efficient space division multiaccess,” IEEE Trans.
Wireless Commun., vol. 1, no. 1, pp. 16–27, Jan. 2002.

[7] J. Bertrand and P. Forster, “Optimal weights computation of an emitting
antenna array-the Obele algorithm,” IEEE Trans. Signal Processing, vol.
51, no. 7, pp. 1716–1721, July 2003.

[8] E. Visotsky and U. Madhow, “Optimum beamforming using transmit
antenna arrays,” in Proc. IEEE Vehicular Technology Conference, vol.
1, pp. 851–856.

[9] A. Wiesel, Y. C. Eldar, and S. Shamai, “Multiuser precoders for fixed
receivers,” in Proc. International Zurich Seminar on Communications,
2004

[10] M. Stojnic, H. Vikalo, and B. Hassibi, “Rate maximization in multi-
antenna broadcast channels with linear preprocessing,” in Proc. IEEE
Globecom, vol. 6, pp. 3957–3961.




