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Abstract — Asymptotic stable throughput (AST) is
the maximum arrival rate a large network can sup-
port while keeping queues bounded. We character-
ize the maximum AST of random access with dis-
tributed channel state information. The result is ap-
plied to CDMA networks with matched filter and lin-
ear MMSE (minimum mean square error) receivers.
Networks with and without power control are consid-
ered. It is shown that power control does not improve
AST if the channel support is large enough.
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bility, CDMA, distributed channel side information.

I. Introduction

Medium access (MAC) in cellular wireless networks is tra-
ditionally designed based on reservations. That is, first, users
contend through a random access channel to gain access into
the network. Then, a time slot, a frequency channel or some
other resource such as a spreading-code is granted for data
communication. Allocated resource belongs to the user as
long as he is in the system.

Recently a new paradigm has challenged this architecture.
In the so-called opportunistic communication, the resources
allocated to the users are not fixed, but they are time-varying
as a function of the quality of the communication channel. In
a fading environment, achievable rate can be improved signif-
icantly by exploiting the good channel states.

Works on opportunistic communication mainly focuses on
centralized implementation. The underlying assumption is
that users feedback their channel states to the base station
through a control channel. The resource allocation is done by
the base station considering the channel states of all users.

Despite its advantages, centralized MAC places a heavy
burden on the control channel whose extensive use reduces
the data throughput. To alleviate this problem, several dis-
tributed schemes have been proposed [1–4]. Shamai and
Telatar [2] considered achievable rates with distributed power
control and distributed channel side information. Qin and
Berry [3] studied a variant of slotted ALOHA with rate con-
trol. They also introduced a distributed splitting algorithm
that exploits multiuser diversity [4].

In [1], the use of a down-link pilot tone is suggested for dis-
tributed implementation. In this architecture the base station
continuously broadcasts a pilot-tone and each user estimates
his channel via the pilot (the up-link and down-link channel

1This work was supported in part by the Army Research Office
under Grant ARO-DAAB19-00-1-0507 and the Multidisciplinary
University Research Initiative (MURI) under the Office of Naval
Research Contract N00014-00-1-0564.

qualities are assumed symmetric). Upon learning his channel
state, every user makes a possibly randomized transmission
decision. This system is different from the centralized one in
that the transmission decisions at different nodes are done in-
dependently based on the individual channel states, not the
joint one.

Adireddy and Tong considered a buffered network and
studied network stability [1]. They obtained the stable
throughput in case of symmetric arrivals. They also suggested
the use of asymptotic stable throughput (AST) as a perfor-
mance metric, which is the stable throughput as the number
of users go to infinity. This metric is easier to analyze, and it
is meaningful for networks with large number of users. They
applied their findings to study optimal transmission control
in CDMA networks with linear receivers. Later, [5, 6] investi-
gated several aspects of AST with applications to sensor net-
works.

In this paper we consider the setup in [1], and solve an
open problem. Namely, we show that the asymptotic stable
throughput shown to be achievable in [1] is actually optimal.
This result is shown under certain regularity conditions on the
reception channel, which are satisfied by CDMA networks. We
then extend the setup to include power control, and charac-
terize the AST with power control.

The system model is introduced in the next section. In
Section III we discuss the achievability of AST, introduce the
regularity conditions, and prove the optimality. We also show
that the regularity conditions are satisfied by CDMA networks
when the channel distribution has bounded support. We ex-
tend the setup to include randomized power control in Section
IV, and conclude in Section V.

II. System Model

In the classic slotted ALOHA protocol [7], nodes transmit
their backlogged packets according to a certain probability
which doesn’t change over time. The scheme in [1] can be
viewed as a different version of slotted ALOHA where users
adjust their transmission probability as a function of their
channel state. More specifically, consider an up-link with n
users. Suppose that the channel gain between m’th user and
the access point is γ

(t)
m ∈ R+ in slot t. The user m knows its

channel state γ
(t)
m , and uses transmission probability s(γ

(t)
m )

to transmit its packets; the function s(·) is called the trans-
mission control scheme. A random transmission power can be
chosen similarly as a function of the channel state; this will
be considered in Section IV.

