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Abstract— In this contribution, a nonlinear hybrid detection
scheme based on a novel soft-information assisted Genetic Algo-
rithm (GA) is proposed for a Turbo Convolutional (TC) coded
Space Division Multiplexing (SDM) aided Orthogonal Frequency
Division Multiplexing (OFDM) system. Our numerical results
show that the performance of the currently known GA-assisted
system can be improved by about 2dB with the aid of the GA’s
population-based soft solution, approaching the optimum per-
formance of the soft-information assisted Maximum Likelihood
(ML) detection, while exhibiting a lower complexity, especially in
high-throughput scenarios. Furthermore, the proposed scheme is
capable of achieving a good performance even in the so-called
overloaded systems, where the number of transmit antennas is
higher than the number of receiver antennas.

Index Terms— Genetic algorithm, orthogonal frequency divi-
sion multiplexing, soft information, space division multiplexing,

I. INTRODUCTION

RECENTLY, Genetic Algorithm (GA) [1] assisted Multi-
User Detection (MUD) techniques have been pro-

posed for both multi-user Code Division Multiple Access
(CDMA) [2]–[5] as well as Space Division Multiple Access
(SDMA) type uplink Orthogonal Frequency Division Multi-
plexing (OFDM) [6], [7] systems. However, to the best of
our knowledge all GA-based detection schemes found in the
open literature at the time of writing are only capable of
providing a hard-decision output for the channel decoder,
which inevitably limits the system’s achievable performance.
Against this background, we propose the novel concept of
a GA-aided detection scheme benefitting from population-
based soft solutions and quantify its performance gain in
a Turbo Convolutional (TC) coded Multiple-Input-Multiple-
Output (MIMO) OFDM architecture, which is referred to here
as Space Division Multiplexing (SDM) assisted OFDM. We
will demonstrate that the proposed Bell Labs Layered Space-
Time (BLAST) [8] type SDM-OFDM system exploiting the
GA’s soft outputs is capable of outperforming its counterpart
based on hard-decision outputs, while achieving a similar
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Fig. 1. Schematic of a SDM-OFDM BLAST-type transceiver.

performance to that attained by soft-decision assisted opti-
mum Maximum Likelihood (ML) detection. Furthermore, the
proposed scheme is capable of achieving a good performance
even in the so-called overloaded scenarios, where the number
of transmit antennas is higher than the number of receiver an-
tennas. Finally, the computational complexity of the proposed
scheme is significantly lower than that of the optimum ML
system, especially in high-throughput scenarios.

The structure of this paper is as follows. The SDM-OFDM
system model is introduced in Section II, followed by a brief
review of the conventional-GA assisted detection technique in
Section III. The proposed GA detection with population-based
soft outputs is detailed in Section IV. Our numerical results
are presented in Section V, while Section VI concludes our
findings.

II. SDM-OFDM ARCHITECTURE

Here the terminology of SDM is used for the sake of
differentiating it from the conventional BLAST scheme [8],
which usually refers to the point-to-point single-carrier MIMO
architecture. The discrete-time model of the SDM-OFDM
MIMO system is illustrated in Fig. 1, which can be char-
acterized by:

yi[n, k] =
mt∑
j=1

Hij [n, k]xj [n, k] + wi[n, k], (1)
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where n = 0, 1, . . . , and k = 0, . . . , K−1 are the OFDM sym-
bol and subcarrier indices, respectively, while yi[n, k], xj [n, k]
and wi[n, k] denote the symbol received at the ith (i =
1, . . . , nr) receive antenna, the symbol transmitted from the
jth (j = 1, . . . , mt) transmit antenna and the Gaussian noise
sample encountered at the ith receive antenna, respectively.
Furthermore, Hij [n, k] represents the complex-valued Channel
Transfer Function (CHTF) associated with the propagation
link connecting the jth transmit and the ith receive antennas
at the kth OFDM subcarrier and time instance n. For the sake
of mathematical convenience, Equation (1) can be expressed
in the form of vectors and matrices, as:

y[n, k] = H[n, k]x[n, k] + w[n, k], (2)

where we introduce the space-division related vectors y, x
and w, as well as the (nr × mt)-dimensional CHTF matrix
H, as follows:

y = (y1, y2, . . . , ynr)
T , (3)

x = (x1, x2, . . . , xmt)
T , (4)

w = (w1, w2, . . . , wnr )T , (5)

H =

⎛
⎜⎜⎜⎝

H11 H12 · · · H1mt

H21 H22 · · · H2mt

...
...

