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Optimum Power Selection Algorithms in Aloha
Networks: Random and Deterministic Approaches

Behrouz Khoshnevis and Babak H. Khalaj

Abstract— In this paper, we discuss the optimum random
and deterministic power selection algorithms in Aloha networks,
where nodes run Exponential Backoff (EB) for contention res-
olution. In random case, the transmission power of a packet is
selected from the available power levels, based on a predeter-
mined probability mass function, while with the deterministic
algorithms the transmission power of a packet is a deterministic
function of the number of collisions the packet has experienced.
Most of the related works in the literature have not addressed
the power-throughput characteristics of the power selection
algorithms for use in practical system designs and, therefore,
this subject has been the major motivation of this paper. For the
random case, we will derive optimum random power selection
algorithms for unconstrained and constrained power budget
scenarios and the corresponding optimum power-throughput
characteristics will be presented for the latter case based on
perfectcapture model. Next, we will introduce a method to extend
these results toSIR-basedcapture model, which will result in sub-
optimum power steps and the sub-optimum power-throughput
characteristics for the random case. This characteristic will reveal
power budget requirements for the target throughput values.

In the next step, deterministic power selection algorithms will
be introduced and discussed with unconstrained and constrained
power budget scenarios and sub-optimum power-throughput
characteristic will be derived based on theperfectmodel. Similar
methods, introduced for the random case, may be used to adapt
the results to SIR-basedmodel. Finally, by comparing the pre-
sented power-throughput characteristics, it will be demonstrated
that optimum random and sub-optimum deterministic power se-
lection algorithms have very similar behaviors. Therefore, noting
that deterministic algorithms do not require any random power
generator block, they may be preferred to random algorithms in
similar scenarios.

Index Terms— Aloha, Exponential Backoff, throughput, power
budget, capture effect.

I. I NTRODUCTION

I T is well established that throughput of Aloha networks
can be improved by using multiple power levels at trans-

mitters, which is known as the power differentiation technique.
Consider a network of nodes which are trying to send their
packets to a common destination. With multiple power levels
at transmitters, there is a chance that a packet with high
enough transmission power will capture the channel, even if
it has experienced collision with some other simultaneously
transmitted packets. This phenomenon, known as “capture
effect”, has been studied based on two major models. The
perfect model assumes that among colliding packets, one
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with the maximum power will capture the channel. This
assumption, although unrealistic, simplifies the analysis. With
the SIR-based model, a packet may capture the channel if
its transmission power is at leastSIRmin times greater than
the interference caused by other simultaneously transmitted
packets.SIRmin, also known as capture ratio, is the minimum
signal-to-interference ratio required for a valid reception at the
central receiver and its value depends on the modulation and
coding schemes used.

Throughput improvement algorithms which exploit capture
effect have been widely studied in the literature. In [1],
nodes have been partitioned into disjoint sets, where the
nodes of each set transmit their packets with a predetermined
power level. Although the overall throughput of the network
will increase with such scheme, the algorithm acts more in
favor of nodes with larger powers. This shortcoming has
motivated the study of random power selection algorithms,
in which, nodes select their transmission powers based on a
power probability mass function (PMF). In [2], the author has
assumed uniform PMF for power selection and the throughput-
delay characteristic of network has been studied based on a
specific capture model with the assumption of linearly equi-
spaced power levels. The authors of [3] have done a com-
prehensive work in formulating the throughput optimization
problem both withperfectand SIR-basedcapture models, in
order to derive optimum PMFs and power levels. One of the
major conclusions of their work is that linearly equi-spaced
power levels are too far from optimum power levels and
logarithmically equi-spaced power levels can be considered
as sub-optimum solution to their optimization problem. In
[4], the power budget has been taken into account in the
optimization problem where the author has optimized the
power selection PMF according to a power budget constraint.
A search method has been presented to derive optimum power
levels and PMFs, however, this work lacks presentation of a
general power-throughput characteristic, which has been one
of the major motivations of our paper. Below, we list some
common features of the aforementioned works and describe
how our approach is related to them.

i) The aforementioned works have not considered power
selection algorithms with any specific retransmission scheme
and their results are specifically dependent on the number of
nodes in the network or the offered load, both of which are
typically unknown variables in Aloha networks. Our approach,
on the other hand, has been based on an exponential backoff
retransmission scheme model. With the presented modeling
and also by assuming infinite number of nodes, our analysis
becomes independent of the offered load and the number of
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nodes. As it will be shown, the analysis results will also
be applicable to networks with large enough finite number
of nodes. Moreover, the assumption of a backoff algorithm
which counts the number of collisions, enables us to introduce
deterministic power selection algorithms, which have not been
mentioned in earlier literature. Using these algorithms, the
transmission power of a packet will be a deterministic function
of the number of collisions and, therefore, there will be no
need for a random power generator block.

ii) Although the average power (per successfully transmit-
ted packet) is clearly the main constraint of power differen-
tiation techniques, these works have not provided a general
power-throughput characteristic to be used in the design pro-
cess. We address this problem as we consider random and
deterministic power selection algorithms for the constrained
power budget scenarios. The output of this analysis will be
the optimum random and sub-optimum deterministic power-
throughput characteristic, which will be derived based on
perfectcapture model.

iii) Because of the high complexity ofSIR-basedmodel,
earlier results are mainly based on numerical methods and
analytical approaches are only provided for theperfectmodel
scenarios. Our approach toward the problem has been mainly
analytical and in spite of usingperfectmodel for our calcula-
tions, we will introduce an approximate method to adapt the
perfectmodel results toSIR-basedcapture model. The output
of this approximation for the random case will be sub-optimum
power-throughput characteristic and sub-optimum power steps,
number of power levels, PMFs and backoff factors for the
given power budget constraints. The presented approach can
also be used for deterministic algorithms in order to adapt
the presentedperfectmodel results toSIR-basedmodel. The
accuracy of the approximate analysis will be verified through
simulation results.

It should be mentioned that, in addition to the aforemen-
tioned works, some recent works have been done on power
differentiation techniques, which will not be discussed here in
order to preserve the coherence of earlier references. Interested
readers are referred to [5]-[11] and the references therein.

Before describing the organization of the paper, we will
list the major assumptions of our analysis. The following
assumptions have been made for ease of analysis and are
globally accepted in this paper, unless explicitly mentioned.
• Infinite number of nodes send their packets to a common

destination through a slotted channel and every node gets
informed of its packet’s status (success or collision) at
the end of the transmission slot, using some implicit
acknowledging method. The nodes exploit exponential
backoff retransmission scheme for contention resolution.

• Saturation condition has been assumed, where the packet
queues of the nodes never get empty. The saturation
model of exponential backoff will be used for our anal-
ysis.

• Path-loss and fading characteristics of the radio chan-
nel have been ignored. Therefore, only the transmission
power of the packets have been considered in the analysis
of capture effect. In fact, this assumption may be replaced
by a weaker one; the nodes have almost equal distances

from the central receiver and the path-loss characteristics
are the same for all transmission pairs.

