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Abstract—We address multi-user scheduling over the down- represents the base station transmitting to multiple users that
link channel in wireless data systems. Specifically, we consider represent the mobile handsets. The system operates in a time-
a time-slotted system with a single transmitter serving multiple slotted manner and in each time-slot the base station can

users, where the channel condition of each user is time varying. | Th t of divided into t
Based on the throughput requirements, the user set is divided serve only one user. € Set or users are divided Into two

into two classes (i) throughput guaranteed (QoS) users, and, (i) classes: (i) throughput rate guaranteed QoS users and (ji) “best
best effort (BE) users. For this system we obtain the optimal effort” (BE) users. The QoS users in the system represent
policy that serves the QoS users with the minimum time-slot session applications such as FTP, high data-rate web-browsing,
utilization and maximizes the total fraction of time-slots allocated throughput-constrained data transfers etc., which require the
to the BE users. We show that the optimal policy has a simple base station to provide a certain data rate on the downlink. In
geometric structure that can be easily visualized graphically. o :
In the special case of Rayleigh fading, we obtain closed-form contrast, the BE users represent on-the-fly applications such as
formulas that relate the achievable throughput-rate guarantee of email transfers, low priority and latency tolerant data transfers
the QoS users as a function of other system parameters, thus, etc. which do not have rate requirements and are short-lived.
providing closed-from relationships to understand the various Tpa goal of this work is to design a scheduling policy that
system tradeoffs. Analytical comparison between the optimal and . . .
the random-scheduling policy shows that gains on the order of provides the requwed_t.hro_ughput rates .to.the QoS user§ W'th
ln(N) can be achieved, whereN is the number of QOS users. the |eaSt tlme-S|Ot Ut|I|Zat|On and maximizes the rema|n|ng
Finally, we present simulation results comparing the optimal fraction of time-slots assigned for the BE class.
policy under Rayleigh and Nakagami fading with other heuristic Down-link scheduling and power/rate adaptation is an active
policies including a well known opportunistic-scheduling policy. - 5ra3 of research in wireless systems with recent work that

Index Terms—Wireless downlink channel, Opportunistic . . .
scheduling, Multi-user diversity, Quality of Service, Rayleigh 'nCI_Ud_eS [4]_[9]'_ [11]-{14]. Thg _Work |n. [4_1] S_tUd'ed Oppor-
fading, Nakagami fading. tunistic scheduling under a utility maximization framework
and presented various formulations therein. In [5], the authors
considered the objective of maximizing the minimum through-
put rate among a set of users while [6] extended the framework

Rapid growth of the Internet and multi-media applicationg include a dynamic user population. In [7], multiple simulta-
has created a fast increasing demand for data services qygus transmissions employing spread spectrum with fairness
wireless systems. Development of wireless data systems, sg6hstraints was considered and [8] presented algorithms for
as the 1xEV-DO system in [1], WIMAX etc., introducesscheduling users with average delay considerations. The works
new challenges in providing Quality of Service (QoS) over ia [9], [11]-[14] studied transmission power/rate adaptation.
wireless channel [2]. In contrast to conventional voice traffign [9], [11] the goal of the scheduling policy was to ensure
data streams are inherently bursty and can tolerate mugilieue stability, in [12] the aim was to minimize transmission
higher delays, hence, reserving resources to provide QoSpéfiver subject to average delay constraints whereas [13], [14]
inefficient. Therefore, in order to share a common resoureghnsidered explicit hard deadline constraints over point to
one needs efficient scheduling algorithms. Furthermore, padint communication. Our work in this paper differs from the
a wireless system the scheduling problem has an additioagbve by presenting a different formulation that combines the
complexity associated with time-varying communication rate3oS and the BE classes of service. We adopt a geometric
since the channel conditions are time-varying. With mu|tip|§pproach to the problem and show that the optimal policy
users in the system, the transmitter can look at the commusétisfies a special structure. The geometric analysis is valid
cation rates of the various users and opportunistically chodgsg a general fading model and hence is applicable for a wide
the “best user” to transmit to based on a required set &ét of scenarios. In the special case of Rayleigh fading we fur-
objectives. In the literature, such an approach is referred tifer obtain closed-form formulas for the various performance
as Opportunistic schedulingd], [5], [7] or exploiting Multi-  metrics. Part of the work in this paper has been presented
user diversity[10]. earlier in [3].

In this work, we utilize opportunistic scheduling to address The rest of the paper is organized as follows. In Section II,
the following downlink scenario: there is a single server thgje present the system model and the prob|em description_ In

s Section lll, we present the geometric approach to the problem
This work was supported by NSF ITR grant CCR-0325401, b

DARPA/AFOSR through the University of Ilinois grant no. F49620-02-14Nd obtain the optimal policy. The throughput results for
0325 and by NASA Space Communication Project grant number NAG3-284Rayleigh fading are presented in Section IV; simulation results
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comparing the optimal and the random scheduling policy foot have a rate requirement and are short-lived. The number
Rayleigh and Nakagami fading are presented in Section d BE users is assumed large and being short-lived it changes

and Section VI concludes the work. rapidly over time. In such a setup, the objective at the base
station is to provide the throughput rates to the QoS users with
II. SYSTEM AND PROBLEM DESCRIPTION the least time-slot utilization so that the remaining fraction of

A. System Model time-slots all'ocated for serving the BE 'class is maxmﬂzgd
The scheduling problem now is to obtain a rule that assigns

We consider the wireless downlink scenario, namely, COfime_sjots dynamically over time to meet the above objective.
munication from the base station (the transmitter) to the mob|Ie|_et there beN QoS users in the system and denote the

handsets (the receivers, also referred as users) in a tigﬁ%nnel rate vector for these userstas (
slotted system. There are multiple users in the system, eafh(
user experiencing time-varying channel condition. The channel
state of a user remains constant for a single time slot but