. . .
...

Hnr1 Hnr2 · · · Hnrmt

⎞
⎟⎟⎟⎠ . (6)

Note that in Equations (3) to (6) the notation of [n, k] has
been omitted for brevity, but the above equations refer to any
of the K subcarriers in the nth OFDM symbol.

III. GA-BASED SDM DETECTION

It is well known that the optimum ML detection [9] uses
an exhaustive search for finding the most likely transmitted
signals. For the SDM-OFDM system employing mt transmit
antennas, the ML detection requires a total of M = (2m)mt

metric evaluations, where m denotes the number of bits per
symbol (BPS), in order to detect the symbol vector x̂ML that
consists of the most likely transmitted (2m)-ary symbols of the
mt transmit antennas at a specific subcarrier. Explicitly, the
ML complexity increases exponentially with both the number
of BPS and the number of transmit antennas mt. By contrast,
the GA-based detection schemes [2]–[7] confine their search
to a small fraction of the ML detector’s search space by
evaluating a system-dependent Objective Function (OF) at a
substantially reduced number of up to X · Y � M times,
where X is the GA’s population size and Y is the number of
GA generations. In the context of the SDM-OFDM system,
the OF can be formulated according to the ML decision metric
as:

Ω (x̌) = ||y − Hx̌||2, (7)

where x̌ is a trial-vector in the set Mmt , which has a size of
M and is defined by:

Mmt =

{
x̌ = (x̌1, x̌2, . . . , x̌mt)

T

∣∣∣∣∣x̌1, x̌2, . . . , x̌mt ∈ Mc

}
,

and Mc denotes the set containing the 2m number of legiti-
mate complex constellation points associated with the specific

modulation scheme employed. Based on Equation (7), the
solution vector found by the GA is given by:

x̂GA = arg
{

min
x̌∈Mmt

[
Ω (x̌)

]}
,

which is the individual having the lowest objective score
(i.e. the OF’s output) in terms of GA terminology. With the
aid of the GA’s natural evolution-like search mechanism, the
GA-based detection technique is capable of achieving near-
optimum performance at a significantly lower complexity than
that imposed by the full-search based ML detection. For
more details on GA-based detection, such as the population
initialization, fitness evaluation, individual selection, cross-
over, mutation, and elitism processes, the interested readers are
referred to references [2], [3], [6]. Here we point out that the
GA-aided detection schemes found in the open literature [2]–
[6] can only provide a GA-individual based hard-decoded
solution, which inevitably limits the GA-aided system’s at-
tainable performance. Furthermore, none of these previous
schemes considered the so-called overloaded scenarios, where
the number of transmit antennas is higher than the number of
receiver antennas. In Section IV, the proposed GA with the
ability to provide soft outputs will be introduced, which is
capable of performing well even in overloaded systems.

IV. GAS USING POPULATION-BASED SOFT OUTPUT

In this section we derive an algorithm that enables the GA to
output soft information. The soft-bit value or Log-Likelihood
Ratio (LLR) associated with the (mB)th bit position at the
jth (j = 1, . . . , mt) transmit antenna can be formulated
as [10]:

Lj,mB = ln
P (bj,mB = 1|y,H)
P (bj,mB = 0|y,H)

, (8)

which is the natural logarithm of the quotient of probabilities
that the bit considered has a value of bj,mB = 1 or bj,mB = 0.
Here we have omitted again the indices of [n, k]. Note that
the probability P (bj,mB = b|y,H) that the symbol transmitted
by the jth transmit antenna has the mth

B bit value of bj,mB =
b ∈ {0, 1}, is given by the sum of all the probabilities of the
symbol combinations which assume that bj,mB = b. Hence,
Equation (8) can be equivalently rewritten as:

Lj,mB = ln

∑
x̌∈Mmt

j,mB,1
P (x̌|y,H)∑

x̌∈Mmt
j,mB,0

P (x̌|y,H)
, (9)

where Mmt

j,mB ,b denotes the specific subset associated with the
jth transmit antenna, which is constituted by those specific
trial vectors, whose jth element’s

Mmt
j,mB ,b =�

x̌ = (x̌1, . . . , x̌mt)
T
���{x̌1, . . . , x̌mt ∈ Mc} ∧ {bj,mB = b}

�
. (10)

With the aid of Bayes’ theorem [10], we have:

P (x̌|y,H) = P (y|x̌,H)
P (x̌)
P (y)

