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Abstract 
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Group Space-Time (QoGST) architecture is proposed, wherein the transmit stream is subgrouped but 
encoded via an inter-group space-time block encoder, with group interference suppression at the 
receiver. This paper also considers another combined space-time coding and layered space-time 
architecture, which we refer to as Group Layered Space-Time (GLST), where space-time block coding 
is employed within each group. Under the assumption of Rayleigh fading and a prior perfect channel 
state information at the receiver, a performance analysis will demonstrate that both QoGST and GLST 
can achieve a good diversity-multiplexing tradeoff. QoGST is even superior to GLST. Simulation 
results will validate our analysis and further show that compared to the existent Layered Space-Time 
Block Code (LSTBC) scheme, both QoGST and GLST can achieve a significant performance gain. 
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I. Introduction 

MIMO (Multiple-Input Multiple-Output) systems have shown their ability in providing great 

performance improvements over the SISO (Single-Input Single-Output) systems thanks to their higher 

spectral efficiency [1]. It has been well understood that multiple antennas can not only be used to 

achieve diversity gain [2], but also as an effective way to increase the degrees of freedom of the 

channel [3]. With multiple antennas at both the transmitter and receiver, independent information 

streams can be transmitted through the parallel spatial channels so that the data rate is increased. 

Therefore, a MIMO system can provide both diversity gain and multiplexing gain [4]. 

In order to reveal the relationship between these two gains, Zheng and Tse proposed a powerful 

tool known as diversity-multiplexing tradeoff function [4]. It is found that a higher spatial 

multiplexing gain comes at the price of sacrificing diversity and vice versa. An optimal 

diversity-multiplexing tradeoff curve is characterized in [4] and is shown to be achievable by 

Gaussian random codes. Zheng and Tse also analyzed the tradeoff functions of some existing MIMO 

schemes and found that most of them aim at achieving either maximum diversity gain or maximum 

multiplexing gain. For example, space-time codes (STC) (including space-time block codes (STBC) 

[5-6] and space-time trellis codes (STTC) [7]) are carefully designed to achieve the full diversity order, 

but no multiplexing gain can be obtained. Layered space-time (LST) such as VBLAST [8] can achieve 

maximum multiplexing gain but with a very low diversity gain. Actually, it is shown in [4] that no 

existing scheme, except for the Alamouti’s scheme [5] with 2 transmit antennas and 1 receive antenna 

and DBLAST [9] employing an MMSE decoder1, can achieve this optimal tradeoff. 

There have been some efforts on explicit code construction to achieve the optimal tradeoff. [10] 

developed a structured coding scheme for two-transmit two-receive antenna systems with code 

duration two which has been shown to be able to achieve the full diversity-multiplexing frontier. [11] 

constructed some explicit optimal permutation codes for a parallel channel with two diversity 

branches. In [12], full-rate-full-diversity codes are proposed based on LCF coding and ML decoding. 

[13] further provided a general framework for constructing the optimal coding/decoding schemes for 

delay limited MIMO fading channels and claimed that their LAttice Space-Time (LAST) codes can 

achieve the optimal diversity-multiplexing tradeoff under generalized minimum Euclidean distance 

                                                        
1 Here it is assumed that the overhead that is required to start the DBLAST processing is ignored. 
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lattice decoding.  

Another class of designs focuses on signal processing instead of code construction. [14] proposed 

a combined array processing and space-time coding architecture, in which the transmit stream is 

partitioned into different groups and in each group STC is applied. At the receiver, group interference 

suppression is adopted, where each individual STC is decoded by suppressing the signals transmitted 

from other groups. This combination of STC and LST provides much better multiplexing gain than 

STC with lower decoding complexity. At the same time, it achieves a much higher diversity gain than 

LST. Unlike the work in [10-13], which approach the optimal diversity-multiplexing tradeoff at a cost 

of high complexity, [14] shows how to trade off between diversity gain and multiplexing gain by 

virtue of group detection with very low complexity. [15-17] further developed this architecture. In [15] 

and [16], Alamouti’s scheme and variable rate STBC were adopted as the component encoder, 

respectively, and the transmit power was optimized to minimize the average FER or BER. [17] 

focused on the receiver design and proposed an optimal decoding order and a computationally 

efficient hard-decision iterative decoding algorithm.  

