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Abstract— We present a new method for the iterative equaliza-
tion and decoding of multilevel trellis coded modulation (TCM)
signals over frequency selective channels. Results show that the
proposed algorithm achieves better performance compared to
the previous work on the MMSE filter-based turbo equalization
for a non-binary coded modulation scheme. The performance
gain is accomplished by utilizing the combined modulation and
coding nature of TCM and passing the refined signal obtained
from different paths to the TCM decoder as the channel value
in addition to the a priori probabilities.

Keywords: turbo equalization, TCM, intersymbol interference.

I. INTRODUCTION AND PROBLEM FORMULATION

In a mobile communications environment, multipath propa-
gation causes dispersion of transmitted signals. The time delay
spread causes intersymbol interference (ISI) and degrades
system performance. Therefore, equalization methods which
can mitigate the effects of ISI must be employed. A frequency
selective channel can be described as a rate one convolutional
code defined over the field of real or complex numbers, so the
combination of a channel code and ISI channel can be viewed
as a serial concatenation system, and can be decoded using
turbo processing principle. Douillard, et al. proposed turbo
equalization in [1] which combines equalization with channel
decoding to remove the effect of intersymbol interference
caused by frequency selective fading channels. The receiver
consists of two trellis-based detectors, one for equalization
and one for decoding. It is shown that turbo equalization
significantly improves the performance over separate equal-
ization and decoding. However, for channels with large delay
spreads and for large constellation sizes, the trellis based turbo
equalization scheme suffers from prohibitive computational
complexity. In [2], [3], Wang, Tuchler, et al, introduced new
approaches to combining equalization based on the linear
minimum mean square error (MMSE) filtering with decoding.
It was shown that this new approach provides a tremendous
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complexity reduction with acceptable performance degradation
compared to the trellis-based approach.

Trellis Coded Modulation (TCM) is a powerful technique to
improve bandwidth efficiency without increasing the transmit-
ted power. It combines modulation and coding by optimizing
the Euclidean distance between codewords. Turbo techniques
were applied to the trellis-based equalization of TCM signals
in [4], [5]. Despite its good performance, the major disadvan-
tage of this approach is the exponentially increasing complex-
ity of the equalizer which is significant for channels with long
impulse response or large signal constellation size. To reduce
the complexity, the MMSE filter-based turbo equalization
originally proposed in [2], [3] was extended to the TCM
signals in [6], [7]. Although it reduces the complexity from
exponential to cubic compared to the trellis-based approach,
this algorithm is still computationally intensive due to matrix
inversion required at each symbol period.

In this correspondence, we obtain symbol a posteriori
probabilities directly from the output of the interference
canceler, thus the MMSE filtering and its inherent matrix
inversion procedure are avoided. In order to improve the
system performance, we modify the TCM decoder such that
it takes the refined channel value in addition to symbol a
posteriori probabilities as inputs and produces both symbol
extrinsic probabilities and log-likelihood ratio (LLR) values
for information bits at the output. This is in contrast to
previous work on the filter-based approach in which the TCM
decoder only takes symbol a posteriori probabilities as its
input. A comparison between the proposed scheme and MMSE
filter-based equalization is provided in this correspondence to
demonstrate the effectiveness of the proposed algorithm.

The transmission system under study is shown in Figure 1.
The information sequence {bn} is TCM encoded and mapped
into M-PSK or M-QAM symbols {sn}. The coded and mod-
ulated symbol sequence is block interleaved into {s′n} and
transmitted over the ISI channel, which can be modeled by
an equivalent baseband system where the concatenation of the
transmit filter, the channel and the receive filter, is represented
by a discrete-time L-tap transversal filter with finite-length
impulse response hn =

∑L−1
l=0 hlδn−l where the complex

channel coefficients hl are assumed time invariant during the
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Fig. 1. Block diagram of the transmission scheme.

transmission of one block of data. The transmit filter and
receive filter are chosen such that their composite frequency
response fulfills Nyquist criterion and the receive filter is
matched to the transmit filter [8]. With symbol rate sampling
at the receiver, the received samples {rn} can be expressed as

rn =

L−1
∑

l=0

s′n−lhl + wn, (1)

where s′n is the coded and interleaved symbol, and wn is the
complex additive white Gaussian noise with zero mean and
variance N0. In this work, we assume that the multipaths are
resolvable and signals experience frequency selective fading.
In case where the sample period is much shorter than channel
tap spacing, the discrete time channel model can be modified
accordingly, e.g., zeros can be inserted between adjacent
channel taps (the number of zeros inserted depends on the
ratio between the sample period and the channel tap spacing).

