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Abstract 
 
We consider a narrowband multiuser system in which several transmitting users are received 

through a synchronous, flat fading channel at an antenna array.  The paper introduces a multiuser 

detection technique that combines groupwise detection with iteration.  It is well suited to 

overloaded conditions, where there are more transmitter antennas than receive antennas.  The 

soft decisions it uses internally also make it suitable as a detector in a concatenated structure.  Its 

performance and computation can be traded off through selection of group size.  A variant of the 

algorithm achieves further computation reduction by incorporating a soft sphere detection core. 
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I. INTRODUCTION 

We present a multiuser detection (MUD) technique for a narrowband multi-input, multi-

output (MIMO) system, with several independently transmitting users and a receiver equipped 

with a diversity array.  In the challenging overloaded configuration, where there are fewer 

receive antennas than the total number of transmit antennas, the algorithm provides significantly 

better performance than previously reported suboptimal (i.e., reduced computation) methods.   

Most existing MUD techniques perform poorly in overloaded (i.e., underdetermined) 

conditions.  Zero forcing (ZF) solutions [1] cannot be obtained because of matrix singularity, and 

minimum mean squared error (MMSE) solutions yield poor performance.  The original 

probabilistic data association (PDA) algorithm [2, 3] rests on a preliminary pseudo-inverse 

solution, which cannot be obtained in overloaded conditions.  For the same reason (matrix 

singularity), the original V-BLAST algorithm [4] does not apply.  In group detection (GD) [5], 

all interferers not in the group being detected are nulled by ZF, so that the number of “excess 

users” (the number of transmit antennas minus the number of receive antennas) cannot exceed 

the group size minus one.  Sphere detection (SD) [6] does reach the maximum likelihood (ML) 

solution, but with complexity that is exponential in the number of excess users.  A modified PDA 

algorithm [7] removes the pre-filter to allow for overloaded systems; it can be shown to be 

equivalent to the technique presented here in the special case of single-user groups. 

On the other hand, optimum MUD methods, such as joint maximum likelihood (JML) [8] 

and joint maximum a posteriori probability (JMAP) detection (MAP bit detection in [9]) do 

operate well in overloaded conditions, and cost just a small fraction of a dB per additional user 

[8].  Unfortunately, their complexity grows exponentially with the number of users and they 

quickly become impractical. 

Although the motivation for reduced complexity suboptimal algorithms for overloaded 

conditions is clear, there has been little reported work to date.  V-BLAST, modified to use 
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MMSE suppression of undetected users per the suggestion in [4] (which we will term MMSE V-

BLAST) is one candidate.  Another is a variation of group detection, with MMSE suppression of 

undetected groups combined with hard cancellation of detected users [10], which we will term 

GD. 

  In this paper, we introduce a MUD technique (iterative MUD, or IMUD) that combines 

group detection with a posteriori probability (APP) extraction [9].  The APPs enable the other 

features of the method: soft cancellation of detected users, iteration to improve the quality of the 

symbol estimates, and concatenation with coded transmission of the users’ data.  Its performance 

is excellent, making even heavily overloaded conditions accessible.  The novelty of this work 

lies in the selection of component techniques suitable to overloaded conditions and the 

exploration of resulting performance.  As a by-product, we also present new results showing the 

surprising resilience of MMSE V-BLAST to overload. 

II. THE IMUD ALGORITHM 

A. Description of Signals 

We address the basic multiuser interference problem addressed in [1]-[5].  Several users 

transmit independent data in symbol-synchronous fashion with identical pulse shapes through 

independently flat-fading channels.  For simplicity of discussion, we identify the number of users 

(or data streams) N with the number of transmit antennas.  The signals are received at an M-

element antenna array with the same mean SNR at each antenna.  Variations such as 

asynchronous transmission, signature pulse shapes, or delay spread would enhance performance, 

since they add measurement dimensionality.  Conversely, correlated antennas would reduce the 

diversity.  However, we chose to deal with the simplest system to uncover the fundamental 

performance limits of IMUD. 

