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Abstract

In this work, we study a multiple-input multiple-output (MIMO) wireless system

where the channel state information is partially available at the transmitter through a

feedback link. Based on singular value decomposition, the MIMO channel is split into

independent sub-channels. Effective feedback of the required spatial channel informa-

tion entails efficient quantization/encoding of a unitary matrix. We propose two schemes

for quantizing unitary matrices via Givens rotations and examine the performance for

a scenario where the rates allocated to the sub-channels are selected according to their

corresponding gains. Numerical results show that the proposed schemes offer a signifi-

cant performance improvement as compared to that of MIMO systems without feedback,

with a negligible increase in the complexity.

Index Terms:MIMO wireless systems, singular value decomposition, Givens decomposition,

matrix quantization
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I. INTRODUCTION

In recent years, researchers have examined the transmission strategies for MIMO systems in

which the transmitter and/or the receiver have full or partial knowledge of the channel state in-

formation (CSI). It is shown that the capacity is substantially improved through even partial CSI

at the transmitter [1]. Subject to finite rate feedback, optimal MIMO signaling is studied in [2]

[3] to maximize the average channel capacity, and precoder design for MIMO systems with linear

receivers is investigated in [4] [5].

Assuming partial CSI is available at the transmitter, the authors in [6] design a codebook of

beamformer vectors to minimize the outage probability. Reference [7] addresses the problem of

codebook design with partial CSI where the criterion is to maximize the received signal to noise

ratio (SNR). A beamforming method is presented in [8] which relies on the method of [9] for the

quantization of the channel spatial information (singular vectors of the channel matrix). In [10],

the authors use the Givens parameters to represent the singular matrix of the channel in a slowly

time-varying environment. The adaptive delta modulation is applied to quantize each parameter

with a one-bit quantizer.

The motivation of this work is to design unitary matrix quantizers based on minimizing the inter-

ference measure defined later in the paper. Assuming a block fading channel model, we consider

the situation in which a MIMO channel is split into several independent sub-channels by means

of singular value decomposition (SVD). In this scheme, the spatial information of the channel and

the constellation index of each sub-channel is needed at the transmitter. The modulation format is

selected to match the SNR on each sub-channel. We use Givens rotation to decompose the spatial

information of the channel (a unitary matrix). We develop quantization methods by expressing

the distortion function of the unitary matrix in terms of the Givens matrices using the first order

approximation. The quantizer design and the optimum bit allocation among the quantizers are

achieved based on minimizing the interference measure defined in Section III. The simulation

results are presented in Section IV. Finally, Section V concludes the paper.
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II. SYSTEM MODEL

We consider an independent and identically distributed (i.i.d.) block fading channel model. For a

MIMO system with M transmit and M receive antennas, the model leads to the following complex

baseband representation of the received signal

y = HWx + n, (1)

where x is the M ×1 vector of the transmitted symbols, H is the M ×M channel matrix, W is the

M ×M precoder matrix, n is the M × 1 zero mean Gaussian noise vector with the autocorrelation

σ2I where I is the identity matrix, and y is the received signal. Matrix H consists of circularly

symmetric complex Gaussian elements with zero mean and unit variance.

The SVD of H is defined as H = VΛU∗, where V and U are the unitary matrices, Λ is a diagonal

matrix [11], and (.)∗ denotes the hermitian of (.). We assume that CSI is known to the receiver and

a noiseless feedback link from the receiver to the transmitter is available. By the SVD of H at the

receiver, U is computed, quantized and sent to the transmitter. The transmitter uses the quantized

version of U as a precoder, i.e. W = U + ∆U, where ∆U represents the quantization error.

y = H(U + ∆U)x + n. (2)

The receiver multiplies the received vector y by V∗,

r = V∗y = Λx + ΛU∗∆Ux + n. (3)

Noting Pr(n) = Pr(V∗n), we have simplified (3). We consider a case in which data is transmitted

and received separately in each sub-channel with different rates and with equal energy. The power

constraint of the transmitted signal is defined as E(xx∗) = MEI, where E is the energy per data

stream and E represents the expectation. Under the assumption of continuous approximation1, it
1If C is a lattice code of reasonably large size, then the distribution of its points in N dimensional space is well approximated by

a uniform continuous distribution over the region bounding the constellation. This is called the continuous approximation [12].