The outline of the paper is as follows. First, we will discuss
the random algorithms. In section II, the Exponential Backoff
(EB) model with random power selection algorithms will be
discussed and the basic relations will be presented. In section
III, we will derive Optimum Random power Selection Algo-
rithms (ORPSAs) for the unconstrained budget scenario. The
constrained power budget scenario,perfect model optimum
power-throughput characteristics and the adaptation of the
results to theSIR-basedmodel will be discussed in IV.

Next, we will go on to the deterministic algorithms. Section
V will present EB model with deterministic power selection
algorithms and the basic relations for this scenario will be
derived. In section VI, unconstrained power budget scenario
will be discussed and it will be shown that the throughput of
ORPSA can be considered as an upper bound for the through-
put of Optimum Deterministic Power Selection Algorithm
(ODPSA). Subsequently, we will introduce a search method
for ODPSA, based on which, sub-optimum algorithms (sub-
ODPSAs) will be presented. The power-constrained scenario
will be discussed in section IV and the correspondingperfect
model sub-optimum power-throughput characteristic will be
derived and it will be shown to be very close to the ORPSA
characteristic.

II. M ODELING OF EXPONENTIAL BACKOFF WITH

RANDOM POWER SELECTION ALGORITHMS

The saturation condition, in which the nodes have always
some packets pending transmission, has been discussed in
[12]. We have adopted a simple modeling of EB under
saturation condition, presented in [13], in order to describe
the random power selection scenario. With this model, a node
in staten ≥ 0, transmits its packet with randomly chosen
power and faces collision with probability ofpc, which leads
it to staten+1, otherwise the node goes back to state0 (Fig.
1). The contention window size at staten is Wn = W0r

n,
whereW0 is the initial contention window size andr is the
backoff factor. The transmission power is selected from the
set ofL available power levels,{P0, P1, ..., PL−1}, according
to the PMF,ζ = {ζ0, ζ1, ..., ζL−1}. Note that,Pi+1 > Pi,
for 0 ≤ i < L − 1. Also, ζi > 0, for 0 ≤ i ≤ L − 1, and∑L−1

i=0 ζi = 1.
The following theorem summarizes the basic relations we

will use in analysis of random power selection algorithms. It
should be noted that theperfectcapture model has been used
for calculating the probability of collision.

Theorem 1:Consider a network ofN nodes which use
the EB model of Fig. 1 for contention resolution and power
selection. By definingpt, pc, psucc and Pav as the average
probability of transmission, collision1, successful transmis-
sion2 and average required power for a successful transmis-

1Hereafter, by “collision”, the case of simultaneous transmissions is meant,
where none of the packets has been able to capture the channel.

2We will use the term “throughput” for the average probability of successful
transmission, since it represents the amount of channel utilization.
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Fig. 1. EB model with random power selection algorithm. Since the same
random algorithm selects the transmission power in all states, the probability
of collision will in average be independent of the number of collisions.

sion, respectively, we will have:

pt =
2 (1− rpc)

W0 (1− pc) + 1− rpc
(1)

1− pc =
L−1∑

i=0

ζi


1− pt

L−1∑

j=i

ζj




N−1

(2)

psucc = Npt (1− pc) (3)

Pav =
L−1∑

i=0

ζiPi/(1− pc) (4)

Proof:
(1) has been proven in [13].
Based on the assumption ofperfect model, a packet with

powerPi will capture the channel iff no other packet has been
transmitted with power level equal to or greater thanPi. This
proves (2).

psucc is the probability that a node out ofN nodes makes
a transmission and does not face collision. This proves (3).

A sample power required for a successful transmission
can be expressed asP =

∑∞
i=0 pc

i (1− pc)
∑i

j=0 P
(j)
i ,where

P
(j)
i , 0≤j≤i, are consecutive i.i.d. power levels used for

retransmitting a packet until a successful transmission occurs
at theith transmission. DefiningPav asE{P} and noting that
E{P (j)

i } =
∑L−1

k=0 ζkPk, the proof of (4) will be complete. It
should be noted that, our system model considers the average
condition, where the average probability of collision has been
assumed to be independent of transmission powers,P

(j)
i . In

fact, both the number of retransmissionsi, and probabilities
of collision depend onP (j)

i . Considering this dependence,
calculation ofPav will be a little bit more complex, however,
after some manipulations, similar to the approach presented in
[4], the final result will be the same as (4).

For the case of infinite number of nodes, which is the main
focus of this paper, we will have:

lim
N→∞

pt = 0. (5)

In order to prove (5), suppose thatlimN→∞ pt > 0, then from
(2), we will havepc = 1, asN tends to infinity, which is a
contradiction. Also, by combining (5) and (1),

lim
N→∞

pc = 1/r. (6)

Statements similar to (5) and (6) have also been reported in
[13]. Considering (2), (3) and (6), we will have the following
equation for the case of infinite number of nodes3:

psucc = Npt (1− 1/r) =
L−1∑

i=0

Nptζie
−Npt

PL−1
j=i ζj . (7)

Based on the presented system model and relations, we will
go through the optimization problem in sections III and IV.

III. ORPSA WITH UNCONSTRAINEDPOWER BUDGET

In this section, we will discuss the optimization problem
without considering any limit on the average power. We will
derive ORPSA both for fixed and variable backoff factors.

A. Fixed Backoff Factor

Our purpose is to find the optimum values of elements
of ζ, such thatpsucc = Npt (1− 1/r) is maximized, while
following conditions hold:

L−1∑

i=0

ζi = 1,

L−1∑

i=0

ζie
−Npt

PL−1
j=i ζj = 1− 1/r.

By definingβi = Npt

∑L−1
j=i ζj for 0 ≤ i ≤ L−1, β−1 = ∞,

βL = 0 and noting thatr is fixed, the problem can be rephrased
as maximizingβ0 = Npt, while satisfying the following
condition:

L−1∑

i=0

(βi − βi+1) e−βi = β0 (1− 1/r) . (8)

By differentiating with respect toβ1, β2, ..., βL−1 we will
have:

βi+1 − βi = eβi−βi−1 − 1, (9)

for 1 ≤ i ≤ L − 1. Substituting (9) in (8), we will arrive at
the following system of equations fori = 1, 2, ..., L− 1:

β0 (1− 1/r) + (1− β0 + β1) e−β0 − e−βL−1 = 0, (10)

βi+1 − βi = eβi−βi−1 − 1.

By solving these equations,βi can be calculated, based
on which the optimumζ can be expressed as,ζi =
(βi − βi+1) /β0. It can be shown by induction that,βi > βi+1,
for 0 ≤ i ≤ L− 1, which ensures thatζi > 0.