In such conditions, the matched filter outputs at the receiver can be represented by the length-

M vector 
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 = +y Hb n , (1) 

where H is the M N×  matrix of channel gains, b is the length-N vector of user data and n is the 

length-M vector of spatially white Gaussian noise.  The elements of H are independent, complex 

Gaussian variates with zero mean and variance ½ in both the real and imaginary components.  

For simplicity, all users will employ the BPSK constellation ±1, although this is not essential; 

higher density constellations will increase the complexity of the group probability extraction 

(Section IIB), particularly during creation of the joint probabilities.  The elements of n have zero 

mean and variance 1 (2 )Γ  in both the real and imaginary components, where Γ is the mean SNR 

per symbol at each antenna.  Perfect channel estimation is assumed in the present investigation.  

The effect of imperfect estimates on performance is the subject of future work. 

B. Group Detection 

IMUD group detection breaks the N users into NG  groups of size G, and estimates the user 

symbols of each group in succession, using the group APP extraction (GAPPE) described in 

Section IIC.  Its complexity is exponential only in the group size G, rather than the total number 

of users N.  The price is suboptimal detection.  By varying the group size, computation load can 

be traded against detection performance.   

The measurement vector on which the symbol estimates are based is modified after each 

group is processed (Section IID).  For the detection of group j, we write it as  
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where ( )ju  represents the undesired components of the signal and ir  is the zero-mean residual 

error after soft cancellation (Section IID) of the earlier group i.  The residual errors ir  are 

approximated as being uncorrelated with each other and with the other components of ( )ju .   

C. Group APP Extraction 

The core of IMUD is group APP extraction (GAPPE).  The resulting soft estimates of 

individual data symbols enable both iteration and soft cancellation of interference.  The IMUD 
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framework accommodates a variety of GAPPE techniques, provided that they are soft-input/soft-

output.  The optimal GAPPE is a brute force marginalization over all user data combinations; it 

is a group-wise variation on the MAP bit detection technique in [9].  The soft SD methods 

provide a lower complexity alternative.  They marginalize only over the points (data vectors) in a 

sphere around the received vector ( )jy  rather than over all data vectors.  In the simulations of 

Section III, we use the soft SD introduced in [11] in its Approximation B variant. 

The key approximation for optimum GAPPE is that ( )ju  is Gaussian, as in [12], which 

makes the conditional probability density of the measurements equal to ( )
( )( ),Ν j

j
j j uy H b R , 

where ( ) ( )2,Ν jy µ σ  is the Gaussian pdf of ( )jy  with mean µ  and variance 2σ .  The a priori 

probabilities of the components njb  of jb  are denoted ( )Pr ( )a
njb  and the components are 

assumed to be statistically independent.  Initially, all a priori probabilities are set to ½.  The 

APPs ( ) ( )Pr ( ) Pr( | )o j
nj njb b= y  may then be computed by marginalizing over the joint probability 

 ( ) ( )( ) ( ) ( )
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Such computations may be simplified by use of log-likelihood ratios (LLRs), to represent the 

symbol probabilities, and the log-MAP algorithm [13], to compute (3). 

D. Soft Cancellation 

After processing a group, the APPs are used to improve performance and convergence.  In [2, 

3, 7], the technique of probabilistic data association (PDA) uses soft outputs to allow 

convergence.  Both IMUD and PDA make the assumption that all undesired users are Gaussian 

distributed interferers, with IMUD using group structure to exploit the correlation between users. 

We have the a posteriori mean and error variance of njb  as  
 ( ) ( ) ( )Pr ( 1) Pr ( 1)o o o

n j n j n jb bµ = = − = − . (4) 

 2 ( )21σ µ= − o
n j n j  (5) 

The error vector ( )o
j j j= −bφ µ  has zero mean, where ( )o

jµ  is a vector of means for the jth group.  