4

can be shown that the use of equal energy maximizes the rate for a cubical shaping region2 (subject

to a constraint on total energy) [13].

At the receiver, a modulation scheme for each sub-channel is selected such that a target bit error

rate (BER), Pb, is achieved. The indices of the corresponding modulation schemes are sent to the

transmitter. The received SNR at the kth sub-channel is

SNRk =
Eλ2

k

σ2 + σ̂2
k

, (4)

where σ̂2
k is the corresponding noise variance caused by the quantization error in the kth sub-

channel. We consider a set of QAM modulation formats. The rate of the kth sub-channel, rk,

is computed such that rk = maxP (r,SNRk)≤Pb
r, where P (r, SNR) is the BER function of a QAM

modulation scheme in terms of the rate r and SNR. An approximation formula for P (r, SNR) is

given in [14]. If none of the modulation formats meets the desired BER in a given sub-channel, no

data stream is sent over that sub-channel. In fact, the total power is allocated equally among the

sub-channels in which the desired BER is met.

III. FEEDBACK DESIGN: CHANNEL SINGULAR MATRIX QUANTIZATION

Noting that the receiver detects the sub-channels separately, the quantizers are designed to min-

imize the interference between the sub-channels. The variance of the interference signal is

E(‖ΛU∗∆Ux‖2) = λ2ETr(U∗∆Uxx∗∆U∗U)

= λ2ETr(∆U∆U∗xx∗)

= λ2EE(‖∆U‖2), (5)

where Tr denotes the trace function, ‖S‖2 = Tr(SS∗) and E(Λ2) = λ2I [15]. Note that the singular

values are not ordered. In deriving (5), we use the property that the singular values of a Gaussian

matrix with i.i.d. entries are independent from the corresponding singular vectors [15]. In the

following, we develop two methods to quantize a unitary matrix to minimize (5).
2
N dimensional cubical shaping region is a cube bounded between −ai and ai along the ith dimension, 1 ≤ i ≤ N .
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We consider Givens rotation which decomposes a unitary matrix to the minimum number of

parameters (n2 − n parameters for an n × n matrix) [11]. An n × n unitary matrix U can be

decomposed in terms of the products of Givens matrices [11], i.e.

U =
n−1∏

k=1

n∏

i=k+1

G(k, i). (6)

Each G(k, i) consists of two parameters, ck,i and sk,i, where ck,i is in both the (k, k)th and the

(i, i)th positions, sk,i is in the (k, i)th position and −s∗k,i is in the (i, k)th position. The other

diagonal elements of the matrix G(k, i) are 1 and the remaining elements are zero. Since G(k, i)

is a unitary matrix, then |ck,i|
2 + |sk,i|

2 = 1. In this work, we assume that the procedure of

decomposing the unitary matrix is performed such that ck,i is real and non-negative [13]. If U is a

singular matrix derived from an n×n Gaussian matrix with i.i.d. entries, the set of Givens matrices

G(k, i), 1 ≤ k < i ≤ n, in (6) will be statistically independent of each other and the probability

distribution function (PDF) of the elements of G(k, i) is3 [16]

pck,i,∠sk,i
(c, ∠s) = pck,i

(c)p∠sk,i
(∠s) =

i − k

π
c2(i−k)−1, 0 ≤ c ≤ 1, ∠s ∈ [−π, π]. (7)

Based on the criterion presented for the quantizer design in (5), we define the distortion measure

as follows

D(Q, Q̂) =
1

2
E(‖Q − Q̂‖2), (8)

where Q̂ is the quantized version of Q. Using (6) and (8), we can easily derive the first order

approximation of the distortion measure of U as follows [13]

D(U, Û) '
1

2

n−1∑

k=1

n∑

i=k+1

E(‖G(k, i) − Ĝ(k, i)‖2). (9)

In the following the quantization schemes for an n×n unitary matrix is presented. The quantization

methods can be easily generalized for a non-square unitary matrix [13].
3After we completed this work as reported in [16], we became aware of [10] which independently proves a similar result.
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1) Method A: The parameters of G(k, i), ck,i and θk,i = ∠sk,i, are quantized as ĉk,i and θ̂k,i,

independently, for 1 ≤ k < i ≤ n. The matrix Ĝ(k, i) with the corresponding parameters ĉk,i and