X;(r) = {

’I"l,...,’l“N). Let
t) denote the throughput per time-slot of usewe havé,

r;, if I(F) = (i.e. useri selected)
0, otherwise

(1)

changes over multiple time slots. We assume that the channel
stochastic process is stationary and ergodic. This assumption

does not preclude channel correlations over time and am . _
the users, thus allowing the possibility of channel states O\i.ﬂge expected throughput per time slot f.X;(r)]. Under

r.. . . o
multiple time-slots to be dependent. At the beginning of seiatlonarlty of the scheduling rule, it is easy to see that

time-slot, the transmitter knows the channel state of each u%#ﬂéfji?éﬁrj:\%;ni ﬁ:?gf'% aLTtd ':ahrEst[l)o(tz ((?e]lllicc]iutﬂfohhi ut
for that particular sldt In a time-slot, it serves at most one 9 g ghput p gnp

user with full powerP. Since the users have different channg| te) of useri. Let R (B, .., Ry) be t_he guaranteed
. o : roughput rates to the QoS users. We will assume kat
conditions the rate of communication per time slot to the users,” %, oo X
is feasibleand by feasibility we mean that there exists at least

is variable. Clearly, the transmitter can exploit this variabilit . : : ;
" Y N . e scheduling policy that achieves the throughput rates, i.e.
and select the “best user” for transmission in a time-slot bas _ ) .
X;(T)] > R;,Vi=1,.., N for some policy.

on some performance measure. The above system mo eE t I.(F) be the indicator function f lecti f USk
a TDMA system and the recently proposed 1XEV-DO data et 1;(7) be the indicator function for selection of user
system [1] and is a commonly used model in the literature for 1, if T(F) =i
=1

1(r) = { ’

the wireless downlink [4], [5], [7], [8]. herwi
0, otherwise

Let T = {r;} denote the vector of communication rates
to the users in a generic time-slot, say for example kfe ] ) ) )
time-slot. This means that if uséris chosen to be served inWith this notation we can re-writé(;(r) as X;(r) = ri/i(T).
time-slotk, the throughput for that user in that slot is simplyf "€ Optimization problem can now be formally stated as
r.. We will refer tor; as the thannel raté for useri ands as follows,
the “channel rate vectdr The transmitter has knowledge of

(2)

N
T at the beginning of slok but does not know this vector for min ZE[L‘(T)]
future slots. In thek?” time-slot, T is a particular realization =1
from the set comprising all possible channel rate vectors whose subjectto  E[r;[;(F)] > R;, i =1,..,N (3)

probability distribution depends on the stochastic model of

the channels’ states. A scheduling policy, denoteda&), The expectation above is taken over the joint distribution
is a rule that specifies which user the transmitter servesdfi the channel rate vectog, for the N QoS users. Note
time-slot £ given that the channel rate vector in that slot ighat minimizing ZﬁilE[Ii(r»)] is equivalent to maximizing

T. A stationary scheduling policydenotedl’(F), is one that 1 — Y™V E[7;(F)] which equals the fraction of time-slots
depends solely ol but does not depend on the time indexavailable for the BE users. We assume tiat > 0, i.e.
Clearly, such a policy can be represented as a map from g > 0,.., Ry > 0). If some R, = 0, we can neglect that
set of channel rate vectors to the user index; namely, 8a&h yser and the problem reduces A6— 1 dimensions. We also
mapped to a unique user index. As the underlying processgsume thaR. is away from the boundary of the set, which
are stationary, we restrict attention in this paper to stationag/ characterized later, comprising all feasible throughput rate

scheduling policies and such a restriction suffices. vectors. This assumption is solely to simplify the mathematical
exposition by avoiding the limiting conditions at the boundary
B. Problem Description and does not affect the results presented throughout the paper.

The set of users in the system are divided into two service
\We assume that among the BE users a greedy algorithm is used to share the

classes: (I) throthpm rate guaranteed (QOS) users and sqg}s that are allocated for the BE class. With a large population of BE users

“pest effort” (BE) users. As mentioned earlier, QOS USEfere is a high probability of at least one user experiencing good channel
represent session app|ications that require the base stationotwltion. Thus, maximizing the time-slot allocation is then equivalent to

- : : imizi he sum total throughput of BE users.
rovi rtain r n the downlink, wher he BEXIMizing t total throughpu .
pro de a certain data rate on the do ’ ereas, the For notational simplicity, explicit dependence of;(-) on I is not

users represent low priority data transfer applications which g@icated. Also, since the service of BE users is simply the fraction of
allocated time-slots to that class, their channel rate vector is not required
1This is a simplifying assumption that models one step channel predictitor the optimization.



IIl. OPTIMAL PoLICcY r,4
The QoS users experience different time-varying channel Z, region
conditions, hence, intuitively the optimal policy must exploit a, /
this variability giving preference to users with better channel !
conditions. This would ensure a high throughput per slot and ;
would lead to a fewer fraction of time-slots being utilized to i

provide the throughput guarantee. However, simply choosing PO a, 'r1
the best user is not sufficient since the throughput requirements -
of the QoS users and their channel statistics might be very £

different which necessitates that these parameters must also
be taken into account.