II. ITERATIVE EQUALIZATION AND TCM DECODING

The block diagram of the proposed equalization and TCM
decoding scheme is shown in Figure 2. In the first pass of the
turbo equalization operation, the channel is estimated using
a training sequence. At this stage, we also derive an initial
estimate (hard decision) of the transmitted symbols using,
e.g., a zero-forcing (ZF) equalizer or a decision feedback
equalizer (DFE). With channel estimates, the ZF equalizer
can be easily designed by inverting the channel transfer
function. However, it leads to noise enhancement, especially
at low SNR. Therefore, we choose DFE for the initial symbol
estimate. The equalizer coefficients are obtained adaptively
using the recursive least square (RLS) algorithm [8].

With symbol and channel estimates, we perform soft in-
terference cancellation and pass the refined signal to the
TCM decoder via a maximum ratio combiner (MRC). In
the meantime, the a posteriori symbol probabilities at each
time instant n are collected in an M-ary vector and passed
to the decoder as a priori information. The TCM decoder
computes the extrinsic probability of the TCM symbols as
well as the log-likelihood ratio (LLR) of the information bits.
The former is interleaved and sent back to the equalizer as a
priori information to start the subsequent iteration. The latter
is used to make hard decision on the transmitted information
bits. In this way, the equalization and TCM decoding are
performed jointly in an iterative manner. The equalization and
TCM decoding blocks will now be described in detail.

A. Equalization Algorithm

As shown in Figure 2, the proposed equalizer includes a
soft interference canceler (SIC) followed by i) a mapper to

compute a posteriori probabilities; ii) an MRC to obtain refined
channel values (y′

n and its deinterleaved version yn) based on
r̃n, the interference canceled version of the received signal
rn. Note that yn is the refined channel value, and rn is the
original channel value. This algorithm is different from those
presented in [2], [3], which are based on the computation
of LLRs. Here, modifications have to made to accommodate
multilevel modulation [9]. In particular, one has to compute
extrinsic probabilities rather than LLRs in order to allow the
application of turbo equalization to TCM systems.

Based on (1), the ISI canceled signals after performing
interference cancellation using soft estimates of the transmitted
symbols become

r̃n = h0s
′
n + (h1s

′
n−1 − ĥ1s̄

′
n−1) + . . . + wn;

r̃n+1 = h1s
′
n + (h0s

′
n+1 − ĥ0s̄

′
n+1) + . . . + wn+1;

...

r̃n+L−1 = hL−1s
′
n + (h0s

′
n+L−1 − ĥ0s̄

′
n+L−1) + . . . + wn+L−1,

where r̃n+i denotes the ISI canceled version of the received
signal rn+i after canceling the contributions from all the
symbols other than sn, which is the symbol of interest. ĥl

is the estimate of the channel coefficient hl and s̄′n+i denotes
the soft estimate of s′n+i, which is computed as

s̄′n+i = E[s′n+i] =
M
∑

q=1

P (s′n+i = sq)sq, (2)

where P (s′n+i = sq) is the a priori probability of the symbol
s′n+i, which is initialized by the DFE at the first stage and
provided by the TCM Log-MAP decoder at the following
stages. The above formulas can be written in vector form as

r̃n =
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r̃n+L−1











=
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s′n+











vn

vn+1

...
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= hs′n+v, (3)

where h = [h0, . . . , hL−1]
T denotes the channel vector, and

v = [vn, . . . , vn+L−1]
T stands for the vector of combined

noise and interference cancellation residual. This interference
cancellation procedure is similar to the one proposed in [7]
where the symbol a posteriori probabilities are derived from
the output of an MMSE filter. Refer to [7] for a detailed
description of this MMSE filter-based algorithm. Next, we
shall introduce a different approach to compute the symbol
a posteriori probabilities without using an MMSE filter.