In order to prove the inefficiency of using fixed backoff
factors with ORPSAs, we will calculate the throughput of
the derived ORPSA with infinite number of power levels. By
defining the sequence of functions,g1 (x) = x andgk+1 (x) =
1−e−gk(x) for k ≥ 0, it should be obvious from (9) that,βk−
βk+1 = gk+1 (β0 − β1) for k = 0, 1, ..., L− 1. Consequently,

3Noting that most of the equations of this paper are related to the “infinite
nodes” scenario, thelimN→∞ symbol will be omitted for convenience.
Consideration of “finite nodes” case will be explicitly mentioned.
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we will have β0 =
∑L

k=1 gk (β0 − β1), therefore noting that
β0 = Npt, throughput can be expressed as:

lim
L→∞

psucc = lim
L→∞

β0 (1− 1/r)

= (1− 1/r)
∞∑

k=1

gk (x) |x= lim
L→∞

(β0−β1).

However, it can be shown that
∑∞

k=1 gk (x) diverges for
any x > 0. Therefore, for a meaningful value ofpsucc,
limL→∞ (β0 − β1) needs to be zero. Also, the last term of
the above summation needs to tend to zero asL tends to
infinity, therefore,limL→∞ βL−1 = limL→∞ gL (β0 − β1) =
0. Combining these with (10), we will have,

lim
L→∞

β0 (1− 1/r) + e
− lim

L→∞
β0 − 1 = 0

or,
lim

L→∞
psucc + e

− lim
L→∞

psucc/(1−1/r) − 1 = 0. (11)

It is obvious from (11) that, for anyr > 1, limL→∞ psucc < 1.
This observation proves the inefficiency of fixed backoff factor
scenario and encourages the use of backoff factors which
depend on the number of power levels. We will discuss this
problem in the next subsection.

B. Variable Backoff Factor

In this subsection, we will derive ORPSA with EB retrans-
mission scheme, for which the backoff factor depends on the
number of power levels. The problem is to find the optimum
ζ, such thatpsucc is maximized, while

∑L−1
i=0 ζi = 1. Using

the definition ofβ = {β−1, β0, ..., βL−1, βL} in the previous
subsection, the problem is to find the optimumβ, such that
psucc is maximized4:

psucc =
L−1∑

i=0

(βi − βi+1) e−βi . (12)

By differentiating with respect toβi for 0 ≤ i ≤ L − 1, we
will have:

βi+1 − βi = eβi−βi−1 − 1. (13)

Substituting this in (12), we will have,psucc = e−βL−1 .
Equation (13), can be easily solved and the final solution to
the problem can be expressed as follows. Define the sequence
{di}∞i=0, such thatd0 = 1 and dk = 1 − e−dk−1 for k > 0.
The optimum values ofζ, psucc andr can be expressed as:

ζi =
di∑L−1

j=0 dj

,

psucc = e−dL−1 ,

ropt =

(
1− psucc∑L−1

j=0 dj

)−1

.

It is easy to show that,limi→∞ di = 0. Therefore,
limL→∞ psucc = 1.

Fig. 2 shows optimum throughput and backoff factor for
different number of power levels. It should be noted that the

4Note that,β−1 andβL are fixed.
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Fig. 2. Optimum throughput and optimum backoff factor for different number
of power levels.

optimum values of throughput derived here are exactly the
same as the optimum throughput values of [1]. This can be
justified as follows. In [1], the author has assumed a Poisson
model for network load, which is distributed overL possible
transmission powers according to a predetermined scheme. In
fact, the traffic of the EB model becomes a Poisson random
variable with the average value ofNpt, when the number of
nodes tends to infinity. When we letr to be variable, we are
solving the same problem of [1], which is to find the optimum
scheme of distributing traffic over available power levels.

C. ORPSA Dependence on the Number of Nodes

As mentioned earlier, we have mainly focused on the
optimization problem for the case of infinite number of nodes,
where we do not have any information of the number of nodes
present in the network. In this subsection, we will solve the
problem for a given number of nodesN , and will compare
the throughput values of this locally optimized algorithm
with the throughput of the ORPSA derived in the previous
subsection. Due to the inefficiency of fixed backoff factor,
only variable backoff factors will be considered hereafter. By
defining β′i = pt

∑L−1
j=i ζj , β′−1 = 1 and β′L = 0, from (2)

and (3),psucc can be expressed as:

psucc = N

L−1∑

i=0

(
β′i − β′i+1

)
(1− β′i)

N−1
. (14)

By differentiating with respect toβ′i, for 0 ≤ i ≤ L − 1, we
will have:

β′i − β′i+1 =
1− β′i
N − 1

(
1−

(
1− β′i−1

1− β′i

)N−1
)

,

for 0 ≤ i ≤ L − 1. After solving the above equations, the
optimum throughput can be calculated from (14) and optimum
PMF can be expressed asζi =

(
β′i − β′i+1

)
/β′0. Also, noting

that pt = β′0, it is obvious from (1) and (3) that:

psucc =
Nβ′0 (r − 1)

r −W0β′0/ (2− β′0)
,
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Fig. 3. Comparison of the performance of the optimized algorithm for
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optimized for infinite number of nodes.

from which, the amount of optimum backoff factor,ropt can be
calculated. Fig. 3 compares the throughput values, for the case
of optimized PMF and backoff factor for a specific value of
N , with the case where the PMF and backoff factor optimized
for infinite N are used. As it is shown in Fig. 3, for large
enough number of nodes, the ORPSA optimized for infiniteN
leads to very similar results obtained by the locally optimized
algorithm.

IV. ORPSAWITH CONSTRAINED POWER BUDGET

In this section, we will study the problem of ORPSA with
limited average power. First, we will derive the optimum
power-throughput characteristic based on the assumption of
perfectcapture model and make a comparison with the power-
throughput characteristic of a random power selection algo-
rithm which uses uniform PMF for power selection. Then, we
will introduce an approximate method to conform theperfect
model results toSIR-basedmodel.

We will consider a set of logarithmically equi-spaced power
levels,

{
1, R, R2, ..., RL−1

}
, whereR is the power step. The

reasons for choosing such power set are as follows:

• The goal is to study the effect of increasing the number
of power levels in the power-throughput characteristic.
Therefore, we need the power levels to be clearly dis-
cernible from the view of capture capability. This feature
does not take place when the power levels are linearly
equi-spaced.

• It has been shown that linearly equi-spaced power levels
are too far from optimum power levels, while logarith-
mically equi-spaced power levels can be considered as
sub-optimum solutions to the problem of optimum power
levels with the model described in [3].

• Logarithmically equi-spaced power levels have been con-
sidered for practical system designs. For example, in ini-
tialization phase of 802.16 systems [14], the transmission

power of RNG-REQ packet is increased in an exponential
manner until an ACK is received.5

A. Optimum Power-Throughput Characteristic

In this subsection, we will present the power-throughput
characteristic of ORPSA with limited average power. For
probability of collision, we will use (2) which has formulated
the probability of collision withperfectmodel. By adopting
the definition ofβ from III.A and by combining (3), (4) and
(7), we will have:

psucc =
L−1∑

i=0

(βi − βi+1) e−βi , (15)

Pavpsucc =
L−1∑

i=0

(βi − βi+1)Ri.