ŝk,i is constructed at the transmitter, using

ŝk,i =
√

1 − ĉ2
k,ie

jbθk,i, (10)

which forces Ĝ(k, i) to be a unitary matrix. Alternatively, one can quantize the underlying complex

values using polar representation [17]. Using (10) and applying the first order approximation, we

have [13]

‖G(k, i) − Ĝ(k, i)‖2 '
2

1 − c2
k,i

(ck,i − ĉk,i)
2 + 2(1 − c2

k,i)(θk,i − θ̂k,i)
2 1 ≤ k < i ≤ n (11)

Substituting (11) in (9) and using (7), we have

D(U, Û) '

n−1∑

k=1

n∑

i=k+1

E

(
(ck,i − ĉk,i)

2

1 − c2
k,i

)
+

1

2(i − k) + 1
E(θk,i − θ̂k,i)

2. (12)

Noting (12), we design Linde-Buzo-Gray (LBG) quantizers for ck,i and θk,i to minimize E
(

(ck,i−bck,i)
2

1−c2
k,i

)

and, E(θk,i − θ̂k,i)
2, 1 ≤ k < i ≤ n, respectively. The quantizer for θk,i follows the conventional

approach to iterative design of a scalar LBG quantizer [18], while for ck,i, the iterative design pro-

cedure should use the following reconstruction value, ĉk,i =
E(

ck,i

1−c2
k,i

)

E( 1

1−c2
k,i

)
, which is easily derived by

setting ∂
∂bc

E
(

(c−bc)2

1−c2

)
= 0.

We utilize dynamic programming to find the optimum bit allocation among the quantizers. First,

we design b-bit quantizers for ck,i and θk,i, 1 ≤ k < i ≤ n and 0 ≤ b ≤ B. Then, we calculate

µb(ck,i) = E
(

(ck,i−bck,i)
2

1−c2
k,i

)
, and µb(θk,i) = 1

2(i−k)+1
E(θk,i − θ̂k,i)

2, 1 ≤ k < i ≤ n and 0 ≤ b ≤ B,

using the PDF of ck,i and θk,i given in (7). We use a trellis diagram with B states and n2 −n stages

to allocate B bits to the quantizers corresponding to ck,i and θk,i, 1 ≤ k < i ≤ n. In the trellis

diagram, each branch represents the difference between the number of bits corresponding to the

two ending states on the branch. The metric of the branch connecting the lth state at the (j − 1)th

trellis stage to the (l + b)th state at the jth trellis stage is µb(ϑj), where ϑj is the quantization

parameter corresponding to the jth stage. The search through the trellis determines the path with
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the minimum overall distortion and the corresponding number of bits for each parameter. The

overall additive metric along a given trellis path is equal to the overall distortion given in (9).

Examples of the bit allocation for the Givens parameters of a 3 × 3 unitary matrix is provided in

Table I.

2) Method B: In this method, we quantize each Givens matrix as one unit. Let us define a new

parameterization as follows: c = cos(η) and s = ejθ sin(η), where 0 ≤ θ ≤ 2π and 0 ≤ η ≤ π. We

use the LBG algorithm to determine the regions and centroids of the two-dimensional quantizers

corresponding to various (η, θ) for each Givens matrix. Using (8), the distortion function of a

Givens matrix is

D(G, Ĝ) =
T∑

m=1

∫

Rm

(1 − cos(η) cos(ηm) + sin(η) sin(ηm) cos(θ − θm)) p(η, θ)dηdθ, (13)

where Rm is the mth quantization region and T is the number of quantization partitions. The

centroid (ηm, θm) is determined iteratively by minimizing the distortion in the region Rm [13]

θm = tan−1(
ςm

γm

), (14)

ηm = tan−1

( √
ς2
m + γ2

m∫
Rm

cosl+1(η) sin(η)dηdθ

)
, (15)

where γm =
∫

Rm
cosl(η) sin2(η) cos(θ)dηdθ, ςm =

∫
Rm

cosl(η) sin2(η) sin(θ)dηdθ, and l = 2(i −

k) − 1, in the case of quantizing G(k, i) in (6). In this method, similar to the earlier case, a trellis

diagram is used for the optimum bit allocation. The trellis diagram contains n2−n
2

stages, each

corresponding to a Givens component of an n×n unitary matrix, and B states where B is the total

number of bits.