Each element of v can be approximated as a complex Gaus-
sian random variable with zero mean and variance Nv [10].
This approximation simplifies the derivation although it does
not rigorously hold. In our case, the assumption of zero mean
holds if i) E[s′n+i] = s̄′n+i; ii) the channel estimation is
unbiased, i.e., E[ĥl] = hl. The first condition is fulfilled ac-
cording to (2). In this work, we employ a modified maximum
likelihood channel estimator introduced in [11], which has
been shown to be unbiased. Since the transmitted data symbols
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Fig. 2. Block diagram for the proposed iterative equalization and TCM decoding scheme.

{s′n} have unitary variance, it can be derived from (3) that

E[‖r̃n‖
2] = E[(hs′n + v)(hs′n + v)∗] = E[‖hs′n‖

2] + E[‖v‖2]

= E[‖h‖2] + LNv = P + LNv

where P =
∑L−1

l=0 |hl|
2 denotes the total received power from

all the paths. The variance of noise plus residual interference
can be derived statistically as

Nv =
E[‖r̃n‖

2] − P

L
≈

‖r̃n‖
2 − P

L
(4)

where ‖r̃n‖
2 is the energy of the vector r̃n averaged over the

whole block of symbols. In case of perfect cancellation, each
element of v only contains the noise, i.e., vn+i = wn+i, and
Nv = N0.

The conditional probability density function (PDF) of r̃n

can now be represented by

p(r̃n|s
′
n = si) ≈

1

(πNv)L
exp

(

−
‖r̃n − hsi‖

2

Nv

)

=
1

(πNv)L
exp

(

−
‖r̃n‖

2 + ‖hsi‖
2 − 2Re{(hsi)

∗r̃n}

Nv

)

,

(5)

where the superscript operator ()∗ is the conjugate transpose
operation when applied to matrices and vectors, and simply
the conjugate when applied to scalars. We know that

P (s′n = si|r̃n) =
p(r̃n|s

′
n = si)P (s′n = si)

p(r̃n)
;

p(r̃n) =

M
∑

q=1

P (s′n = sq)p(r̃n|s
′
n = sq). (6)

In a PSK constellation, all the signals lie on the unit
circle, therefore have the same energy, i.e., Es = |s1|

2 =
. . . = |sM |2, and ‖r̃n‖

2 in (5) is the same for all the signal
alternatives. Combining (5) and (6) yields

P (s′n = si|r̃n) =
P (s′n = si) exp (2Re{(hsi)

∗
r̃n}/Nv)

PM

q=1 P (s′n = sq) exp (2 Re{(hsq)∗r̃n}/Nv)
(7)

=
e

2 Re{(hsi)
∗
r̃n}

Nv
+log P (s′n=si)

e
max∗

h

2 Re{(hs1)∗ r̃n}
Nv

+log P (s′n=s1),··· ,
2 Re{(hsM )∗ r̃n}

Nv
+log P (s′n=sM )

i ,

(8)

where the function max∗[] is defined as max∗[x, y] =
ln(ex + ey) = max[x, y] + ln(1 + e−|x−y|), i.e., the max

operation compensated with a correction term ln(1+e−|x−y|).
Also max∗[x, y, z] = max∗[max∗[x, y], z], etc.. The symbols
are assumed to be equally probable at the first iteration, i.e.,
P (s′n = s1) = P (s′n = s2) = . . . = P (s′n = sM ) = 1/M .
The original channel vector h in (8) is unknown, and has to be
replaced by its estimate ĥ. Direct implementation of (7) leads
to numerical instability at high SNR, which can be tackled by
performing the calculation in the log domain as shown in (8),
similar to the idea presented in [12].

Note that (7) and (8) only apply to PSK signals. For QAM
signals, each signal alternative might not have the same energy.
Therefore, equation (7) should be modified as

P (s′n = si|r̃n) =
P (s′n = si) exp

(

2 Re{(hsi)
∗
r̃n}−‖hsi‖

2

Nv

)

∑M

q=1 P (s′n = sq) exp
(

2 Re{(hsq)∗r̃n}−‖hsq‖2

Nv

) ,

and its Log-MAP implementation can be obtained similarly.
We form the vectors P (s′n) and P (s′n|r̃n) as

P (s′n) =
[

P (s′n = s1) P (s′n = s2) . . . P (s′n = sM )
]T

;

P (s′n|r̃n) =
[

P (s′n = s1|r̃n) . . . P (s′n = sM |r̃n)
]T

.