Based on these equations, our purpose is maximizingpsucc

for a fixed value ofPav, which is equivalent to maximizing
(16), while (17) holds:

L−1∑

i=0

(βi − βi+1)Ri, (16)

L−1∑

i=0

(βi − βi+1) e−βi =
L−1∑

i=0

(βi − βi+1)Ri/Pav. (17)

By adopting Lagrange’s method:

∇{
L−1∑

i=0

(βi − βi+1) e−βi −
L−1∑

i=0

(βi − βi+1)Ri/Pav}

∝ ∇{
L−1∑

i=0

(βi − βi+1)Ri},

and after some manipulations, we will get to the following
system of equations:

βi+1 = eβi−βi−1 + λRieβi + βi − 1, 0≤i≤L− 1
L−1∑

i=0

(βi − βi+1)Ri/Pav = e−βL−1 − λ
(
RL−1

)

R−1
.

After solving the above equation forλ andβ (note thatβ−1 =
∞ andβL = 0), throughput can be calculated from (15). Also,
the optimumζ can be expressed as,ζi = (βi − βi+1) /β0, and
optimum backoff factor will be,ropt = 1/ (1− psucc/β0).

Fig. 4 shows the power-throughput characteristic for2 ≤
L ≤ 6, with R = 10. It should be noted that the power-
throughput characteristic is defined as a function of power
budget instead ofPav and the maximum achievable throughput
with the average power lower than a determined power budget
has been considered as the performance criteria. Also, it should
be clear from the optimization process that, the value of
power step (R) has a direct effect on the power-throughput
characteristic. We will get back to this issue in IV.B.

5Although the power step has been left as a design parameter in IEEE
802.16 standard, such power increasing capability has mainly been consid-
ered to serve as a ranging mechanism rather than throughput improvement
algorithm which may exploit the “capture effect”.
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Fig. 4. Optimum power-throughput characteristic and comparison with
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As it is evident from Fig. 4, the main disadvantage of
ORPSA is its high power cost for throughput improvement.
This cost increases with the number of power levels. For
example, forL = 2 throughput improvement is about0.023
per 1db increase in power budget while it is only0.003 for
L = 6. Therefore, ORPSAs are only appealing with small
number of power levels.

In order to show how ORPSA performs in comparison with
other random power selection algorithms, we will derive the
power-throughput characteristic of a power selection algorithm
which uses uniform PMF for power selection. From (2),(3),(4)
and (6), and by consideringζi = 1/L, we will have:

Pavpsucc =
Npt

(
RL − 1

)

L (R− 1)
,

Pav =

(
RL − 1

) (
eNpt/L − 1

)

(R− 1) (1− e−Npt)
.

For a fixedPav, psucc can be calculated from the above equa-
tions. The power-throughput characteristic of this algorithm
has also been shown in Fig. 4. As can be verified in this
figure, the required power budget can be significantly reduced
by use of the optimum algorithm.

B. SIR-based Capture Model

The optimization process presented in IV.A is based on
perfectcapture model. The reason is that the formulation of
probability of collision withSIR-basedmodel is too complex
to be considered in an analytical optimization problem (see
[4]). On the other hand, theperfectcapture model seems too
simplistic to be considered for practical system designs and
by considering such capture model, our optimization problem
in IV.A has been completely independent of the capture ratio.

In order to highlight the drawbacks of the earlier results,
the power-throughput characteristic of ORPSA, introduced in
IV.A, has been shown for three distinct power steps in Fig. 5.
As can be observed, for a fixed power budget, as the power
steps gets smaller, the number of power levels increases and

5 10 15 20 25 30
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Power budget (db)

T
hr

ou
gh

pu
t

R = 10 db
R = 6 db
R = 4 db

L=2

L=3

L=4

L=5

L=6

L=7

Fig. 5. ORPSA characteristic for different power steps. Very high throughput
values can be achieved by using small power steps and considerably low power
budget costs.

higher throughput values are achieved. In other words, it is
possible to get very high throughput values by almost paying
nothing from the average power point of view.

This superficial contradiction stems from the fact that, with
small power steps theperfectmodel capture scenarios rarely
comply with the capture condition ofSIR-basedmodel. For
example, assumingSIRmin = 4, R = 3 and perfectcapture
model, a packet with power level ofP1 = R = 3 will be
able to capture the channel against any number of packets
with power level ofP0 = 1, however, it cannot capture the
channel in presence of even one packet fromP0 level, when
SIR-basedmodel is considered. On the other hand, ifR = 10
is considered as the power step, a packet with powerP1 = 10
will be able to capture the channel in presence of two or less
packets fromP0 and a packet fromP2 = R2 = 100 can
capture the channel against 25 packets fromP0 and many
other combinations of packets fromP0 and P1. Therefore,
noting that in presence of the backoff algorithm the collision
size (i.e. the number of simultaneously transmitted packets in
one slot) is considerably small, most of the capture scenarios
of the perfect model will comply with SIR-basedmodel, if
large enough power steps are used. For instance, in the above
example, if the backoff algorithm somehow ensures that the
collision size in not greater than three, theperfectand SIR-
basedmodel will be equivalent forR = 10.

These observations show thatperfect model results are
not directly applicable and, therefore, we will introduce an
approximate method which will help us to translate the re-
sults of perfect model to SIR-basedmodel. Based on this
approach, we will be able to present sub-optimum random
power selection algorithms forSIR-basedcapture model. This
sub-optimum approach will yield sub-optimum power steps,
number of power levels, PMFs and backoff factors for a
given power budget constraint. In order to verify the accuracy
of analysis, the sub-optimum power-throughput characteristic
will be compared with simulation results. Before continuing
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the discussion, two key points should be mentioned.
i) The sub-optimum power-throughput characteristic which

will be presented by the end of this subsection, should not
be compared with optimum power-throughput characteristics
of IV.A for two reasons. First, these characteristics are based
on two basically different capture models. A meaningful com-
parison would be to compare the sub-optimum characteristics
with optimum power-throughput characteristics derived based
on SIR-basedmodel, which we have been unable to present.
Second, the power step has been fixed forperfect model
power-throughput characteristics (see Figs. 4 and 5), while
in the following method, we will search for the power step
which will maximize the throughput. In fact, for the power-
throughput characteristics of IV.A which are based onperfect
capture model, an optimum power step does not exist. This
is due to the fact that changing power step does not have
any effect on the capture condition and as we have discussed
earlier, very high throughput values can be achieved by using
power steps slightly greater than one.

ii) In the following method, we will only consider power
steps which are greater than the capture ratio. Although a case
study of smaller power steps have been done for a specific
power selection algorithm in [15], these power steps will not
be considered here. As discussed earlier, with small power
steps theperfectand SIR-basedmodels demonstrate consid-
erably different behaviors and our approximation method will
not be applicable anymore.

We will start by estimating theSIR-basedthroughput based
onperfectmodel throughput. Assume that a packet with power
Pk = Rk, 0 ≤ k ≤ L− 1, has captured the channel based on
the perfectmodel. Therefore, no node has made transmission
with power equal to or greater thanPk and the conditional
probability of choosingPi as transmission power becomes
ζ ′i = ζi/

∑k−1
j=0 ζj , for 0 ≤ i ≤ k − 1. Consequently, the

probability ofmi nodes transmitting withPi, for 0 ≤ i ≤ k−1,
will be:

pr{m | perfectk}

=
N !(

N − σm

)
!