Let (2 be the set comj\erising all possible channel rate vectogs, ;. TheZ; region for N = 3, threshold vecto& = (a1, az,a3) and
T, we haveQ C R*". Let the joint probability density o —r+" Note thatZ; = {F:0<r; <a;, ¥i=1,...,N}.
function be f(¥) # so that the probability of a subsgt c Q
is given as [, f(F)dr. We assume thayf(F) is such that
subsets with zero volume @ (or individual points) have zero This implication is quite intuitive as it suggests that when the
probability, thus, excluding point mass distributions. Since ehannel rate vector of the QoS users is below some threshold
scheduling policy mapg < ) to a unique user index, we will vector (bad channel conditions), the QoS users must not be
represent a scheduling policy as a partition of the(3éhto scheduled and the slot must be used to serve the BE users.
N +1 regions denoted agy, .., Zy, Z;. In a particular time- ~ The vectora depends on the required throughput vedr
slot, if the channel rate vectdrlies within regionZ;, useri is  for the QoS users and the density functif(r). Given thatR.
selected for service whereastie Z¢, no QoS user is selecteddoes not lie on the boundary of feasible throughput rates, it
and the slot is used to serve the BE uefe problem thus follows thata is at least a positive vectdi; > 0,...,ax >
reduces to choosing these regions optimally to minimize tie¢ and the regionZ; = {f | T € Q,r; < a;Vi} is not null
objective function and satisfy the throughput rate constrairfhon-zero probability). We now proceed to obtain the structure
Jz rif(®)dE > R;, i=1,...,N. of the regionsZ;, i =1,..., N.

In the rest of the paper, the notatian— Z (ft /4 Z2)
means that there is a neighborhood aro@nthat is mapped
(is not mapped) to regiorZ and the probability of this

3

Lemma2: Consider regionsZ;, Z;, j # 4 and the corre-
sponding thresholda;, a;. Suppos& ¢ Z; and satisfies,

neighborhood is non-zero. Formaliy— Z implies that there T Ty (4)
existse > 0 such that allt € Q, ||f —T|| <e= T € Z and a;  aj

Jijg_s/j<c f(£)dE > 0; where the norni| - || is the Euclidean then under the optimal policy 4 Z;

distance norm inRY. The following two lemmas give the Proof: Appendix Il [ |

properties of the optimal,,...,Zy, Z; regions. The first
lemma deals with the regiafi; and it states that if is mapped
to Z;, all rate vectors with theé!” component larger than;
cannot be mapped t4;.

The above lemma states that if the weighted comparison of
it andj*" component of is in favour of thei’” component
(useri), it is not optimal to serve usef. The weights are
the inverse values of the corresponding components of the

Lemmal: Under the optimal policy, suppos& = threshold vectora. The above implication is intuitive as
(r1,..,rN) — Z; thent = (71, .., (7, > 1), ..,Tn) /> Zy. condition (4) means that in some sense usérRs a better
Proof: Appendix | m channel condition than user and hence serving user is

A careful observation of Lemma 1 yields a special structuBsOt optimal. Combining the above two lemmas, we obtain the

on Z; as follows. Leta; be the infimum value of the first ollowing geometric structure for the optimal policy.
component among all vectofs— Z1; i.e. a1 = infz_, z,) 71. Theorem |: (Optimal Structure) Consider a channel rate
Now, any# — Z; must be such that; < a;; otherwise vectort = (rq,...,ry), then, under the optimal policy there
Lemma 1 will be violated. As this holds for all;, an optimal exists a threshold vectd with the following structure.

policy has constantfa; } wherea; = inf(z_, 7, r; such thatif 1) § Z; if it satisfies,

r; < ai, Vi, thent € Z;. The regionZ; is shown in Figure 1.

ri<a;, Vi=1,...,N (5)

4To avoid excessive notations, depending on the context denotes both a _ . - e
random vector and a particular realization for a generic time-slot. 2) ¥ — Z;, (i=1,...,N) if it satisfies,

5To eliminate uninteresting partitions the following technical assumptions T T

» . - i J : . :

are made. The sé? can be partitioned into a finite set of components, where, - > ) Vi=1,...,N,j 7é g (6)
each component is a connected set with non-zero volume and every point of @; aj
this set is arbitrarily close to an interior point. Such an assumption removes Ty > a4 (7

the trivial point/zero volume sets. A scheduling policy is a partition as above

and each regiorZ; is a finite union of the component sets of the partition. 3)

Further, we assume that for s@t non-zero volume sub-sets that have zero .

probability have already been removed as their mapping plays no role in the / Tif(f)df =R, Vi=1,...,N (8)
optimization. Z;



r and obtaining the correspondii® that can be achieved for
T z, r/a, =ryja, the policy in (9) for that particulaa. To see why this is true
consider the following. Given ang > 0, we first construct a
policy as given in (9). Since this is a valid scheduling policy
‘ the correspondin®® with R; = E[r;I;] is feasible; hence,
7 : —_— IT must at least include all sucR. Now, conversely, pick
&~ a feasibleR in the interior ofII, then, from Theorem | we
Ros B N see that a scheduling policy can be re-mapped to have the
1 optimal geometric structure or equivalently there exists 0
for which the policy in (9) is optimal.
f For a givenR, we know from (8) that the threshold vector
a for the optimal policy is chosen such thﬁ}i r.f(T)dr =
R;, 1 = 1,..,N. This can be solved using numerous tech-
nigues of finding the positive root of a non-linear vector
equation. In practice, however, the density functjtgim) may
not be known apriori in which case the vec@rcan be ad-

Proof: Conditions 1 and 2 follow from Lemmas 1 and 2, ted | | ti . tochasti imati lqorith
Condition 3 states the obvious requirement that for optimali sted in real ime using stochastic approximation algonthms
Imilar to those outlined in [4], [5]. For a comprehensive and

the throughput constraint must be met with equality; sinc

otherwise the excess fraction of slots that lead to a through iprough treatment of stochastic approximation algorithms see
aboveR, can be assigned to the BE users ]. We now consider the special case of Rayleigh fading in

the next section and obtain explicit expressions for various
The set oft that lie on the boundaries for which there isystem metrics.

equality in (5) and (6) can be mapped to afly without

affecting optimality. It can also be observed that the set of IV. DIMENSIONING

conditions in Theorem | are exhaustive and map evefy2 to

a unique user index. Thus, givanwe have a unique partition

r/a, =ry/a,

Fig. 2.  Optimal poIiC}/V structure fotN. = 3, threshold vectora =
(a1,a2,a3) andQ = RT" . The Z; regions are top truncated pyramids.