Some of the transmitted packets may not be received suc-
cessfully due to interference among users. The successful
receptions are determined according to the channel states
{γ1, · · · , γk} of transmitting users (in general, the channel is



specified by a conditional probability density function [1]). Al-
though our results are applicable in a wider context, in this
paper we will be particularly interested in the so-called SINR
(signal to interference plus noise ratio) threshold model. The
SINR model is considered as a heuristic for CDMA networks
with linear receivers. This model is accurate when the signa-
ture sequences are random, and the size of the network and the
spreading gain are large [8]. For the matched filter receiver,
the transmission from user i is successful if

γi

σ2 + 1
L

∑
j 6=i γj

≥ β, (1)

for some threshold β > 0, spreading gain L, and noise power
σ2 . With the linear MMSE receiver, user i is successful if

γi

σ2 + 1
L

∑
j 6=i

γjγi

γi+βγj

≥ β. (2)

The stable throughput of the system is the following. As-
sume that the γ

(t)
m for m = 1, · · · , n and t ∈ N are independent

and identically distributed with distribution F (γ). The aver-
age probability of transmission for a backlogged user is

ps =

∫ ∞

0

s(γ)dF (γ). (3)

The aposteriori channel state distribution given user transmits
is

G(γ) :=

∫ γ

0
s(γ′)dF (γ′)

ps
(4)

(in the sequel, we will denote this distribution by Gn when
we want to emphasize the dependence on n). The maximum
stable arrival rate with transmission control s(·) is

λn =

n∑

k=1

(
n

k

)
(1− ps)

n−kpk
sCk(G) (5)

where Ck(G) is the average number of successfully received
packets when there are k transmissions each with received
power distribution G.1 If the total arrival rate to the network
is less than λn, then all queues are stable; otherwise, the queue
lengths go to infinity (see [1] for a proof). This result is true
under assumptions of symmetric reception probabilities and
symmetric i.i.d. arrivals in time and across users.

The quantity in (5) is the expected number of successful re-
ceptions in a network with all backlogged nodes. Every node
attempts transmission with average probability ps, and the
number of transmitted packets is distributed Binomial(n, ps).
The interesting part of the result is that what matters for the
receiver is not the actual channel distribution F , but the apos-
teriori channel distribution G. The maximum stable through-
put of the transmission control s is determined only by ps

and G. The function of transmission control is to change the
channel distribution from F to G.

The asymptotic stable throughput (AST) is the maximum
stable throughput as the number of users goes to infinity. This
metric is usually easier to analyze and it determines the per-
formance of networks with large number of users. Consider
a sequence of transmission controls sn(·), n = 1, 2, · · · . The
AST achieved by {sn} is defined2 by

λ∞ = lim inf
n→∞

λn.

1Until Section IV, we assume that the transmissions are with
unit power.

2We allow population and channel dependent transmission con-
trol. [1] also considers AST under population and/or channel inde-
pendent transmission control.

The maximum AST λ∗∞ is the supremum of AST with respect
to {sn}.

Our objective in this paper is to show that

λ∗∞ = sup
x,T¿F

e−x
∞∑

k=1

xk

k!
Ck(T ), (6)

where the supremum is with respect to x > 0, and all distri-
butions T with are absolutely continuous with respect to F
(notation T ¿ F ) [9]. The fact that rates less than (6) are
achievable is proved in [1]. In the next section we argue that
the AST is upper bounded by (6).

III. Maximum Asymptotic Stable Throughput

A. Achievable Rates

The rate

f(x, T ) := e−x
∞∑

k=1

xk

k!
Ck(T ) (7)

is achievable for x > 0 and T ¿ F . T is called the target
distribution [1] for reasons that will become apparent. By the
Radon-Nikodym Theorem [9], T ¿ F implies that there exists
a function t : R+→R+ satisfying

T (γ) =

∫ γ

0

t(γ′)dF (γ′). (8)

In literature, t is usually called the density function of T with
respect to F (similar to the pdf), and is denoted by dT

dF
. In

general t is not bounded, but to obtain intuition about achiev-
ability of f(x, T ), let’s assume that t is bounded. Consider the
sequence of transmission controls

sn(γ) = min
(x

n
t(γ), 1

)
. (9)

Since t(·) is bounded, there exists some n0 for which sn(γ) =
x
n
t(γ), n ≥ n0. The average probability of transmission is

psn =

∫ ∞

0

x

n
t(γ)dF (γ) =

x

n
,

for n ≥ n0. Similarly, the aposteriori channel distribution
becomes Gn = T for n ≥ n0.

The crux of the achievability argument is that the psn con-
verges to zero, but npsn converges to x. This implies that
the number of transmissions Binomial(n, psn) converges to
Poisson(x) in a backlogged network. Previously, we have inter-
preted (5) as an expectation with respect to Binomial random
variables. The difference in (7) is that Poisson replaces Bino-
mial, and Gn is replaced by the target distribution T . See [1]
for the proof that the control schemes in (9) achieve f(x, T )
for general unbounded t.