∏k−1
i=0 mi!

(1− pt)
N−σm

k−1∏

i=0

(ptζ
′
i)

mi ,

where σm =
∑k−1

i=0 mi. For the case of infinite number of
nodes, by using (5), we will get:

pr{m | perfectk} =
k−1∏

i=0

λmi
i

mi!
e−λi ,

whereλi = Nptζ
′
i.

By definingρk, for 0≤k≤L−1, as the conditional probabil-
ity of capture withSIR-basedmodel, given that aperfectmodel
capture has been made by a packet with powerPk = Rk, we
will have:

ρk = pr {SIRk | perfectk} =
∑

m∈Mk−1

k−1∏

i=0

λmi
i

mi!
e−λi , (18)

for 1 ≤ k ≤ L− 1, where,

Mk−1 =

{
(m0,m1, ..., mk−1)

∣∣∣∣∣
k−1∑

i=0

miR
i <

Rk

SIRmin

}
.

Note thatρ0 = 1. The equation (18) does not seem to reduce
to a simple analytical expression since all the vectors inMk−1

are required to be known. DefineM ′
k−1 for 1≤k≤L − 1, as

follows:

m ∈ M ′
k−1 ⇔

(mk−1=b∆c ∧ mi=0, for 0≤i<k − 1) ∨
(0≤mk−1≤b∆c − 1 ∧ 0≤mi≤bRc − 1, for 0≤i<k − 1) ,

whereR is the power step and∆ = R/SIRmin. It is easy to
show that,M ′

k−1 ⊆ Mk−1. Therefore,

ρk ≥ 1− εk =
∑

m∈M ′
k−1

k−1∏

i=0

λmi
i

mi!
e−λi =

λ
b∆c
k−1

b∆c! e
−Npt

+




k−2∏

i=0

bRc−1∑
mi=0

λmi
i

mi!
e−λi




b∆c−1∑
mk−1=0

λ
mk−1
k−1

mk−1!
e−λk−1 . (19)

It should be noted thatε0 = 0. For the average conditional
probability of SIR-basedcapture, conditioned onperfectcap-
ture, we should calculate the average ofρk over k:

ρ =
L−1∑

k=0

ρk · pr
{
power=Rk

} · pr
{
success with Rk

}

pr {success}

=
∑L−1

k=0 ρkζke−Npt

PL−1
j=k ζj

∑L−1
k=0 ζke−Npt

PL−1
j=k ζj

.

Therefore,

1− ρ ≤
∑L−1

k=0 εkζke−Npt
PL−1

j=k ζj

∑L−1
k=0 ζke−Npt

PL−1
j=k ζj

. (20)

The value of1 − ρ represents the difference between two
capture models. For example,ρ = 0.9 means that90 percent of
the cases which have resulted in successful transmissions with
perfectmodel would have been successful ifSIR-basedmodel
was considered. Fig. 6 shows the maximum upper bound value
of (20) within the power budget ranges considered for each
number of power levels forR = 10 (see Fig. 4). As∆ gets
larger, the space between power step (R) and capture ratio
(SIRmin) increases and the two models will perform more
similarly.

Consideringρ as a measure of closeness ofperfectandSIR-
basedcapture models, we will use the following approxima-
tion for SIR-basedthroughput,

Throughput ≈ ρ× psucc, (21)

where bypsucc we mean theperfect model throughput. We
have considered the search range of[SIRmin SIRmin+10]db

for the power step. For a given value ofPav and for any
R in this search range, the value ofL is extracted from the
corresponding optimum power-throughput characteristics of
IV.A. For example, forPav = 25db and R = 10, L will
be 4. For given R and L values, the corresponding values
of ζ and β0 = Npt are determined from the optimization
process presented in IV.A. Incorporating these with (19) and
(20) and considering the inequalities as approximate values,ρ
will be determined and the throughput is calculated from (21).
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Fig. 6. Upper bound for maximum difference between the power-throughput
characteristic of ORPSA based onperfectandSIR-based capturemodel.

TABLE I

SUB-OPTIMUM POWER STEPS, NUMBER OF POWER LEVELS, PMF AND

BACKOFF FACTOR FORDIFFERENT POWER BUDGET VALUES;

SIRmin = 6.0 db

Power budget (db) 5 15 25 35 45

Power step (db) 6.000 12.026 12.997 12.997 12.026
No. of levels 2 3 4 4 6

PMF 0.8389 0.6194 0.4830 0.4279 0.3617
0.1611 0.3637 0.3041 0.2701 0.2286

0.0169 0.2123 0.1962 0.1694
0.0006 0.1058 0.1346

0.1048
0.0010

Backoff factor 1.8801 1.5128 1.4337 1.4120 1.3604
Throughput 0.4063 0.5354 0.6217 0.6761 0.7127

Finally, the power step which results in highest throughput
is considered as the sub-optimum power step for the given
power budget and the corresponding values ofL, ζ and
r are considered as the sub-optimum values of number of
power levels, PMF and backoff factor. Table I summarizes
these sub-optimum values and the corresponding sub-optimum
throughput values for different values of power budget.

In order to verify the presented sub-optimum power-
throughput characteristic forSIR-basedmodel, we have simu-
lated networks of100 and1000 nodes, which use the presented
sub-optimum values ofR, L, ζ and r for power selection
and contention resolution. The initial contention window size
(W0) and capture ratio (SIRmin) have been16 and 6.0 db,
respectively. Each power budget and throughput pair has been
recorded after100, 000, 000 time slots, based onSIR-based
capture model. Once again, it should be noted that the power-
throughput characteristic is defined as a function of power
budget instead ofPav and the maximum achievable throughput
with the average power lower than a determined power budget
has been considered as the output of our simulation. Fig.
7 compares the sub-optimum power-throughput characteristic
with the simulation results. We observe that the simulation

5 10 15 20 25 30 35 40 45

0.45
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0.6
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0.7
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T
hr

ou
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pu
t
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Simulation (N=1000)
Analysis

Fig. 7. Comparison of sub-optimum power-throughput characteristic for
random power section algorithms based onSIR-basedcapture model with the
simulation results forN=100 and1000 (W0 = 16, SIRmin = 6.0 db).

results lie above the sub-optimum characteristic, which verifies
our approach in introducingρ and presentation of lower bound
approximation for the behavior ofSIR-basedmodel. Moreover,
as the number of nodes increases, the simulated characteristic
gets closer to the sub-optimum characteristic derived assuming
the infinite nodes case.

At this point, we will finish discussion of the random power
selection algorithms and in the remainder of this paper, we
will introduce the possibility of using deterministic power
selection algorithms instead of random techniques. The main
advantage of these algorithms is that they do not require
any random power generator blocks. In contrast to random
algorithms where the selected power is independent of the
transmission history of packets, with deterministic approach
the transmission power will be a function of the number
of collisions encountered. In section VI the system model
will be presented. The unconstrained and constrained power
scenarios will be discussed in sections VII and VIII, based
on which sub-optimum deterministic power selection and sub-
optimum power-throughput characteristics will be presented. It
is important to note that these results will be based onperfect
capture model and from this point of view are comparable
with the results of sections III and IV.A. An approach similar
to IV.B may be used to adapt the results forSIR-basedcapture
model.