. (11)

Upon substituting Equation (11) into Equation (9), we arrive
at:

Lj,mB = ln

∑
x̌∈Mmt

j,mB,1
P (y|x̌,H)∑

x̌∈Mmt
j,mB,0

P (y|x̌,H)
. (12)
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Note that here we have assumed that the different (2m)-
ary symbol combination vectors x̌ have the same probability,
namely that P (x̌), x̌ ∈ Mc is a constant. On the other hand,
it can be observed from Equation (2) that y is a random
sample of the mt-dimensional multi-variate complex Gaussian
distribution, where the mean vector is Hx, while the (nr×nr)-
dimensional covariance matrix Rw is given by [9]:

Rw = E{wwH} = σ2
wI, (13)

where σ2
w is the noise variance and I is the identity matrix,

while the noise encountered at the nr number of receiver
antennas is assumed to be uncorrelated. Hence, the above-
mentioned multi-variate complex Gaussian distribution can be
described by [11]:

f(y|x,H) =
1

πnr |Rw|exp
{
− (y − Hx)HR−1

w (y − Hx)
}

.

(14)
When substituting Equation (13) into Equation (14), we have:

f(y|x,H) =
1

πnrσ2
w

exp
{
− 1

σ2
w

||y − Hx||2
}
. (15)

Note that f(y|x,H) = P (y|x,H) is the a priori probability
that the vector y has been received under the condition
that the vector x was transmitted over the MIMO channel
characterized by the CHTF matrix H. Thus, Equation (12) can
be further developed with the aid of Equation (15), yielding:

Lj,mB = ln

∑
x̌∈Mmt

j,mB,1

1
πnr σ2

w
exp

{
− 1

σ2
w
||y − Hx̌||2

}
∑

x̌∈Mmt
j,mB,0

1
πnr σ2

w
exp

{
− 1

σ2
w
||y − Hx̌||2

} .

(16)
In order to avoid the exponential computation imposed by
Equation (16), the maximum-approximation [9] can be ap-
plied, yielding:

Lj,mB ≈ − 1
σ2

w

[
||y−Hx̌j,mB,1||2−||y−Hx̌j,mB,0||2

]
, (17)

where

x̌j,mB ,b = arg

{
min

x̌∈Mmt
j,mB,b

[
||y − Hx̌||2

]}
, b = {0, 1}.

Furthermore, with the aid of Equation (7), Equation (17) can
be represented as:

Lj,mB ≈ − 1
σ2

w

[
Ωj,mB ,1 − Ωj,mB ,0

]
, (18)

where

Ωj,mB ,b = min
[
Ω (x̌j,mB ,b) , ω

]
, b = {0, 1}, (19)

and ω = mtnr is a normalization factor. Equation (18)
suggests that the LLRs can be obtained by evaluating the
GA’s OF. More explicitly, in order to calculate the LLR of the
(mB)th bit of the jth (j = 1, . . . , mt) transmit antenna at the
specific subcarrier considered, the X number of individuals in
the GA’s final generation are divided into two groups, where
the first (or second) group is constituted by those individuals
that have a value of one (or zero) at the (mB)th bit of the jth

transmit antenna. The resultant lowest OF score calculated in
each of the two groups is then compared to ω, and the smaller

TABLE I

BASIC SIMULATION PARAMETERS USED IN SECTION V

Modem QPSK
Code rate 1/2

TC code Compnent codes RSC
parameters Constraint length 3

Octal generator poly-
nomial

(7 5)

Turbo interleaver
length

124 bits

Population
initialization method

MMSE

Mating pool creation
strategy

Pareto-
Optimality [15]

Selection method Fitness-
Proportionate

Cross-over Uniform cross-
over

GA Mutation BQM [7]
parameters Elitism Enabled

Incest prevention Enabled
Population size 500
Generations 5
Mutation probability 0.1
CIRs BUG [14]
Paths 8

Channel Maximum path delay 40 µs
parameters Symbol duration 160 µs

Subcarriers 128
Channel interleaver
length

248 bits

of the two will be used in Equation (18) for calculating the
corresponding LLR, which can therefore assist the channel
decoder in improving the SDM-OFDM system’s performance.

It is worth pointing out that the proposed population-based
GA only imposes a modest complexity increase in compari-
son to the conventional hard-decision aided individual-based
GAs [2]–[6]. This is because the only additional operation
required by the proposed scheme is to compare ω to the
objective scores, which are already available, since the results
of the OF evaluation carried out by the conventional GAs can
be readily used.