In this section, we apply the general results obtained in the
: . . last section to a Rayleigh fading scenario. From a practical
of 2 into regionsZy, ..., Z, Zy. In Figure 2, we present aperspective while such a fading model might be restrictive,

geomet“c picture O.f these regions f0F = 3. As seen from nevertheless, from a systems viewpoint the closed form for-
the figure theZ; regions are top truncated pyramids (see, fOr{wulas obtained provide important tradeoff limits between the
example the light shadefl; region) and it can be verified that P P

in this region, (6) is satisfied allocation of resources to the Qo_S ar_ld the BE users and
' - . can be used as a first cut calculation in system design. For
Next, we pre_sent the sufﬁmency argument by proving thato?her fading distributions a similar analysis can be carried out,
schedylmg pol!cy (.)f the form as in Theorgm I minimizes thglbeit, closed form expressions may not always be possible and
objective functl_on n (3) and hence. is optimal. First, ObserVceertain guantities would need to be evaluated numerically, as
th"’.‘t a 'sched.ulm'g. policy outlined n Theorgm | can be Yone in Section V for an illustrative Nakagami fading scenario.
written in a S'mP"f'e_d way as a maximum weighted rule (with To proceed, we consider the following specializations to
ties broken arbitrarily) as follows, the earlier model. The users experience independent identi-
~ {Zf (serve BE class, if r; <a;,Vi=1,.,N cally distributeq (i:i.d) flat Rayleigh fading, hgnc¢h|2 is
I'(r) = Exponentially distributed, wherg| is the magnitude of the
channel gain/fade state. The rate per time slot of a user is
assumed proportional to the fade state (square magnitude); i.e.
r = k(|h|?P), wherek is a constant and@ is the transmission
Theorem Il: (Sufficiency) Consider the optimization prob- power. A linear power-rate relationship is a good model in
lem in (3) and letR be feasible, then policy defined in (9) various scenarios such as the low SNR regime in which
is optimal. most CDMA systems operate, ultra-wideband transmission
Proof: Appendix III. m and fixed modulation schemes and has been studied earlier in

: : _ literature [15]. Ag- i tional tgh|?, the distributi
Thus, Theorem | states that the optimal policy must saUs&e terature [15]. As- is proportional tg| e qismibution

) . o . X r is also Exponential and is given g$r) = e~"/*/u, r >
certain gondltlons which impose a weighted comparison Str%?/vhereu — E[r] is the average throughput rate of a user if it
ture on it and conversely,.Theorem . completes_the argumt?gtserved in all the time-slots. Lastly, we take the guaranteed
by stating that a policy with that structure_ is optlmal. throughput rate the same for all QoS users, namelR, —

The results presented so far for the optimal policy assum R)
that R was feasible, that is, it assumed that the optimization” "'~
problem in (3) had a solution and the throughput @teould o
be guaranteed by some scheduling policy. We now go batk Throughput Characterization
and characterize the set of all such feasible throughput ratd et v denote the fraction of time-slots allocated to the BE
vectors. LetIl denote this set; we claim that the interior olusers. We first obtain the threshold vector in termsycds
I1 is generated by considering each threshold veator 0 follows. Due to symmetry iry(¥) andR, clearly, the regions

argmax ¢& otherwise

9)
where{q;} are such thaf[r;I;] = R;,Vi=1,...,N.



Z;, i=1,.., N are identical, hence, thg;}’s for the optimal ‘ ‘ ‘ " [—— gamma=0
policy are equal and the threshold vector is givenaas- ~© gamma =027

. . —— gamma = 0.4
(a,..,a). Now, the threshold valuein terms ofy is as follows. 08 — gamma =06 |

—— gamma = 0.8 ||

Lemma3: Let~ be the fraction of time-slots allocated to

the BE users, then the threshold valuér the optimal policy 2 %6
is given by, T 05 increasing gamma
1 0.4
a=pln <171/N> (10) oal
. o 0.2 >
Proof: From Theorem |, the regiorZ; is given as o1 ]
Zy ={t : 0 <r; <a, Vi =1,...,N}. By ergodicity, T 4 6 s 10 12 = 1
the probability of this region equatsand by the i.i.d channel Number of users, N

assumptionf(¥) =[], fi(r:) = [, f(r:). Thus we get,

/ / H flri)dr; = (11)
. o Theorem Ill: Under the model assumptions stated earlier
Evaluating the integrals for the exponential distribution givegjith N QoS users in the system ande [0,1] fraction of
ari\ Y time-slots allocated to the BE users, the maximum throughput
(1 —€ ) (12)  rate R for each QoS user is given by,

Fig. 3. Plot of R/ versusN for the optimal policy for variousy values.

Re-writing the above expression gives the result in (10

R X ~1 .

Observe from (10) thay = 0 = a = 0 which agrees with ﬁ :Z ( k >(_1) X
the fact thaty = 0 (no slot for the BE users) implie&; is k=0
null and similarly,y = 1 = a — oo which agrees with the < In(1 —~/") 1 ) A\ (RHD)

- O + (I—~7™) (16)

fact thaty = 1 (all slots for the BE users) implieg; = R+" k+1 (k+1)2

Now, using the optimal structure of regidf) we can obtain
an expression for the required throughput r&tén terms of Proof: The result follows from Lemmas 3 and 4. m
the threshold value.