V. M ODELING OF EXPONENTIAL BACKOFF WITH

DETERMINISTIC POWER SELECTION ALGORITHMS

Assume a set of available power levelsP =
{P0, P1, ..., PL−1}, where L is the number of power
levels. By a deterministic power selection algorithm, we mean
a function from the set of all nonnegative integers toP. This
function, represented byP (n), determines the transmission
power at backoff staten, i.e. the (re)transmission power of a
packet which has hadn successive collisions.

The EB model of [13] has been modified to describe the
deterministic power selection scenario (Fig. 8). A node in state
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i, will eventually transmit with power level equal toP (i) and
will experience collision with the probabilityα

(
P (i)

)
, leading

to statei+1, otherwise the node will get back to state0. The
definitions ofWn andr are the same as in section II.

The following theorem presents the basic relations which
we will use in analysis of deterministic algorithms.

Theorem 2:Consider a network ofN nodes which are
using the algorithm depicted in Fig. 8 for contention resolution
and power selection. Definepi, pt, psucc andPav as the steady
state probability of statei, i ≥ 0, the average probability of
transmission, probability of successful transmission (through-
put) and average required power for a successful transmission,
respectively. Also, defineαj = α (Pj), for 0 ≤ j ≤ L − 1.
We will have:

pi = p0

i−1∏

j=0

α
(
P (j)

)
, i ≥ 0 6 (22)

pt =
2/W0∑∞

i=0 piri + 1/W0
(23)

psucc = Nptp0 (24)

Pav =
∞∑

i=0

P (i)pi/p0 (25)

αj = 1−

1−

∑

P (k)≥Pj

ptpk




N−1

, 0≤j≤L− 1 (26)

Proof:
(22) is obvious from the presented model.
(23) can be proven following exactly the same approach

presented in [13].
The probability of successful transmission is the probability

that a node which may transmit in any state with probability
ptpi, i ≥ 0, makes transmission and does not face collision.
Therefore:

psucc = N

∞∑

i=0

ptpi

(
1− α

(
P (i)

))
= Npt

∞∑

i=0

(pi − pi+1).

This will prove (24).
A packet which has been finally transmitted successfully at

statei with probability of
(
1− α

(
P (i)

)) ∏i−1
j=0 α

(
P (j)

)
, has

experienced a transmission history withP (0), P (1), ... and
P (i). Therefore, noting (22), the average required power for
successful transmission will be:

Pav =
∞∑

i=0




(
1− α

(
P (i)

)) i−1∏

j=0

α
(
P (j)

)



(
i∑

k=0

P (k)

)

= 1/p0

∞∑

i=0

(pi − pi+1)

(
i∑

k=0

P (k)

)
=

∞∑

i=0

P (i)pi/p0 .

This proves (25).
(26) has simply formulated the probability of collision

based onperfect capture model. The probability of success
with transmission power ofPj is the probability that no
simultaneous packet has been transmitted with power equal
to or greater thanPj .

6Define,
Q−1

0 to be1.
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P
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P

Fig. 8. EB model with deterministic power selection algorithm. A node in
statei, transmits withP (i) and faces collision with probabilityα

�
P (i)

�
.

For the case of infinite number of nodes, we will have:

lim
N→∞

pt = 0. (27)

Also, assuming thatlimi→∞ P (i) exists and by definingK as
the least nonnegative integer such thatP (j) = P (K), for all
j > K, we will have:

lim
N→∞

α
(
P (K)

)
=

1
r
. (28)

For proof of (27), assume thatlimN→∞ pt > 0, then from
(26), αj = 1, 0 ≤ j ≤ L− 1, which is a contradiction.

In order to prove (28), we should note that the denominator
of (23) contains

∑∞
i=K pir

i = p
K

rK
∑∞

0

(
rα

(
P (K)

))i
,

and other finite terms. It should be obvious that for a fi-
nite N , α

(
P (K)

)
<1/r, otherwisept will be 0, and from

(26), αj=0, 0≤j≤L − 1, which is a contradiction. There-
fore, limN→∞ α

(
P (K)

)≤1/r. Also, from (27) and the ex-
tracted term from the denominator of (23), it is obvious that
limN→∞ α

(
P (K)

) ≥ 1/r. Combining these, the proof of (28)
will be complete.

By combining (26) and (27) and by definingγi = Nptpi,
the expression of the probabilities of collision can be simpli-
fied to:

αj = 1− exp


−

∑

P (k)≥Pj

γk


 , 0 ≤ j ≤ L− 1, (29)

where,γk = γ0

∏k−1
i=0 α

(
P (i)

)
.

By deriving the above basic relations, we will go through
the problem of Optimum Deterministic Power Selection Al-
gorithm (ODPSA) in sections VI and VII.

VI. ODPSA WITH UNCONSTRAINEDPOWER BUDGET

In this section, we will discuss the optimum deterministic
algorithm without considering any limit on the average power.
Our goal is to find the power sequence

{
P (n)

}∞
n=0

which sat-
isfies (29) and yields optimum throughput. However, we were
unable to derive even approximate pattern of optimum power
sequence based on (29). Our further investigations showed
that there are many power sequences that yield approximately
same throughput values, but do not have considerably similar
patterns. In other words, the throughput of the deterministic
algorithms is not a well-behaved function of the pattern of
the power sequences. Therefore, we have taken an indirect
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approach to derive optimum power deterministic power selec-
tion algorithms. First, we show that the throughput of ORPSA
is an upper bound for the throughput of ODPSA. Then, we
will present our search method for ODPSA based on which
sub-optimum algorithms (sub-ODPSAs) will be derived.

Defining,βi =
∑

P (j)≥Pi
γj and noting (29), we will have:

L−1∑

i=0

(βi−βi+1) e−βi=
L−1∑

i=0


 ∑

P (j)=Pi

γj


 exp


−

∑

P (k)≥Pi

γk




=
L−1∑

i=0

∑

P (j)=Pi

γj (1−αi)=
L−1∑

i=0

∑

P (j)=Pi

(
γj−γjα

(
P (j)

))

=
L−1∑

i=0

∑

P (j)=Pi

(γj − γj+1) =
∞∑

j=0

(γj − γj+1) = γ0 .