V. SIMULATION RESULTS

The OFDM modem used in our simulations employed
128 subcarriers. The half-rate TC [12] code employed two
Recursive Systematic Convolutional (RSC) component codes
having a constraint-length of K = 3 and the standard 124-
bit Wideband CDMA (WDMA) Universal Mobile Telecom-
munications System’s (UMTS) turbo code interleaver of [13].
The octally represented RSC generator polynomial of (7 5)
was used. The 8-path dispersive fading channel model of [14]
was employed and the channel estimation was assumed to be
perfect. The Minimum Mean Square Error (MMSE) algorithm
was used for creating the GA’s initial population and the
Biased Q-function based Mutation (BQM) scheme of [7] was
employed. QPSK was used for all simulations. For the reader’s
convenience, the simulation parameters are summarized in
Table I. For more details on the GA’s configuration, the
interested reader is referred to [2], [6], [7].
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Fig. 2. BER performance comparison of the 8-receiver TC-
SDM-OFDM system using the individual-based hard-decoded and
population-based soft-output GA detection, while employing a QPSK
scheme having an effective throughput of 8 BPS.

Fig. 2 provides the Bit Error Rate (BER) performance of
the TC-aided GA-SDM-OFDM system employing both the
conventional individual-based hard-decoded GA solution [2],
[4]–[7] and the proposed GA using population-based soft
information, respectively. For the sake of benchmarking, the
BER performances of the systems using hard-decoded and/or
soft-information aided MMSE and/or ML detection are also
shown in Fig. 2, where we had mt = nr = 8 for all schemes,
implying an effective throughput of (2·8· 12 ) = 8 BPS. It can be
seen in Fig. 2 that the GA-aided system was capable of achiev-
ing a similar BER performance to that attained by the optimum
ML-aided arrangement, while outperforming the linear MMSE
detected system. Furthermore, an Eb/N0 gain of about 2dB
was achieved by the GA using population-based soft outputs
over its counterpart using the individual-based hard-decoded
outputs. In Fig. 3 we provide the BER performance recorded
in the overloaded scenario, where mt = 8 transmit antennas
and nr = 6 receiver antennas were employed. In overloaded
scenarios, the weight matrix calculated by the MMSE al-
gorithm becomes a singular matrix, which will lead to a
theoretically unresolvable detection problem and thus resulting
in a dramatic performance degradation, as shown in Fig. 3. By
contrast, the system aided by the GA providing soft-outputs
was capable of attaining an undistinguishable performance
from that of the optimum soft-ML detected arrangement in
the overloaded scenario of Fig. 3. Again, a 2dB Eb/N0 gain
was observed, when comparing the proposed GA to the GAs
found in the literature [2], [4]–[6].

Furthermore, the associated complexity of the proposed
GA-aided detection is significantly lower than that of the ML
detection, as observed in Fig. 4, where we had mt = 6 or
mt = 8 transmit antennas and nr = 6 receiver antennas.
The associated complexity was quantified in terms of the
number of complex additions and multiplications imposed
by the different arrangements on a per user basis. As seen
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Fig. 3. BER performance comparison of the 6-receiver TC-
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scheme having an effective throughput of 8 BPS.
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in Fig. 4, on one hand, the GA-aided scheme imposed a
significantly lower complexity than that of the ML-aided
arrangement. More precisely, the complexity reduction factors
achieved by the GA-aided detection in comparison to the ML
detection were in excess of 22 and 55, respectively, when
we had mt = 6 and mt = 8 transmit antennas. On the
other hand, although the complexity of MMSE detection is
lower than that of the GA-aided detection, the performance
of the former is substantially worse than that of the latter,
especially in the overloaded scenario associated with Fig. 3.
Explicitly, the GA is capable of achieving a near-optimum
performance at the cost of a modest complexity, striking an
attractive performance-versus-complexity design trade-off.
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VI. CONCLUSIONS

In conclusion, the performance of the TC-SDM-OFDM
system using the individual-based hard-decoded GA’s output
can be improved by about 2dB, when the proposed population-
based soft-output GA is employed. Furthermore, the GA-
detected TC-SDM-OFDM system is capable of achieving an
undistinguishable performance to that of the optimum soft-ML
detected arrangement, while reducing the ML complexity by
a factor of 55 for mt = 8. When a higher number of transmit
antennas is used, the achievable complexity reduction becomes
even more significant.
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