From (16), we see thak depends linearly on, thus as
Lemma4: Under the optimal policy, the throughput-rateexpected, for a givetV, v, the throughput guarantee is higher
guarantee,R, for a given threshold value is given by, if 12 is increased. Now, re-phrasing (16), theoretical limits for
various performance measures can be deduced as follows.

i L e—(k+1)a/p
R= Z ( k ) -1) <a+ kE+ 1) kE+1 (13) Maximum Throughput Rate By setting~y = 0, we can
k=0 obtain the maximum throughput rafe,,...(IV) for each QoS
Proof: Given a threshold vectos = (a,...,a), the USerwhen no slots are allocated for the BE users. This is given

region Z; is given as,Z; = {f :a < r; < oo, 0 < r; < 85
ri, j #1i}. As R = E[r;I;] we get,

R= // /rlfmdrlnfrjdr] (14)

J#i

N-1

N-1 1
> (%, >(1)kw> an

k=0

B . . Figure 3 is a plot ofR/u versusN for different~ values. The
where f(t) = [1; fi(ri) = I1; f(r:) by the i.i.d assumption. ;nction Romaz(N)/u is the topmost curve corresponding to
For the exponential distribution, (14) simplifies to, v = 0. AS Rumas(N) is monotonically decreasing ifV, its

0 =i/ b L\ V1 maximum value is alV = 1 and equalsR, .../ = 1. This is
R :/ 1 (1 —e ) dri (15) expected as the maximum rate achievable when all the slots
¢ are assigned to just one QoS user equals (= ).
Using the binomial expansion,(1 — e "/#)N— = ) _
N-1 (N 1)( 1)ke=kri/i, (15) can be solved to get (13) Maximum Number of QoS UsersFix a value of Ry and

R0k m . the maximum number of QoS users such that throughput
of each is at leask) is given by,

Note from (13) thatR is monotonically decreasing in,
hence there is a one to one relationship betw&eand a. Niae(Ro,y) = max (R > Ry) (18)
Stated equivalently, given a certaiivalue, there is a unique N
thresholda > 0 that achieves it. Eliminating: from (10) Obviously if the values ofRy,~ are such that there is no
and (13) we obtain a unified relationship among the systdnmteger N > 1 that achieves it, the system values in this case
quantities: (i) Throughput rat®, (ii) Fraction of time-slots, are infeasible. Figure 4 is a plot &/u versusy for various
~, allocated to the BE users (iii) Number of QoS use¥s, values of N. Infeasibility arises wher(~, Ry/u) point lies
and (iv) The average channel conditign, of the users. above theN =1 curve (in Fig. 4).



[y

——N=1
-~ N=2 Proof: Appendix V ]
0.8t —+— N=4 |
increasing X Hzi Observe that asv — 00 the throughput ratg per QoS
2 o6l | user for both the optimal and the random policy tends to
z zero. Equation (19) states th&}. decreases ak/N whereas
% 0.4k (45) in Appendix V states that by using the optimal policy
x - RePt decreases more slowly ds(N)/N. Hence, we get a
03 gain on the order ofn(V). The above logarithmic behavior

can be attributed to the exponential distribution of the rate

under Rayleigh fading and while such channel statistics are

0 02 04 06 0.8 1 simplified models, in practice one could expect gains along
Gamma these orders for moderate QoS user population.

Fig. 4. Plot of R/ versusy for values of N = 1,2,4, 8, 14.
g /n g V. SIMULATION RESULTS

) ) To validate the theoretical results derived in the earlier
Maximum Value ofy: Given R and N, the value ofy that  gections, we present simulation results obtained for two fad-
solves the equation in (16) gives the maximum fraction ofsloﬁg distributions, Rayleigh and Nakagami. The setup for the
that can be allocated to the BE users. Figure 4 with its axggnylations is as follows: we consider a time duration of 10
inverted gives a plot of, versusR/ . for different N. seconds and divide it into 10,000 slots, thus, each time-slot
. ) ) _ is of length 1 millisecond. For the sake of simplicity, the
B. Comparison with Random-scheduling Policy QoS users all experience i.i.d channel fading. We assume
To understand how much gain can be achieved, we presgnlinear relationship between the channel rate and the fade
an analytical comparison of the optimal policy with thestate (squared magnitude); ie.c |h|?. Thus, for Rayleigh
random scheduling policy. The random policy assigns a timxding the rater, at which data can be transmitted in a slot is
slot to the BE users with probability and to the QoS users Exponentially distributed with density(r) = e‘;/“’ r>0:

with probability 1 —~. Among the QoS users the slot is theRyhile for Nakagami fadingy has a Gamma distribution given
randomly assigned to one of the users with equal probabili ) =(m b pmet e~mr/h_ 1> 0. wherem is the fading
1/N. Clearly, this policy does not exploit the varying channe p) o L(m) L ;

- ; parameter [16]. The mean channel rgte,for each user is
conditions for scheduling the users. Due to the random naufar&en asy — 800 Kbits/sec for both the distributions. At
of the assignment each QoS user géts— ~)/N fraction B = '

of time-slots and since the users have statistically identic%?Ch time-slot, a random vector of channel rates for the QoS

" users is drawn from the respective distribution. Given this
channel conditions, the throughput rate of each QoS use€r, . : : .
S channel rate vector, the particular scheduling policy decides
denotedR,., is given as,

which QoS user to serve or to allocate the slot to the BE class.