The former is the a priori probabilities vector of the symbol
s′n. It is an input to the SIC block. The latter is the output of
the mapper. Each element of P (s′n) is initialized as

P (s′n = si) =

{

1 if ŝ′n = si,

0 otherwise

where ŝ′n is the hard decision from the DFE equalizer. At the
following stages, this a priori probability vector is formed by
the extrinsic information provided by the decoding step, i.e.,
P (s′n) = Π{P (sn;O)}, where P (sn;O) = exp[L(sn;O)]
is the output of the TCM Log-MAP decoder. We use the
notations P (sn; I), P (sn;O) to denote the input and output
of the TCM decoder.

The refined signal to be passed to the TCM decoder as the
channel value is obtained based on the interference canceled
signal vector r̃n using maximum ratio combining, i.e.,

y′
n = ĥ∗r̃n = ĥ∗hs′n + ĥ∗v = ĥ∗hs′n + η′, (9)

where ĥ is an estimate of h, η′ is zero mean Gaussian random
variable with variance Nη = PNv .

In contrast to the MMSE filter-based approach introduced
in [6], [7], the derivation of symbol a posteriori probabilities
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described previously does not involve matrix inversion. The
presented algorithm reduces the computational complexity
from O(L3) to O(L2), where L is the number of channel
taps. A quantitative complexity comparison is given in Ta-
ble I, which shows the required number of complex multi-
plications/divisions, additions/subtractions, etc. for each TCM
symbol estimate by the two different schemes. The figures for
the MMSE scheme are based on its Log-MAP implementation.

B. TCM Decoding Algorithm

The proposed TCM Log-MAP decoder takes the de-
interleaved probability vector P (sn; I) = Π−1{P (s′n|r̃n)}
as priori information as well as the combined signal yn =
Π−1(y′

n) as channel input. It outputs the log-likelihood ra-
tio of the information bits {L(b0

n), L(b1
n)} and the refined

probability vector P (sn;O) = P (sn|y) based on the code
constraints and the trellis structure of the TCM code where
y = [y1 y2 . . . yLb

] and Lb denotes the symbol block length.
Based on (9), each element of y is defined as

yn = Π−1(y′
n) = Π−1(ĥ∗hs′n + η′) = ĥ∗hsn + η

≈ ‖h‖2sn + η = Psn + η, (10)

where η is zero mean Gaussian random variable with variance
Nη = PNv (interleaving does not change the noise PDF). As
shown in (9), the input noise is filtered by the channel which
makes the successive noise samples η′ correlated. However,
due to the deinterleaving operation, the deinterleaved noise η
can be approximated as white Gaussian noise. This approxima-
tion will be used later on in the derivation of branch metrics
for the TCM decoder. The LLR values {L(b0

n), L(b1
n)} are

used for making hard decision on the transmitted information
bits; while the logarithm of extrinsic probability L(sn;O) =
L(sn|y) = log P (sn|y) is fed back to equalizer as the a priori
probability vector for the next iteration.

The MAP algorithm for non-binary TCM decoder was
derived in [13]. In the following, we briefly present the
TCM Log-MAP decoding algorithm. Since the issue of TCM
decoding with channel value is not addressed in the previous
literature, our emphasis will be placed on how the refined
channel value (in addition to symbol a priori information) is
used in the computation of the branch metrics. Let us denote
αn(σ′) as the state metric at the nth trellis node, and βn+1(σ)
as the state metric for the portion of the trellis beyond the
nth trellis node, where σ′ and σ are the generic states at
the nth and (n + 1)th nodes, respectively. The logarithm of
P (sn = si|y) is computed as

L(sn = si|y) = log P (sn = si|y)

= max
σ′,σ:si

∗[αn(σ′) + γ∗
n(σ′, σ) + βn+1(σ)]

− max
σ′,σ

∗[αn(σ′) + γn(σ′, σ) + βn+1(σ)], (11)

where γn(σ′, σ), γ∗
n(σ′, σ) are the metrics for the branch con-

necting state σ′ at node n and σ at node (n+1). Expressions
defining these terms will be given later. The notation σ′, σ : si

denotes the sets of state pairs (σ′, σ) in the TCM trellis
corresponding to symbol si, and σ′, σ denotes all the possible
sets of state pairs where the transition (σ′, σ) is possible.