B. Regularity Conditions and the Converse

Definition We say that the channel satisfies the regularity
conditions if the following holds for every sequence of trans-
mission controls {sn}:
(A1) Ck(Gn) is uniformly bounded

sup
k,n

Ck(Gn) < ∞. (10)
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(A2) limk→∞ Ck(Gn) exists for every n, and the sequences
(Ck(Gn), n ≥ 1) converge to (limk Ck(Gn), n ≥ 1) uni-
formly as k→∞

The physical interpretation of (A1) is that the base station has
bounded reception capability regardless of the received power
distribution —this is typical in practical networks. Assump-
tion (A2) is more technical in nature.

The following theorem asserts that (6) is an upper bound
to the maximum AST.

Theorem 1 If the channel satisfies regularity conditions and
λ∞ is achievable, then ∀ ε > 0, there exists x > 0, T ¿ F
such that

λ∞ − ε ≤ f(x, T ). (11)

Proof See the Appendix.

Next, we will argue that matched filter and linear MMSE
satisfies the regularity conditions. The following lemma places
bounds on the maximum number of successful transmissions.
This, in turn, implies that the condition (A1) is satisfied by
the matched filter and the linear MMSE receivers.

Lemma 1 The maximum number of successful transmissions
with matched filter is upper bounded by b 1

β
Lc + 1. Similarly,

the maximum number of successful transmissions with linear
MMSE receiver is upper bounded by b 1+β

β
Lc+ 1.

Proof For some integer l ≤ 0, let powers γl ≤ γl+1 ≤ · · · ≤
γ0 ≤ γ1 ≤ · · · ≤ γk−1 yield k successful receptions. (1) can be
equivalently written as

L

β
≥ σ2

γi
+

∑

j 6=i

γj

γi
.

User with power γ0 is successful, therefore,

L

β
≥ σ2

γ0
+

∑

j 6=0

γj

γ0

≥
k−1∑
j=1

γj

γ0

≥ k − 1. (12)

This yields the upper bound for the matched filter.
Consider the same setup with the linear MMSE receiver.

Observe that (1) is equivalent to

L ≥ βLσ2

γi
+

∑

j 6=i

βγj

γi + βγj
.

Since user with power γ0 is successful,

L ≥ βLσ2

γ0
+

∑

j 6=0

βγj

γ0 + βγj

≥
k−1∑
j=1

βγj

γ0 + βγj

≥
k−1∑
j=1

βγ0

γ0 + βγ0

=
β

1 + β
(k − 1),

where the last inequality is because
βγj

γ0+βγj
is monotonically

increasing as a function of γj . Hence, we get the upper bound
for the linear MMSE receiver.

To satisfy the condition (A2) we need one more assumption:
The channel gain γ is within an interval (γmin, γmax) with
probability one, where γmin > 0 and γmax < ∞. Here, γmin

can be as small as possible given that it is greater than zero.
Similarly, γmax can be as large as possible given that it is not
infinite.

The last assumption is naturally satisfied in a practical sys-
tem, but it is not valid for some common channel models.
Recall that F is the distribution of the channel gains. We
can write the assumption equivalently as F (γmax) = 1 and
F (γmin) = 0. Some common channel models, such as Rayleigh
and Rician, do not satisfy these conditions. Nevertheless, we
can always truncate the channel distribution at some appro-
priately small γmin and at some appropriately large γmax, and
the truncation hardly makes any difference in a practical set-
ting.

Now, let’s observe condition (A2) assuming the received
power is within interval an (γmin, γmax). Consider the matched
filter receiver with k transmissions. Eqn. (1) implies

γi ≥ β

L

∑

j 6=i

γj .

For large k, the opposite inequality γmax < β
L

(k−1)γmin holds.
This means that even the maximum possible power γmax can
not exceed the interference caused by k − 1 minimum power
interferers, and there can not be any success. Therefore, the
expected number of successful receptions Ck(Gn) is zero for
large k, regardless of {sn} and n. Hence, (Ck(Gn), n ≥ 1)
converges to its limit (limk Ck(Gn) = 0, n ≥ 1) uniformly as
k→∞.

With the linear MMSE receiver, (2) implies

γi ≥ β

L

∑

j 6=i

γjγi

γi + βγj
.