(1-17) (19 In the former case, the chosen QoS user, say yseceives

N a throughput rate of; while for the others the throughput
Let us now fix a value ofy for both the optimal and rate is 0 in that slot. In the latter case, all QoS users get a 0
the random policies, i.e. under both policies,fraction of throughput in that slot.
slots are assigned to the BE class. I&#*, R, denote the  We simulate the optimal, the random, the greedy Time Di-
corresponding throughput rate provided to each QoS us@sion Multi-Access (TDMA) and an opportunistic scheduling
Then, as shown below, the gain definedr2’/R,. is on the policy studied in [10] which we refer to asOpportunistic
order of In(N). To show this result, we need the followingProportional Fair’ (OPF) policy. In case of the optimal

Rr:M

lemma. policy, the scheduling decision is taken as given in (9) where
Lemmab: For any v € (0,1), we have the following the threshold vectog is computed using the formulas in

relationshi Section IV. The random policy makes a scheduling decision

1 as described in Section IV-B. For the greedy TDMA and the

In (1 — WIV) = O(In(N)) (20)  oPF policy the scheduling decision is taken as follows. Let

T; denote the running time-average of the throughput rate
Proof: Appendix IV m for the k'* QoS user. At the beginning of each time-slot,

Theorem IV: The throughput gain of the optimal policy asconsider all QoS users for whicl, < R where R is the
compared to the random policy, defined B /R, for ~ € required throughput guarantee. In the greedy TDMA policy

0.1) satisfies the relationshi the user with the maximum channel rate is selected whereas
(0,1) satisfies the relationship, for the OPF policy the user that maximizes the meti¢ T}
Revt is selected. If for all QoS usefE, > R, the slot is allocated
= O(In(N 21 ) ="
R, On(N)) (21) to the BE class.
5 ) - _ We first numerically validate the theoretical results obtained
The following notation is followed: (if (N) = O(g(N)) means that there

exists a constantand integeNo such thatf (N) < eg(N) for N > No, (ii) in Secti0|_1 IV. We consider Rayleigh fading with 3 QoS users
F(N) = ©(g(N)) means thaif (N) = O(g(N)) andg(N) = O(f(N)) each having a throughput rate guarante&cf 200 Kbits/sec.
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Figure 5 gives a plot of the running time-average of throughpMiakagami distribution. In fact, the gain is higher now because
rate under the optimal policy. As can be seen from the plahe Gamma distribution witm = 0.6 has a larger variance
the long-term required rate is achieved very quickly in timghan the Exponential with the same mean. As a result, the
within almost a second and is maintained thereafter withinggtimal policy which opportunistically exploits rate variations
close range. Thus, within a very short time interval the requirgfives a higher gain in comparison to random assignment.
throughput rate can be provided to the QoS users. A similarWe now present simulation results that compare the per-
trend is observed when the parameter values are varied.fdrmance of the optimal, random, TDMA and OPF policies.
Figure 6, we fixy = 0.3, i.e. the BE class is assigned 30% ofVWe consider 3 QoS users with Rayleigh fading and the mean
the slots. The figure gives a plot of the simulated throughpeihannel rate of each QoS user= 800 Kbits/sec. Figure 9
gain R°’'/R, as a function of N; where R°’* R, is the plots the total fraction of slots utilized by the QoS users under
throughput rate of each QoS user under the optimal and #s&ch policy versus the throughput rate requirement of each
random policy respectively. In conformation with the resulQoS user. The quantity,l ¢ total fraction of slots used by

in (21), we see from the plot thaL grows logarithmic QoS users), is the time-slot allocation to the BE class. First,
in N. We next consider Nakagam| fadmg with the fadingis expected the random policy has the worst performance and
parametern = 0.6. In Figure 7, we fixy = 0.3 and plot the utilizes the maximum time-slots to provide the throughput rate
running time-average of the throughput rate for the optimgliarantees. Since the OPF, TDMA and optimal policy exploit
policy with 3 QoS users. For the case of Nakagami fadinthe channel variations and opportunistically schedule the users,
(11) becomes,f,* ™~ le=tdt = VNF( ) from which the the time-slot utilization is lower as compared to the random
optimal thresholda is evaluated numerically by finding thepolicy. The OPF policy performs worse than the TDMA policy
root of the above non-linear equation. The long-term rawhich is expected since the TDMA policy by being greedy has
provided to each QoS user in this caseRis= 494 Kbits/sec. @ high throughput per slot and hence utilizes fewer time-slots.
Again as before, the throughput rate is achieved very quickiynally, as expected the optimal policy uses a substantially
in time and is maintained thereafter within a close range. l@wer fraction of time-slots than all the policies.

Figure 8 we compare the throughput gain of the optimal policy

versus the random policy. As seen from the plot the optimal VI. CONCLUSION

policy achieves a substantial gain in throughput even with We addressed the issue of downlink scheduling over a wire-
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TDMA and optimal policies. PROOF OFLEMMA 1

The proof is based on a contradiction argument where we
less channel incorporating the QoS and best effort serviceegin by supposing that for the optimal policy there i a
We considered a set df rate guaranteed users and obtained, with #; > r;. By re-mapping the regions we will show that
the optimal policy that serves these users with the least tinthe objective function in (3) decreases, thus, contradicting the
slot utilization, thereby, maximizing the time-slot allocation t@ptimality claim and proving 4 Z;.
the BE users. Equivalently, the optimal policy also solves the \We are given that — Z;, hence, there is a neighborhood of
problem of maximizing the rate guarantee for the QoS usarswhich we denote as;, that is mapped t&;, i.e. S € Z;
given that a certain fraction of time-slots must be allocateshd 5, = {x | * € Q,||x — 7| < §,} for somes; > 0.
to the BE users. We presented a geometric visualization Rfirther, by assumptiof — Z;, there is a neighborhood &f
the optimal policy and under Rayleigh fading we derivegdiven as,S; = {X | X € Q, || — || < d2} for somed, > 0,
analytical expressions quantifying the various system metriggich thatS, € Z;.
Analytical comparison with the random-scheduling policy Now re-map the regions as follows. Mafy = Z and
showed that throughput gains on the orderhofN) can be g, = Z, To ensure the new mapping is feasible we must
achieved by exploiting multi-user diversity. Finally simulatiorsatisfy the QoS rate constraint for usewhich entails the
results show substantial gains achieved by the optimal pOliﬁ)ﬂo\Ning equality.
as compared to other well-known policies in the literature.