We modify the TCM decoder in order to be able to get
the soft outputs concerning the information bits. Let B+ be
the set of state pairs (σ′, σ) such that the first info bit b0

n at
time n is +1. Similarly define B−. The LLR value of the first
information bit b0

n at the output of the TCM decoder is given
by

λ(b0
n) = max

B+

∗[αn(σ′) + γn(σ′, σ) + βn+1(σ)]

− max
B−

∗[αn(σ′) + γn(σ′, σ) + βn+1(σ)]. (12)

The soft value of the other information bits corresponding
to the TCM symbol sn can be computed in a similar way.
The branch metrics (probabilities) between states σ′ and σ
are defined as

γn(σ′, σ) = log p(yn, σ|σ′) = log p(yn|sn) + log P (sn);

γ∗
n(σ′, σ) = log p(yn|sn). (13)

According to (10)

yn = ĥ∗hsn + η ≈ ‖h‖2sn + η = Psn + η;

p(yn|sn = si) ≈
1

πNη

exp

(

−
|yn − Psi|

2

Nη

)

=
1

πPNv

exp

(

−
|yn|

2 + P2|si|
2 − 2P Re{s∗i yn}

PNv

)

.

Omitting the common terms, e.g., 1
πPNv

exp
(

− |yn|2

PNv

)

,
which will be canceled in the subsequent calculations, we can
denote

p(yn|sn = si) ∝ exp

(

2Re{s∗i yn} − P|si|
2

Nv

)

. (14)

Substituting (14) into (13) yields

γn(σ′, σ) =
2Re{s∗i yn} − P|si|

2

Nv

+ log P (sn = si),

γ∗
n(σ′, σ) =

2Re{s∗i yn} − P|si|
2

Nv

. (15)

In (14) and (15), the term P|si|
2 can be omitted for PSK

signals since all the signal alternatives have the same energy.
Note that the a priori probability P (sn) is dropped from
γ∗

n(σ′, σ) to avoid statistic dependencies between the soft
values of several iteration steps, so that only the extrinsic
probabilities are fed back to the equalizer. With the Log-
MAP algorithm, αn(σ′) is computed recursively as αn(σ) =
maxσ′

∗[αn−1(σ
′)+γn(σ′, σ)], with initial conditions α0(0) =

0, α0(σ 6= 0) = −∞. The max∗ operation is performed over
all the states σ′ where the transition (σ′, σ) is possible. The
state metrics for the portion of the trellis beyond the nth node
can be computed similarly by a backward recursion starting
at the last node βn−1(σ

′) = maxσ
∗[βn(σ) + γn(σ′, σ)], with

initial conditions βLb
(0) = 0, βLb

(σ 6= 0) = −∞. The max∗

operation is performed over all the states σ where the transition
(σ′, σ) is possible.
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TABLE I
COMPARISON OF COMPLEXITY FOR ONE SYMBOL ESTIMATE AT ONE ITERATION FOR THE ALGORITHMS CONSIDERED. THE TCM SYMBOLS ARE FORMED

BY UNGERBOECK’S 4-STATE 8PSK SCHEME.

operations multiplication/division addition/subtraction log/exp max∗

Proposed scheme 10L2 + 24 L2 + 8L − 2 16 7
MMSE scheme 8L3 + 4L + 39 8L3 − 5L2 + 3L + 5 8 7

III. NUMERICAL RESULTS

In this section, we present some simulation results to
demonstrate the performance of the proposed scheme. In
our experiments, we employ Ungerboeck’s 8-state 2/3 8PSK
TCM [14]. In such a case, each pair of information bits b0

n, b1
n

at time instant n correspond to one of M = 8 PSK symbols
sn. During each Monte-Carlo run, 4096 coded symbols are
interleaved by a 64 × 64 block interleaver and transmitted
over an ISI channel. In order to ensure the reliability of the
performance measurements, 100 ∼ 500 blocks of data are
transmitted and at least 200 errors are generated. For the initial
equalization, we use a DFE equalizer with 9 feedforward,
3 feedback taps. It uses 200 pilot symbols for training the
equalizer coefficients (using RLS adaptation). In the meantime,
the modified maximum likelihood algorithm introduced in [11]
is used for channel estimation during the training period. For
the computation of the branch metrics in the TCM decoding
as expressed in (15), we found that in order to avoid numerical
instability, it is necessary to do truncations, such as

P (sn = si) =

{

10−300 if P (sn = si) < 10−300;

P (sn = si) otherwise.