Therefore, for the case of unlimited power budget, we have
the same relation for throughput as (12) in III.B, which
has formulated the throughput for random power selection
scenario:

γ0 =
L−1∑

i=0

(βi − βi+1) e−βi . (30)

Hence, with unlimited power budget, the throughput of
OPRSA will be an upper bound for the throughput of ODPSA.
By adopting the definition of{di}∞i=0 from section III.B, the
upper-bound-condition values ofαi andγi, can be expressed
as follows:

γ0 = e−dL−1 , (31)

αi = 1− e−
PL−1

j=i dj , (32)∑

P (j)=Pi

γj = di, (33)

for 0≤i≤L − 1. The next step toward ODPSA is to find the
power sequence

{
P (n)

}∞
n=0

, which satisfies (31), (32) and
(33). Instead of searching for such a power sequence, which
does not necessarily exist, we can consider the upper-bound-
condition collision probabilitiesαi of (32), and throughput
γ0 of (31), and search for a power sequence{P ′(n)}∞n=0, for
which the values of

∑
P ′(j)=Pi

γ′j for 0≤i≤L− 1, are closest
to the upper-bound-condition values of (33). If we defineD
as the depth of the search7, the problem will be to search for
{P ′(n)}D−1

n=0 , such that:

e
MSE

=
1
L

L−1∑

i=0


di−

j<D∑

P ′(j)=Pi

γ′j




2

, (34)

is minimized, whereγ′j = γ′
0

∏j−1
k=0 α

(
P ′(k)

)
. Note thatγ′

0
=

γ0 .
Fig. 9 shows an efficient and quick search method, which we

have used to achieve results close to ODPSA. In this method,
we construct a set of Acceptable Power Sequences (APS),
which is initially empty. This set is expanded at each level
of the search, by checking the possibility of selecting any of
the power levels for the next backoff state (search level). The

7By depth of search, we mean the maximum number of backoff states
which we will consider in our search.
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thresholddS knextk

Fig. 9. The proposed search method for sub-ODPSA.

following variables are associated toeachof the elements of
APS:

• For k = 1, 2, ..., L − 1, Sk will hold the summation of
all γ′j for all indicesj of the power sequence, for which
P ′(j) = Pk. Sk has been initially set to zero.

• γ′next will hold the value ofγ′ for the next backoff state or
next level of search. In other words, if we are at the levell
of search (0≤l≤D−1), γ′next will be γ′

0

∏l
j=0 α

(
P ′(j)

)
.

Each time in the search process that the power level of
Pk is considered for the next backoff state,γ′next will be
added toSk and updated toγ′nextαk. The initial value of
γ′next is set toγ′

0
which is known from (31).

• error which is used for choosing the power sequence
with minimum deviation from upper-bound-condition
condition of (33), at the end of the search:

error =
1
L

L−1∑

i=0

(di−Si)
2
.

At each step of the search process, the elements of the APS
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TABLE II

CONSTRUCTIONPROCESS OFAPS FOR L = 2 AND D = 4;

threshold = 0

Level 0 Level 1 Level 2 Level 3

Seq. = {0}
S0 = 0.5315
S1 = 0
γ′next = 0.4276
error = 0.3096

{0, 0}
0.9590
0
0.3440
0.2006

{0, 0, 1}
0.9590
0.3440
0.1612
0.0424

{0, 0, 1, 1}
0.9590
0.5051
0.0755
0.0089

{0, 1}
0.5315
0.4276
0.2003
0.1307

{0, 1, 0}
0.7318
0.4276
0.1612
0.0569

{0, 1, 0, 0}
0.8929
0.4276
0.1296
0.0267
{0, 1, 0, 1}
0.7318
0.5887
0.0755
0.0369

{0, 1, 1}
0.5315
0.6279
0.0939
0.1098

{0, 1, 1, 0}
0.6253
0.6279
0.0755
0.0702

Seq. = {1}
S0 = 0
S1 = 0.5315
γ′next = 0.2490
error = 0.5051

{1, 0}
0.2490
0.5315
0.2003
0.2871

{1, 0, 0}
0.4493
0.5315
0.1612
0.1567

{1, 0, 0, 0}
0.6105
0.5315
0.1296
0.0809

are checked to see if any of theL power levels can be
considered for their next backoff state. We have used the
following condition for checking this possibility:

Sk + γ′next < dk + threshold.

The value ofthreshold is optional and controls the size of
search. If the above condition holds, that power level is added
to the power sequence to construct a new member of APS
and the corresponding values ofSk and γ′next are calculated
accordingly. If the condition cannot be satisfied by any of
the power levels, the selected power sequence will be deleted
from APS. Table II shows the construction process of APS
for L = 2 and D = 4. The Seq. symbol refers to a power
sequence in APS. In order to save the space, the left side
symbols of column one have been omitted in other columns
of the table. The power sequence with the minimumerror
after a four level search is underlined in the table.

It should be noted that, this search method does not nec-
essarily give the minimumeMSE , since we ignore all power
sequences withSk+γ′next>dk+thresold, and the algorithm
with minimum eMSE may be among these. However, without
considering such constraint, the search will be extremely time-
consuming. Moreover, the resulting power sequences will
perform very close to the upper bound of optimum throughput
as we will see in the remainder of this section. Fig. 10 shows
our search results and corresponding error values as defined
in (34).

In the next step, we need to extend these power sequences to
construct sub-ODPSAs by definingP ′(n) = PL−1 for n ≥ D,
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Fig. 10. Extracted power sequences forD = 9: (a) L = 2, eMSE = 2.16×
10−5, threshold = 0; (b) L = 3, eMSE = 3.24× 10−5, threshold = 0;
(c) L = 4, eMSE = 1.41 × 10−4, threshold = 0.026γ0 ; (d) L = 5,
eMSE = 3.90× 10−3, threshold = 0.142γ0 .

and make exact analysis of these power sequences8. We will
use the notations̃αi and γ̃i for sub-ODPSAs, so that these
quantities can be distinguished from those of upper bound
condition. Noting (29) and defining̃αL = 0, the following
system of equations should be satisfied:

1− α̃i

1− α̃i+1
= exp


−

∑

P ′(j)=Pi

γ̃j


 , 0 ≤ i ≤ L− 1, (35)

which will have the following form after consideringP ′(n) =
PL−1 for n ≥ D:

ln
(

1− α̃i

1− α̃i+1

)
+

j<D∑

P ′(j)=Pi

γ̃j = 0, 0 ≤ i ≤ L− 2

ln (1− α̃L−1) +
j<D∑

P ′(j)=PL−1

γ̃j +
γ̃

D−1 α̃L−1

1− α̃
L−1

= 0,

where γ̃j = γ̃0

∏j−1
k=0 α̃

(
P ′(k)

)
. This will lead to L + 1

unknown variables,̃γ0 ,α̃0 ,α̃1 , ... ,α̃L−1 , with L equations. This
is due to the fact that the upper-bound-condition equations
(31), (32) and (33) do not give the corresponding value
of the backoff factor. Therefore, we will leaveα

L−1 as an
optimization parameter. Noting (28), this is equivalent to
leaving r̃ as a variable to be optimized.

After solving the above equations, the value of through-
put, γ̃0 , can be calculated. In Fig. 11, these sub-optimum
throughput values have been compared with the throughput
of ORPSA, which has been shown to be an upper bound
for the throughput of ODPSA. As it is evident from Fig. 11,

8Such a choice is obviously optional. Our choice in favor ofPL−1 results
from the frequent appearance of this power level in higher states of the
extracted power sequences (see Fig 10).
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Fig. 11. Comparison of ORPSA throughput, as an upper bound for the
throughput of ODPSA, with throughput of sub-ODPSA and conjectural
sequence (D = 9).

throughput values of sub-ODPSA are very close to throughput
of ORPSA, which has been proven to be an upper bound for
ODPSA throughput. Therefore, it is obvious that the proposed
algorithms will have very similar performance to ODPSA as
well.