To perform a soft cancellation, the measurement vector is updated using ( )o
jµ  by 
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 ( 1) ( ) ( )+ = −j j o
j jy y H µ , (6) 

in preparation for processing the next group.  The errors are approximated as being uncorrelated 

between and within groups, so that the covariance matrix of the detection error jφ  of group j is 

 ( )† 2 2
1 , ,j j j j G jE diag σ σ⎡ ⎤= =⎣ ⎦Rφ φ φ … . (7) 

The covariance matrix of the unwanted components can then be written in update form as 

 ( )( 1) ( ) 2 ( ) ( )†

1
1 .σ+

=

= − −∑
G

j j i i
i j j j

i
u uR R h h  (8) 

Inversion of (8) is required for the next group to be detected.  An alternative to explicit 

inversion, based on repeated application of the matrix inversion lemma [14] to the second line of 

(8), may be computationally attractive if the group size G is much less than the number of 

antennas M. 

E. Detection Order 

Determination of the best ordering in group detection is more complex than in single 

detection (V-BLAST), because interactions within the group and between the group and the 

remaining users must be considered.  The problem of optimum grouping for a method based on 

ZF and hard cancellation was considered in [15].  An alternative in [10] is to assign users 

arbitrarily to groups, then to order the groups. 

We found it most effective to assign users to groups on the basis of error variance 

minimization (EVM) [16].  Consider formation of group j.  For simplicity, we consider the 

residual interferences ,i i j<r  to be zero; i.e., perfect DF.   Then, MMSE estimation of the 

remaining ( )1GN j G− +  user symbols from the measurement vector ( )jy  has error variances 

equal to the diagonal entries of 

 ( )( ) 12 ( )† ( ) ( )† ( )1 2
−

= − + ΓΣ j j j j
e I H H H I H , (9) 

where the ( )1GM N j G× − +  matrix ( )jH  denotes the columns of H  remaining after removal of 

previously formed column groups 1 1, , j−H H… .  The G users with the lowest error variances in 
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(9) are then selected to compose group j , and their columns are removed from ( )jH  to form 
( 1)j+H .  The process repeats until there are no remaining users. 

F. Iteration and Complexity 

In Sections IIB-IIE, we have the initial formation of groups by EVM and, for each group, the 

processes of GAPPE and soft cancellation in preparation for the next group. After a complete 

pass through all groups, IMUD iterates the process.  The second and subsequent iterations are 

similar to the first, with two exceptions: first, the a priori probabilities in GAPPE are set to the 

APP values calculated in the prior iteration (Section IIID); and second, users are assigned to 

groups randomly, rather than by EVM (Section IIIB).  The purpose of randomization is to break 

up intra-group dependencies caused by the set of gain vectors in each jH , as well as 

dependencies caused by the initial detection order.  It is analogous to interleaving in iterative 

detection of turbo codes [17]. 

The overall complexity of IMUD using optimal GAPPE is linearly dependent on the number 

of iterations and exponentially dependent on the group size.  For IMUD using the soft SD 

GAPPE, the dependence on group size is much weaker.  With the right pre-sorting technique, 

IMUD can outperform an MMSE V-BLAST system with a comparable complexity in a fast 

fading system due to the interference covariance matrix inverses. 

III. PERFORMANCE SIMULATIONS 

In a series of simulations, we compared the performances of IMUD, the group ML with 

MMSE suppression of [10] (denoted GD in the results), simple MMSE and MMSE V-BLAST 

[18].  Throughout this section, the notation ( ), ,GM N G , for number of antennas, number of 

groups and size of groups, will refer to the system configuration.  The number of users is then 

GN G .  Two of the methods (MMSE and V-BLAST) do not perform grouping of the users.  The 

other group method, GD, employs a different sorting technique, uses hard cancellation as it 

progresses through the groups, and does not iterate. 
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A. Loading and Grouping 

The number of users, relative to the number of antennas, has a significant effect.  We can 

distinguish three cases: underloaded arrays ( )<GN G M , critically loaded arrays ( )=GN G M  

and overloaded arrays ( )>GN G M .  We have not presented results for underloaded arrays since, 

being accessible to a variety of simple methods, they are of less interest for IMUD use.   