[5 (R = [ st (22)
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X; Xp=Xp X; 7 Now re-map these regions as follows. Mép=- 7;, S, =
8 & Zy andS3 = Z; as shown in Figure 10(b). To ensure the new
- cez s s..»7  Mapping is feasible we must satisfy the QoS rate constraints
1% 4 1 ' for useri and userj, which entails the following equalities.
Sze Zp @“/ S3>7. @“/
a a r f(X)dx = z; f(X)dx (26)
5" =3 I, J,
g hszs z; LS g
a; X a; Xj /33 xjf(X)dx a ~/Sl xjf(X)dX (27)
Fig. (a): Original mapping Fig. (b): New mapping Equation (26) matches the throughput lost for usaue to the

re-map ofSy, = Z; and the throughput gained iy = Z;,
while (27) gives a similar equality for user. To see why
a set of {0, }3_, exist that solve the above equations, note
that the integral over any regiafi, is a continuous, positive
function of ¢, decreasing (or non-increasing) @sdecreases
and tends to zero a% | 0. Hence, starting with the largest
AJ = — | fR)dR+ f(R)d= 01 (that satisfies the5; definition), decrease it until &, is

S S obtained that solves (26). By the non-nullity 6f,.5; and

Fig. 10. Figure showing the mappings for the proof of Lemma 2.

Sy (added fromZ; to Z;) minus the probability of regioiy;
(removed fromZ;). Thus,

_ (ﬁ- +e 1) f(%)dz (24) the above property of the integrals such a solutipnj, > 0
r+ € S, exists. Similarly obtain a;, d3 that solves (27). Finally, taking
. . o 61 as the minimum of the two solutions, re-obtain d3 such
Letc = 7; —r;, then,c > 0 (since by assumption; > 7i). 4t hoth (26) and (27) are satisfied. Now, viewifigd; as
Using the First Mean Value theorem, we also haye- 0 as functions of 41, it's clear that if a solution exists for some
9k — 0. Thus, for anyc we can scalé, to be small enough 69, then, for all§; < 69 a solution exists by the continuity
such that(:j—z - 12 > 0. Further, since the integral in (24)and decreasing property of the integrals. We now proceed by
is the probability ofS; which is strictly positive (regions with choosings; < 59.
zero probability are uninteresting and have been removed fronUsing the First Mean Value theorem, [18], we can re-write
), we finally get,A.J < 0. This completes the contradictionthe above integrals as,
argument.
(ai + 62) f()_{)d)_{ = (’I"i + 61) f()_{)d)_{ (28)
Sa S1
APPENDIXII
PROOF OFLEMMA 2 (a; + €3) g f®)dx = (rj+e) g f(x)dx (29)
The proof is based on a contradiction argument. To begin ’ '

A . L where the{e;, } above depend on th@ } or equivalently onj,
?n;iiﬁhitzf and suppose that for the optimal poligy;— (asd-, 03 depend ord; through (26) and (27)). Next, looking
] L

at the objective function in (3), the change in its value due to
(25)  the re-map equals the probability of regi®j (added from

Zy to Z;) minus the probability of regiot$, (removed from
We now give a re-mapping of the regions such that the objeg;). Thus,

tive function in (3) decreases or equivalently the probability
of Z; region increases, thus, proving that the earlier mapping A = — f®)dx +/ f(x)dx
cannot be optimal. /52 Ss

As the lemma involves only th&" andj** component, we
will focus only on these components. L&t € Q denote a
generic rate vector. Since by assumptior- Z;, there is a Let ¢ — i

X X PLET R L. — 71 then, from (25) we have > 0. From the
neighborhood aroundi given asSy = {X | X € O, |[X —T|| < gt Mean Value theorem we also hawe — 0 as sy, — 0.
61} for somed; > 0, such thatS;

optimal policy satisfies Lemma 1 (ifs %/féla,\:i)xr:, vjtlnr:flcei rt’::k Jhus, for any giver; we can scalé, to be small enough such
P policy hat (Ziter — Zites) ~ o Further, since the integral in (30)

the policy non-optimal to start with) we know thaj is the aitez  ajtes Lo ) C )
infimum value of thei’” component among — Z;. Thus, is the probab|I|.ty ofS; which is strictly positive, we finally
there exists a poinin with m; = a; and a region aroungh, getAJ < 0. This completes the proof.

denotedS,, that maps taZ;; i.e. Sy € Z; and S, = {X | X €

0,0 < (x; —m;) < 6o} for somed, > 0. Finally, sinceR APPENDIXIII

does not lie on the boundary of feasible throughput vectors the PROOF OFTHEOREMI|

regionZ; is not null. Hence, there exisis with n; = a; > 0 We will prove optimality of policy I', defined in (9),
and a region around, denotedSs, that maps taZy; namely, by showing that for any other feasible polidy we have

Sz € Z;andS; = {X | X € 0,0 < (nj —x;) < d3} forsome SN E[I] < YN E[l;] where I,(¥) and I;(F) are the

03 > 0. The regionsSy, S», S3 are depicted in Figure 10(a). indicator functions for the respective policies. We know that