For large k, γmax < β
L

(k − 1) γminγmax
γmax+βγmin

holds, and there is
no successful transmissions. Similar to the matched filter,
(A2) is satisfied because the the expected number of successful
receptions Ck(Gn) is zero for large k.

IV. Effect of Randomized Power Control

In this section we will consider transmission power control
besides transmission probability control. We will see that the
only effect of power control is to enlarge the range of received
power distribution.

We will consider an extension of the setup in Section I.
γ

(t)
m ∈ R+ denotes the channel gain between m’th user and

the access point in slot t. γ
(t)
m are distributed according to F

i.i.d. in time and across users. Given that a user’s channel
state is γ, he uses a random transmission power ργ ∈ R+ dis-
tributed according to Hγ (before this section, and also in [1],
transmissions were assumed to have unit power); the received
power at the access point is γργ . The transmission probabil-
ity is given by s(γ, ργ).3 The transmission control s and the
power control distributions H := {Hγ , γ ∈ R+} are the design
parameters.

In our study of the network with power control, we will
have the following assumption.

3The case that s is only a function of the channel state is natu-
rally included in this setup. This situation is of practical interest,
since one would like to make the transmission decisions independent
of ργ for simplicity.
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(A3) The nodes are limited in peak power, i.e., there exists
ρmin > 0, ρmax < ∞ such that the random variable ργ

is within the interval (ρmin, ρmax), ∀γ. The transmit
powers have pdf hγ , ∀γ.

The assumption that the transmit powers having pdf hγ may
seem rather strange. However, it is practically not a restrictive
one. For example, if one would like to use a fixed transmit
power as a function of γ, then the distribution may have a
step, and the pdf does not exist (pdf, in the traditional sense,
can not have an impulse [9]). Nonetheless, a step function can
always be approximated by a smooth function, and practically
one would expect to have a nearly identical performance for
approximations close enough.

The achievability results in [1] applies directly to this net-
work. The transmission probability is given by

ps =

∫ ∞

0

∫ ∞

0

s(γ, ρ)dHγ(ρ)dF (γ). (13)

The aposteriori received power distribution at the access point
is given by

G(γ) =
1

ps

∫ ∞

0

∫ γ/γ′

0

s(γ′, ρ)dHγ′(ρ)dF (γ′). (14)

The expression for the maximum achievable rate with a fixed
s and H is same as the one without power control:

λn =

n∑

k=1

(
n

k

)
(1− ps)

n−kpk
sCk(G). (15)

So far we haven’t considered a constraint on the average
power. If the nodes are bounded in average transmit power,
then they may not be able to use every s and H. We will
study the AST both with and without average power con-
straint. Define the AST of a sequence of controls {sn,Hn}
as λ∞ = lim infn→∞ λn. The maximum AST without aver-
age power constraint is λ∗∞ = sup λ∞, where the supremum is
over all {sn,Hn}. We define the maximum AST with average
power constraint as the previous supremum over all {sn,Hn}
satisfying the average power constraint

∫ ∞

0

∫ ∞

0

ρs(γ, ρ)dHγ(ρ)dF (γ) ≤ P̄ ,

for some specified P̄ , for all n.
Next we will characterize the maximum AST. Let FH be

the distribution of γργ when the power control distribution is
H. Define

F = {FH : H = {Hγ , γ ∈ R+}}.
As a notation, we say that T ¿ F , if there exists an H such
that T ¿ FH.

Theorem 2 The maximum AST with average power con-
straint is lower bounded by

λ∗∞ = sup
x,T¿F

e−x
∞∑

k=1

xk

k!
Ck(T ). (16)

Under regularity conditions,4 the maximum AST without
power average constraint is upper bounded by the above λ∗∞.
Hence, the maximum AST both with and without average
power constraint is equal to λ∗∞.

4The definition of reguliarity conditions should be modified to
include every sequence of transmission controls {sn} and power
controls {Hn}

Proof For fixed H, the function of transmission control is
to shape the received power distribution FH to the aposte-
riori received power distribution G. With the help of power
control, all distributions in F can be used. Furthermore, by
transmission control (cf. Sec. A)

sn(γ, ρ) = min
(x

n
t(γρ), 1

)
,

which is actually a function of γρ, all target distributions
T ¿ FH can be reached asymptotically. This controller gives
the AST f(x, T ) (eqn. 7) for any x > 0 if sn and H satisfy
the average power constraint. Next, we will observe that this
choice of sn always satisfies the average power constraint for
large n. The basic idea is that transmission probability ps is
upper bounded by x/n, and transmit power is upper bounded
by ρmax; therefore, the average power constraint is automati-
cally satisfied for large n. More formally, we have