Although our approach in this section presents a method to
drive sub-optimum deterministic power selection algorithms
(power sequences), we have not given a general visual pattern
of such power sequences. For this purpose, we will present a
conjectural sequence for ODPSA. This scheme is depicted in
Fig. 12 and has been constructed based on the similarities
of the sub-optimum power sequences (see Fig. 10). The
throughput of this power selection algorithm can be calculated
from similar equations, discussed for sub-optimum algorithms
and has been included in Fig. 11.

As mentioned in the beginning of this section, the through-
put of deterministic power selection algorithms is not a well-
behaved function of the pattern of the power sequences.
However, some general rules can be extracted about the pattern
of the optimum power sequences. For example, by considering
(33) and noting that{di}∞i=0 is a decreasing sequence (see
III.B), we conclude that

{∑
P (j)=Pi

γj

}L−1

i=0
is decreasing with

respect toi. Noting that{γj}∞j=0 is a decreasing sequence, one
way of satisfying the decreasing trend of

{∑
P (j)=Pi

γj

}
, with

respect toi, is to use smaller power levels in lower backoff
states and larger power levels in higher backoff states. This
conclusion justifies the pattern of conjectural sequence in Fig.
12.

VII. ODPSA WITH CONSTRAINED POWER BUDGET

In this section, we will discuss the power-throughput char-
acteristic of ODPSA. Our purpose is to find a power sequence
which has maximum value of throughput for a predetermined
value of average power. We will first prove that the char-
acteristic of ORPSA will be an upper bound for that of
ODPSA. Next, we will use a search method similar to that
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Fig. 12. Conjectural power sequence. The throughput of this algorithm has
been compared with the throughput of sub-ODPSA and ORPSA in Fig. 11.

discussed in the previous section which will give the sub-
optimum characteristic. We will show that this sub-optimum
characteristic will perform very close to the upper bound.

From (25) and definition ofγi and βi, i ≥ 0, the average
power can be expressed as:

Pav =
∞∑

i=0

P (i)γi/γ0 =
L−1∑

i=0

Pi


 ∑

P (j)=Pi

γj/γ0


 (36)

= 1/γ0

L−1∑

i=0

(βi − βi+1)Pi.

As discussed in section IV, we will consider logarithmically
equi-spaced power levels,P =

{
1, R, R2, ..., RL−1

}
, where

R is the power step. Therefore, we will have:

γ0 =
L−1∑

i=0

(βi − βi+1) e−βi

Pav = 1/γ0

L−1∑

i=0

(βi − βi+1) Ri.

It is evident that the above equations constitute exactly the
same optimization problem discussed in IV.A, for limited
power budget scenario. Consequently, the power-throughput
characteristic of ORPSA can be considered as an upper
bound for that of ODPSA. After calculating the upper-bound-
condition values ofγ0 , αi and

∑
P (j)=Pi

γj for 0≤i≤L − 1,
a search algorithm similar to one shown in Fig. 9 can be used
to find power sequences

{
P ′(n)

}D−1

n=0
, which will be close

enough to the upper bound conditions. Then, by repeating the
last power level,P ′(n) = P ′(D−1) for n ≥ D, sub-ODPSAs
will be constructed. These sub-optimum power sequences
should be analyzed in order to reveal exact values of through-
put, γ̃0 , and probabilities of collision,̃αi for 0 ≤ i ≤ L− 1.

Considering (35) and (36), the following system of equa-
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Fig. 13. Comparison of power-throughput characteristic of sub-ODPSA and
conjectural sequence with the characteristic of ORPSA, which is shown to be
an upper bound for the characteristic of ODPSA (D = 9 andR = 10).

tions should be satisfied:

1− α̃i

1− α̃i+1
= exp


−

∑

P ′(j)=Pi

γ̃j


 , 0 ≤ i ≤ L− 1,

L−1∑

i=0

Ri


 ∑

P ′(j)=Pi

γ̃j/γ̃0


− Pav = 0.

Assume thati∗ is the index of the power level used for state
D − 1, i.e. P ′(D−1) = Pi∗ . Noting that this power level has
been repeated for statesn ≥ D, the above equations will have
the following form:

ln
(

1− α̃i

1− α̃i+1

)
+

j<D∑

P ′(j)=Pi

γ̃j = 0, 0 ≤ i ≤ L− 1, i 6= i∗

ln
(

1− α̃i∗

1− α̃i∗+1

)
+

j<D∑

P ′(j)=P ′(D−1)

γ̃j +
γ̃D−1 α̃∗i
1− α̃∗

i

= 0,

L−1∑

i=0

Ri




j<D∑

P ′(j)=Pi

γ̃j/γ̃0


 +

Ri?

γ̃D−1 α̃∗i
γ̃0

(
1− α̃∗

i

) − Pav = 0.

After solving these equations for a given power budget
constraint Pav, the sub-optimum throughput value will be
revealed and sub-optimum power-throughput characteristic can
be presented. The resulting sub-optimum power-throughput
characteristic withR=10 has been compared with the charac-
teristic of ORPSA in Fig. 13. It shows that the performance
of sub-ODPSA is very close to characteristic of ORPSA,
which has been proven to be an upper bound for ODPSA
characteristic. Therefore, we conclude that the presented sub-
ODPSAs can be used as close approximations to ODPSAs,
both in limited and unlimited power scenarios. The power-
throughput characteristic of the conjectural sequence can be
derived based on similar equations and has also been presented
in Fig. 13.

VIII. C ONCLUSION

In this paper, we discussed optimum random and deter-
ministic power selection algorithms in conjunction with ex-
ponential backoff retransmission scheme in Aloha networks.
For random algorithms, we first proved the inefficiency of
fixed backoff factors and then by considering the constrained
power budget scenario, optimum random power-throughput
characteristics were derived based onperfectcapture model.
Finally, by presenting an approximate method we were able
to extend theperfect model characteristics toSIR-based
model sub-optimum power-throughput characteristics, based
on which, sub-optimum power steps, number of power levels,
PMFs and backoff factors were presented for given power-
budget constraints. Next, we introduced the possibility of
using deterministic power selection algorithms. It was shown
that optimum random algorithms outperform deterministic
ones both in constrained and un-constrained power budget
scenarios. However, by introducing a search method we were
able to present sub-optimum deterministic algorithms and
sub-optimum deterministic power-throughput characteristics,
which were shown to have a performance very close to that
of optimum random algorithms. The closeness of random and
deterministic power-throughput characteristics, encourages use
of deterministic power selection algorithms with which no
random power generator block will be needed. Similar ap-
proaches, as those presented for random algorithms, can be
used to adapt the deterministicperfectmodel results toSIR-
basedmodel.
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