Fig. 1 illustrates the performance of the various detection methods on a critically loaded 

( )12, 2,6  system.  For reference, it also shows the union bound [8] on the error rate of true JML.  

Although this bound is tight for high SNR, it is clearly rather loose at low SNR values.  The 

notation IMUD(I) indicates IMUD with I iterations.  For a BER of 410− , 510  independent trials 

of data, channel gains and noises were used.  With two iterations, IMUD almost matches the 

performance of true JML, but requires far less computation.  At an error rate of 410− , IMUD(2) is 

almost 3 dB better than GD and MMSE V-BLAST.  Further iteration produced no perceptible 

improvement in IMUD. 

To stress IMUD further, we recast the critically loaded 12 antenna system as ( )12,6, 2 .  Fig. 

2 shows that IMUD(2) degrades by less than 1 dB at a BER of 410−  compared with ( )12, 2,6 .  

IMUD’s soft cancellation mitigates the effects of the decrease in group size.  This is important, 

since it means that we can run IMUD with relatively small groups without a large drop in 

performance.  We also see that the GD method degrades significantly, and provides much poorer 

performance than MMSE V-BLAST.  The various groupings allow IMUD to provide a flexible 

tradeoff of computation and performance, from true JML down to a variant of PDA.  Other 

configurations are reported in [16, 19]. 

Next, we examine the more interesting case of overloaded arrays.  In Fig. 3, we reduce the 

number of antennas to eight, while keeping twelve users, organized in ( )8,6, 2  and ( )8, 2,6  

configurations.  Like MMSE, GD shows an error floor.  IMUD(2) is about 5.5 dB better than 

MMSE-VBLAST at a BER of 310− , and neither shows a floor.  In a more extreme example, 

shown in Fig. 4, we used only six antennas to detect twelve users in a ( )6, 2,6  configuration.  
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Both MMSE-VBLAST and GD show evidence of an error floor at a BER of 210− .  In contrast, 

IMUD with two iterations provides floor-free performance with a diversity order of about two.  

This good performance in overloaded conditions is one of the most compelling arguments for use 

of IMUD. 

In the critically loaded situations presented in this paper, simulations have demonstrated that 

the performance of the soft SD GAPPE is indistinguishable from that of JML.  In the IMUD(2) 

SD (8,2,6) curve in Fig. 3, a limitation in the overloaded case is observed.  The first iteration has 

no degradation over the optimal GAPPE, while the second shifts away at higher SNRs.   

One interesting feature of Figs. 1-4 is the relatively good performance of MMSE-VBLAST, 

even in moderately overloaded conditions, despite its attractively low computation.  This feature 

of the algorithm does not seem to have been observed in previous publications.   

B. Effect of Detection Order 

IMUD detects users in EVM order for the first iteration, and in randomized order for 

subsequent iterations.  Fig. 5 shows the benefits of this configuration compared to others for the 

first two iterations in a ( )12,3, 4  configuration.  Not surprisingly, randomized ordering provides 

the worst performance for the first iteration; EVM ordering provides the best performance.  It is 

interesting that the use of EVM ordering in the second iteration is poorer than random ordering 

in the second iteration.  IMUD(2) EVM/EVM is not shown in Fig. 5 since its performance is 

nearly identical to that of IMUD(1) EVM.  We believe this to be due to the fact that a second 

EVM sort makes little change in the order; consequently, randomization is required to break up 

the intra-group statistical dependencies.  Ordering by the original ZF V-BLAST method [4] (not 

shown) is about 1 dB poorer than EVM on the first iteration, but only 0.1 dB poorer on the 

second.   The LLR-based sorting of [20] (also not shown) had performance almost 

indistinguishable from EVM on both iterations. 