T T4
LA
a; Qj

B (’I"i“v‘fl _ Tj+64> f(}_()d)_( (30)
S1

(11'4*62 aj+€3
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policy I satisfies the throughput rate constraints with equalitfhe inequality above follows, sincey < 1 =
i.e. E[ril;] = R;. If T does not, it is trivial to prove that (1+71/N + ...+ yWND/N) < N thus we getln(1/(1 —
I' cannot be optimal. Now, suppodealso satisfies the ratey~)) = O(In(N)). To prove the reverse relationship, i.e.

constraints with equality, i.e[r; I;] = R;, then, the objective In(N) = O(In(1/(1 — v¥))), proceed as follows. Using the
function for pollcyF can be re-written as, standard inequalityn(N) <1+ 1 +... 4+ =, we get,
al N1 gl g
— : In(N) <y+5+...+
ZE ZE -3 p (E[rid;] — Ry) 3y lN) <7v+5 N1
= 1/N ’YQ/N AN ;
where{a;} is the threshold vector for policy. Note that the <7+ 5ttty (sinced <y <1)
second term in (31) is zero. Re-arranging (31) we get, 1
In (1 ) (38)
~ ~ — ’yN
E[L]) = 1—-— + — 32 ) ) .
Z ; ( ) Z (32) where the last inequality above follows by truncating the
power series expansion of In(1 — v~ ). Thus, In(N) <
For any vectorr we have the following two cases. Lin(1/(1 —~%)) which givesn(N) = O(In(1/(1 — ).

Case 1 Suppose; < a;, Vi, then, policyl” does not choose 7 1
any QoS user (Equation (9)) add=0,Vi = 1,..., N. Now,
sincer; < a;, we have(l — ;—) > 0,Vi. This implies that
whetherT’ chooses or does not choose a QoS user we have

APPENDIXV
PROOF OFTHEOREM IV

the following inequality, Starting with (16) we can write it as,
N . N _ N-1 _ V(1 A (D)
Z(l—)] 0= Z(l—”)[i @3 I _ ln( 11>Z<N 1)(1) (L=y¥)
e a; P a; 1 1—yv ) &= k k+1
s , T /N =1\ (1 — vkt
Case 2 Supposer; > a; for some index:. Let j be the + Z ( ) (1—~ (39)
chosen user for policy, then, from (9) we see that /a; has =0 k (k+1)?
the maximum value. Th < Li) Vi and also . . . .
ximum vald ugl — ) s (- ) vi Consider the first term in (39) above; it can be evaluated as
(1- ) < 0. Again |rrespect|ve ‘of whaf chooses follows. Leta = (1 — %), then, sincey € (0,1) we have
N ‘ N , S (0, 1).
1-2)L>(1--2) = 1-=)1 34 _ _
;( al> ( aj> ;( ai> (34) NE:I N -1 ( 1)ka(’f+1)_1vz:l N -1 /”‘( Jrd
k E+1 ko)), T
From (32), (33) and (34) we get, k=0 k=0
N N N N (a)/a N—1
~ T R; = (1—z)" 'de (40)
> -2 == ;
ZE[L] E Z (1 ai)IZ +Z ” ZE[L] 0 .
=1 =1 =1 =1 _1—(1—0[) - 1—’)/ (41)
where the last equality follows from (31) replacidgwith I;. N N
This completes the proof. Equality (a) above follows by interchanging the summation
and the integral and using the Bi(nor)nial expansion. Thus,
@ k+1
APPENDIXIV we get, In (1) 370 (M) (-1 g = n(3)
PROOF OFLEMMA 5 Now, consider the second term in (39) and proceed as fol-
To prove the lemma we need to show the following th)VYVS 1':”3'[ since (4(1]}+)l)holds for ath, we get the identity,
relationships,In(1/(1 — y%)) = O(In(N)) and In(N) = Y55 (V) (- = “N“’) Dividing both sides

O(In(1/(1—y7))). We begin by proving the first relationship.by z and integrating fron to «, gives,
Sincey € (0,1) and N > 1 is a positive integer, we have

O[N 1 k [eY N
0 < v~ < 1. Taking a power series expansion pf—X / ( )(-Uk & :/ <M> dx
K ' gap P 1-y N 0 E+1 Jo Nz
we get,

N 1
1k k+1 [e% 1_(1_$>N
1 AR 1-(1—2)"
1n<1 1):1n(1+71/N+...+7<N—1)/N = Z( ) k1 1) /O ( Nz )dx
e

k=0
+7(1+71/N+...)+72(...)) (35) g/ dz=a=(1—~¥) (42)
0
L4 AN 4 4 WN-D/N The inequality above follows by noting that=U=2" s
=In 1—~ (36) positive, monotonically non-increasing over € [0, 1], for

IN

N fixed N > 1, and has a maximum value equalt@at x = 0.
In <>
k

. _ _ . . _ 1\ _qF gkt
= In(N) —In(1 —~) (37)  Equation (42) further glves%( A 1)%) <



21— %) ]“—m> =200 (which is finite for0 < v < 1)

and sincel_l,y(l —~7~) is monotonically increasing itV with

a finite limiting value, it is bounded for alNV. Thus, we get,

N Jf N — 1\ —1Faf+! < In(1/7) (43)
k (k+1)2 ] = 1—¥

17y k=0

Now, using the above simplifications we can re-write (39) as,

N-1 ko k+1
R_1-n 111(1)+NZ <N—1>—1 o
7 N o} 1—9 = k (k+1)2
(44)
For v € (0,1), the first term within brackets above, grows
asln(1) = ©(In(XV)) (using Lemma 5) whereas the second
term is bounded (from (43)). Hence, for largg R°P' can be
expressed as,
RoPt 1 —+
u N

From (19) and (45) we get the result in (21),

O(In(N)) (45)
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