∫ ∞

0

∫ ∞

0

ρ min
(x

n
t(γρ), 1

)
dHγ(ρ)dF (γ)

≤
∫ ∞

0

∫ ∞

0

ρmax
x

n
t(γρ)dHγ(ρ)dF (γ)

(a)
= ρmax

x

n

∫ ∞

0

t(µ)dFH(µ)

(b)
= ρmax

x

n

∫ ∞

0

dT (µ)

(c)
= ρmax

x

n
,

where (a) follows from a change of variable µ = γρ, (b) from
the definition of Radon-Nikodym derivative, and (c) is because
T is a distribution.

The converse proof saying that one can not do any better
than λ∗∞ is same as the converse proof for network without
power control.

Corollary 1 Let the channel distribution have a pdf f posi-
tive within an interval (γmin, γmax), and zero outside.
(i) The maximum AST can be achieved using the uniform
power distribution. That is,

λ∗∞ = sup
x,T¿F̃

e−x
∞∑

k=1

xk

k!
Ck(T ), (17)

where F̃ is the distribution of γρ when ρ is uniform in
(ρmin, ρmax), and γ ∼ F .
(ii) More generally, (17) still holds if we replace F̃ with any
other FH with support equal to (ρminγmin, ρmaxγmax).

Proof To prove the corollary, we will show that

{T : T ¿ FĤ} = {T : T ¿ F}

holds if the distribution FĤ has a pdf positive in
(ρminγmin, ρmaxγmax). From the definition of F , it follows
that {T : T ¿ FĤ} ⊂ {T : T ¿ F}. To see the opposite in-
clusion, we will consider a power controlH′ = {H ′

γ}, and show
that FH′ ¿ FH —this implies T ¿ FH′ ⇒ T ¿ FH. To see
FH′ ¿ FH, we will argue that FH′ has a pdf with support in-
cluded in (ρminγmin, ρmaxγmax). The support is obvious, and
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we will focus on showing the existence of pdf. Observe that

FH′(γ) = Pr{γ′ργ′ ≤ γ}
=

∫ ∞

0

H ′
γ′(γ/γ′)dF (γ′)

=

∫ ∞

0

H ′
γ′(γ/γ′)f(γ′)dγ′

=

∫ ∞

0

[∫ γ/γ′

0

h′γ′(ρ)dρ

]
f(γ′)dγ′. (18)

Here, FH′ has a pdf fH′(γ) =
∫∞
0

1
γ′ hγ′(γ/γ′)f(γ′)dγ′ (to see

this formally, integrate the given fH′(γ) from 0 to some γ, and
apply Fubini’s Thm. [9] to interchange the integrals —this can
be done because the integrand is non-negative). The corollary
follows.

A. CDMA with Power Control

Thm. 2 (and its corollary) has some interesting conse-
quences. One of them is that if the channel support is already
very large, say (0,∞), then the maximum AST with and with-
out power control are the same. This is the case for Rayleigh
or Rician distributed channels.

Note that the regularity conditions for the CDMA model
holds only if the channel is confined within an interval
(γmin, γmax), where γmin > 0 and γmax < ∞. To apply our
theory, we have previously argued that we need to truncate
the channel at some appropriate (γmin, γmax). The truncation
doesn’t incur any loss because every receiver has a sensitivity
range, and we can always choose γmin and γmax such that the
values outside of (γmin, γmax) is not of practical interest. The
affect of power control in truncated channels is to enlarge the
support to (ρminγmin, ρmaxγmax). However, this enlargement
essentially doesn’t bring any improvement since the outside of
(γmin, γmax) can not be exploited by the receiver anyways. An
important conclusion is that adding transmit power control on
top of transmission control does not bring any improvement
in terms of maximum AST.

V. Conclusions

The asymptotic stable throughput is a performance metric
for networks with large number of users. In this paper we
have proved that the asymptotic stable throughput shown to
be achievable in [1] is also the maximum. We have obtained
this result under certain regularity conditions, and showed
that CDMA networks with matched filter and linear MMSE
receivers satisfy the regularity conditions. For this we have as-
sumed that the received power distribution has support within
an interval strictly inside [0,∞). Whether this constraint can
be relaxed is a theoretically interesting open question. Finally,
we have studied the AST in networks with power control, and
characterized the maximum AST.