IV. PERFORMANCE EVALUATION

Fig. 1 shows the average bit rate versus SNR for different MIMO systems with M = 3 at the

target BER= 5× 10−3. Method B outperforms method A at the cost of a higher complexity for the
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codebook search. It is observed that the performance gain, compared to the gain of a 3 × 3 open

loop MIMO system with the ML decoding, is noticeable. We also compare the performance of

the proposed system with that of a V-BLAST system which is proposed as a solution to overcome

the decoding complexity at the receiver. Note that as the receiver in the proposed method decodes

the sub-channels separately, the decoding complexity is similar to that of the V-BLAST. Fig. 1

displays a significant improvement in comparison with the V-BLAST, showing the gain achieved

through feedback.

In Fig. 2, we plot the BER of a 3×3 MIMO system using 9 bits to feed back the precoding unitary

matrix in each block. The transmitter sends two independent streams of 64-QAM symbols with

equal energy over the two sub-channels with the higher gains. The third sub-channel is left empty.

The proposed methods and the methods in [9] and [19] are used to quantize the precoding unitary

matrix. In [9], the authors use Householder reflections to decompose an n × m, m ≤ n unitary

matrix into m unit-norm vectors with different dimensions, q1 ∈ Sn, q2 ∈ Sn−1, ..., qm ∈ Sn−m+1,

where St = {u ∈ Ct :‖ u ‖= 1}. Then, vector quantization is applied to separately quantize q1 to

qm. In [4], a method which has been proposed in [19] (to design unitary space-time constellations)

is used to directly quantize the precoding unitary matrices. The bit allocation for different methods

is shown in Table II, and the codebook search complexity of different quantization methods is

compared in Table III. In order to search a codebook in the method proposed in [9], one needs

to perform 32 vector multiplications of size 3, 32 norm calculations and 32 comparisons to select

the corresponding q1. Similarly, 16 vector multiplications of size 2, 16 norm calculations and 16

comparisons is needed to select the corresponding q2. In the method used in [4], one needs to

perform exhaustive search among 29, 3 × 3 matrices, requiring 29 matrix multiplications and 29

trace calculations. Note that the complexity of SVD, Givens rotations and Householder reflection

is in the order of n3 for an n×n matrix [11]. Although the method in [9] and the unitary space-time

constellation design used in [4] outperform our quantization schemes, our proposed methods have

a much lower complexity.
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V. CONCLUSION

In this work, we have presented efficient methods for the channel information quantization in

a MIMO system. We have developed efficient algorithms for the quantization of the underlying

unitary matrices. Compared to the similar methods, our methods provide very low codebook search

complexity at the expense of minor performance degradation. Simulation results show a significant

improvement as compared to a MIMO system without feedback, at the cost of a low-rate feedback

link and a small increase in the computational complexity.
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TABLE I

THE BIT ALLOCATION FOR DIFFERENT GIVENS PARAMETERS.

θ1,2 θ1,3 θ2,3 c1,2 c2,3 c1,3 Total bits

3 3 3 2 2 1 14

4 4 4 3 3 2 20

5 5 5 4 4 4 27
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Fig. 1. The average bit rate for different schemes where M = 3. The target BER= 5 × 10
−3.
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Fig. 2. The bit error rate for different schemes in a 3 × 3 MIMO system sending 2 64-QAM streams

TABLE II

THE BIT ALLOCATION FOR METHOD A, METHOD B AND HOUSEHOLDER REFLECTION METHOD

c1,2 c1,3 c2,3 θ1,2 θ1,3 θ2,3

1 1 1 2 2 2

G(1, 2) G(1, 3) G(2, 3)

3 3 3

q1 q2

5 4
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TABLE III

THE CODEBOOK SEARCH COMPLEXITY OF DIFFERENT METHODS ARE COMPARED.

Givens(Method A) Givens(Method B) Householder [9] Space-time Constel. [19]

Multiplications 18 72 768 9216

Additions 0 48 384 8704

Comparisons 18 24 48 512