We observed from the experiments that replacing Nv , derived
statistically with equation (4) with Nv = N0 (assuming perfect
cancellation), yields similar performance at low SNR and
slightly better performance at high SNR, especially when the
system reaches convergence. The reason is that Nv calculated
by (4) and assuming Nv = N0 are both approximations;
wheareas the latter will approach optimality when the ISI is ef-
fectively canceled as the iterative process proceeds. Therefore,
perfect interference cancellation is assumed in our simulations.

The performance of the proposed scheme and the MMSE
scheme is compared in Figure 3, where we use a 5-tap channel
with impulse response h[n] = (2−0.4j)δ[n]+(1.5+1.8j)δ[n−
1]+δ[n−2]+(1.2−1.3j)δ[n−3]+(0.8+1.6j)δ[n−4], which is
taken from [6]. The output channel power is normalized so that
P =

∑4
n=0 |h[n]|2 = 1. Results are shown for the 4th stage

at which all the schemes have converged. Upon convergence,
the proposed scheme outperforms the original MMSE filter-
based turbo equalization by 1 dB at a BER= 10−4. In addition
to the original scheme introduced in [6], [7], we also tested
its improved version where the MMSE filter output is passed
as the refined channel value to the TCM decoder in addition
to the symbol a posteriori probabilities. Clearly, the improved
algorithm performs better than the original one, meaning that
it is necessary for the TCM decoder to be provided with
the refined channel value in order to improve its decoding
performance. The plot also shows that the proposed algorithm
yields identical performance at low SNR and slightly superior
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Fig. 3. Comparison between the proposed and the MMSE filter-based turbo
equalization for the 5-tap channel. All the curves represent the 4th stage turbo
equalization.

performance at high SNR to the improved version of the
MMSE filter-based turbo equalization. However, the difference
is not significant. Like the proposed scheme, the MMSE
scheme is also suboptimum compared to the trellis based
approach. The results show that the assumption of perfect
cancellation does not incur a performance penalty compared to
the MMSE scheme when the ISI is effectively canceled as the
iterative process proceeds and the algorithm converges. Note
that the approach proposed in Section II reduces the complex-
ity from O(L3) to O(L2) by avoiding MMSE filtering and
matrix inversion in the equalization process. The performance
of the proposed turbo equalizer assuming perfect channel state
information (CSI) is also shown in Figure 3. By comparison,
we see that the performance loss due to imperfect channel
estimation (CE) is very small compared to the genie-aided
case assuming perfect CSI.

Figure 4 shows the performance of the proposed turbo
equalizer for the 5-tap channel. It takes only 3 or 4 stages
for the algorithm to converge. The gain achieved by iterative
equalization and decoding is dramatic compared to separate
equalization and decoding shown by the topmost curve.

Fig. 5 shows the performance comparison of different
schemes in another static channel (Proakis B channel) hav-
ing impulse response h[n] = 0.407δ[n] + 0.815δ[n − 1] +
0.407δ[n − 2]. Unlike the previous static channels which
have a strong line-of-sight component (i.e., the first tap is
stronger than the other taps), it is a much harsher channel and
introduces much more frequency-selectivity. As indicated by
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Fig. 5. Comparison between the proposed and the MMSE schemes for the
Proakis B channel. All the curves represent the 4th stage turbo equalization.

Fig. 5, the improved version of the MMSE scheme has slightly
better performance than the proposed scheme. However, the
gap is very small. The gain obtained by performing MMSE
filtering is negligible. Comparison between the two versions
of the MMSE schemes shows that the improved scheme with
refined channel value outperforms the original one.

IV. CONCLUSIONS

A new approach to iterative equalization and TCM decoding
is investigated in this correspondence. Instead of only pro-
cessing symbol a posteriori probabilities at TCM decoder as
in the existing turbo equalization schemes, we have shown
that the quality of decoding can be improved by passing the
refined channel value from the equalizer to the TCM decoder.
Simulation results of an 8-PSK TCM system show that the

proposed scheme has superior (comparable) performance to
the original (improved version of) MMSE filter-based turbo
equalization. We believe that this is due to the nature of TCM,
e.g., combined modulation and coding. No gain has been
observed when a similar procedure is applied to a conventional
system with independent modulation and coding (non-TCM
system). In addition, the proposed equalizer has an affordable
complexity, which is quadratic with the number of channel
taps. It can operate on systems with high-order modulation and
over channels with large delay spread, which is not feasible
with the trellis-based approach.
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