Appendix: Proof of Thm. 1

Let λ∞ be achievable by {sn},

λ∞ = lim inf
n→∞

n∑

k=1

(
n

k

)
(1− psn)n−kpk

sn
Ck(Gn). (19)

In the following we will assume that the above lim inf is the
actual limit of the sequence; if this is not the case, then the

same arguments can be applied for a subsequence {ni, i ≥ 1}
whose limit equals the above lim inf.

Because of (19) there exists no such that ∀ n > n0

λ∞ − ε ≤
n∑

k=1

(
n

k

)
(1− psn)n−kpk

sn
Ck(Gn). (20)

Define xn := npsn . Two cases are possible: lim infn xn < ∞
and lim infn xn = ∞. We will analyze each of them separately.

i) lim infn xn := x < ∞. Assume a stronger statement,
namely limn xn = x; if this is not the case, one can apply the
arguments to follow for a subsequence {nj , j ≥ 1}. We want
to show that
∣∣∣∣∣

n∑

k=1

(
n

k

)
(1− psn)n−kpk

sn
Ck(Gn)−

∞∑

k=1

e−x xk

k!
Ck(Gn)

∣∣∣∣∣ < ε,

(21)
for n large enough. For this we need the assumption (A1).
Using triangle inequality, we see that the left hand side term
in (21) is upper bounded by

sup
k,n

Ck(Gn)

∞∑

k=1

∣∣∣∣∣

(
n

k

)
(1− psn)n−kpk

sn
− e−x xk

k!

∣∣∣∣∣ . (22)

Since npsn→x,

fn,k :=

(
n

k

)
(1− psn)n−kpk

sn
→ fk := e−x xk

k!
, as n→∞

But, is it true that
∑

k |fn,k − fk|→0? The following lemma,
which is a special case of the Schaffe’s Theorem [9], asserts
that this is indeed the case.

Lemma 2 Let fn,k be a non-negative double sequence. Sup-
pose that fn,k→fk as n→∞ for each k. And, assume that∑

k fn,k < ∞,
∑

k fk < ∞ is satisfied. If
∑

k fn,k →
∑

k fk

holds, then
∑

k |fn,k − fk|→0 as n→∞.

Invoking assumption (A1) and using Lemma 2, we see that
(22) converges to zero as n→∞. Therefore, (21) holds. Equa-
tions (20) and (21) imply

λ∞ − 2ε ≤
∞∑

k=1

e−x xk

k!
Ck(Gn) (23)

for n large enough.

ii) lim infn xn = ∞, i.e., limn xn = ∞. Our claim is that
limn limk Ck(Gn) exists and is equal to

λ∞ = lim
n→∞

n∑

k=1

(
n

k

)
(1− psn)n−kpk

sn
Ck(Gn).

For this purpose, we will show that
[

n∑

k=1

(
n

k

)
(1− psn)n−kpk

sn
Ck(Gn)− lim

k
Ck(Gn)

]
→0 (24)

as n→∞. For a moment assume (24), and see why it is enough.
Observe that,

sup
x

∑

k

e−x xk

k!
Ck(Gn) ≥ lim

k
Ck(Gn). (25)

5



This implies,

sup
n,x

∑

k

e−x xk

k!
Ck(Gn) ≥ lim

n
lim

k
Ck(Gn)

= λ∞,

as required.
To prove (24), we will use (A2). (24) is equivalent to

n∑

k=1

(
n

k

)
(1− psn)n−kpk

sn

[
Ck(Gn)− lim

k
Ck(Gn)

]
→0 (26)

as n→∞. Assumption (A2) implies that there exists k0 (in-
dependent of n!) such that for all k > k0 and for all n,
Ck(Gn)− limk Ck(Gn) < ε holds. Therefore,

n∑

k=1

(
n

k

)
(1− psn)n−kpk

sn

[
Ck(Gn)− lim

k
Ck(Gn)

]

≤ 2

[
sup
k′,n′

C′k(Gn′)

]
k0∑

k=1

(
n

k

)
(1− psn)n−kpk

sn

+ε

n∑

k=k0+1

(
n

k

)
(1− psn)n−kpk

sn

≤ 2

[
sup
k′,n′

C′k(Gn′)

]
k0∑

k=1

(
n

k

)
(1− psn)n−kpk

sn
+ ε (27)

→ ε, (28)

as n→∞. The left term in (27) goes to zero as n→∞ since
npsn→∞. Since ε can be chosen arbitrarily small, (24) follows.
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