C. Interference Cancellation and Number of Iterations 
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IC is employed in two places: from group to group within an iteration (inter-group), and from 

one iteration to the next.  To assess their relative contributions quantitatively, we tested them 

separately.  We compared performance with and without inter-group cancellation when there 

was no interference cancellation between iterations.  For a (12,3,4) configuration, inter-group 

soft cancellation produced a 4 dB improvement compared with no cancellation at a BER of 310− .  

Next, we compared inter-group soft cancellation with inter-group hard cancellation.  This is the 

principal difference between IMUD(1) and GD, so the importance of soft cancellation can be 

gauged from Figs. 1-3.  In overloaded situations, soft cancellation is critical to success.  Next, we 

compared the IMUD in Section II to IMUD with no cancellation between iterations.  The number 

of iterations to convergence was affected.  Fig. 6 shows that after 5 iterations, there is around a 

0.25dB gain when using soft cancellation between iterations. 

D. APP Propagation and Interference Cancellation 

In iterative detection of signals defined by trellises and interleavers [17], it is important to 

distinguish between a posteriori probabilities and extrinsic information.  Normally, only 

extrinsic information is propagated from one iteration to the next in order to prevent 

overemphasis of the a priori probabilities and consequent slow convergence or mis-convergence.  

IMUD addresses a basic MIMO configuration that does not require a trellis for signal 

description, and randomized detection order is a poor substitute for trellis constraints and 

interleaving.  Nevertheless, it is of interest to explore the effect of propagating only extrinsic 

information between iterations.  To start, we note that the soft IC information (4)-(8) is 

equivalent to the full APPs.  Propagation of extrinsic-only information between iterations 

therefore requires removal of a priori information obtained from the previous iteration and 

elimination of IC.  In [16], it was demonstrated that utilizing the extrinsic APPs in an overloaded 

(4,3,2) configuration results in a dramatic loss of BER performance, as well as a significant loss 
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of diversity order.  However, use of either soft IC or even partial a priori information provided 

the same performance as the combined APP propagation and use of IC. 

IV. CONCLUSION 

In this paper, a new iterative groupwise MUD technique was introduced.  The structure of the 

group APP extraction, soft cancellation and iteration was derived.  Some plots were generated as 

a comparison of existing techniques and the new iterative algorithms. 

We have demonstrated that IMUD can outperform previous techniques, including groupwise 

detection and the ordered cancellation in V-BLAST.  In an overloaded situation, IMUD’s 

performance is exceptional; the error floor compared to other IC based detectors is greatly 

reduced.  In a simulated system with 8 receive antennas and 12 users, IMUD outperforms 

MMSE V-BLAST with a 5dB or greater decrease in SNR at an error rate of 10-3.  Also, it seems 

that the most performance gain due to iteration is achieved by the second iteration. 

As a new multiuser detection technique, IMUD is very promising.  One of its biggest 

advantages is that it is iterative in nature, and uses soft decisions.  This makes it a primary 

candidate for inclusion in iterative detection of multiple coded users, using IMUD in serial 

concatenation with trellis-based codes, whether space-time codes or conventional codes.  There 

also may be applications in macrodiversity systems, where the soft decisions can be sent as a 

prioris to other base stations within a co-channel interference area. 
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Fig. 1: (12,2,6) system (critically loaded). 

 

 
Fig. 2: (12, 6, 2) system (critically loaded).  The effect of the smaller group size is evident in the 

group techniques of IMUD and GD.    
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Fig. 3. (8,2,6) and (8,6,2) systems (overloaded). 

 

 
Fig. 4: (6,2,6) system (overloaded).  The reduction in the error floor of IMUD is striking when 

compared to MMSE V-BLAST and straight group detection. 
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Fig. 5:  Effect of detection order on a (12,3,4) configuration. 

 

 
Fig. 6.  Interference cancellation between iterations affects the number of iterations to convergence 

in a (12,3,4) configuration. 