In [14], the substreams of each group are encoded independently and no special transmit design is 

adopted to suppress the interference among the groups. At the receiver, space-time decoding is 

performed for each group by assuming that the interference has been suppressed by virtue of a group 

detector. That is, in [14] (including [15-17]), group detection is performed first followed by 

space-time decoding. Therefore, the overall performance is limited by the group detection step.  

This paper further presents a novel group space-time architecture, which we shall refer to as 

Quasi-Orthogonal Group Space-time (QoGST). At the transmitter, all the groups are encoded together 

via an inter-group STBC. To keep the same spectral efficiency as [14], we assume that in each group 

no space-time coding is adopted. Particularly, at each time slot t, we regard the transmit vector of each 

group as one symbol and apply STBC to all the transmit vectors. It can be seen that with this 

inter-group STBC, the interference among groups can be effectively suppressed because of the 

orthogonal nature of STBC. Therefore, QoGST should have a better interference suppressing 

capability. However, it should be pointed out that the encoded vectors of each group are not strictly 

orthogonal to each other. Instead, they are orthogonal only when the group size is one. This is why the 

proposed scheme is referred to as “quasi-orthogonal”. This should be distinguished from [18] which 

aims at constructing a kind of rate one quasi-orthogonal STBC by building a  code matrix from k k×
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two 
2 2
k k
×  matrices. 

At the receiver, and in contrast to the detector used in [14-17], space-time block decoding is 

performed before group detection is applied. Specifically, for the case of m transmit and n receive 

antennas during T time slots, the linear nature of STBC can be exploited to obtain an equivalent 

 channel [19]. Group detection is then applied based on this equivalent channel. It can be seen 

that after decoding, the receive dimensions increase from n to Tn and thus much better performance 

can be achieved by group detection. In this paper, we shall always assume that this novel detector is 

adopted instead of the one used in [14-17]. For the sake of comparison, the structure that combines the 

proposed detector and the transmission structure proposed in [14] with STBC in each group is 

considered in this paper. Such combined structure, which we refer to as Group Layered Space-Time 

(GLST), should be distinguished from the Layered Space-Time Block Code (LSTBC) proposed in 

[15], as we adopt a different detection methodology. 

Tn m×

The performance of our proposed QoGST and GLST, is evaluated in terms of the 

diversity-multiplexing tradeoff function. To do so, we first obtain the equivalent channel models of 

GLST and QoGST, respectively, by virtue of the linear structure of STBC. For 

m-transmit-n-receive-T-coding-length GLST and QoGST, we derive the tradeoff function of an 

m-transmit-Tn-receive system over Rayleigh slow fading channels with group zero-forcing (GZF) 

detection since their equivalent channels are both of Tn m×  dimensions. However, it is very difficult 

to get the exact tradeoff function of both GLST and QoGST in general. Therefore, we resort to 

tradeoff bounds. Particularly, we obtain the lower and the upper bound tradeoff functions of GLST 

and QoGST. It is found that the lower bound tradeoff of QoGST is usually better than the upper bound 

tradeoff of GLST, which implies that QoGST has a better diversity-multiplexing tradeoff than GLST. 

Simulation results will further validate our analysis and show that compared to the existent LSTBC 

scheme, both QoGST and GLST can achieve a significant performance gain. Throughout the paper, 

we assume Rayleigh fading and a prior perfect knowledge of the channel at the receiver.  

This paper is organized as follows. In Section II, we provide our channel model and briefly present 

the group detection scheme. In Section III, we introduce the transmitter and receiver design of GLST, 

and then QoGST. Section IV presents the performance analysis, which is evaluated in terms of the 

diversity-multiplexing tradeoff function. Simulation results are given in Section V. Finally, Section VI 

summarizes and concludes this paper.  
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II. Channel Model and Group Detection 

We consider a wireless link with m transmit and n receive antennas, which we refer to as (m, n). 

At each time slot t, the encoded and modulated signal i
tx  is transmitted through transmit antenna i, 

. We assume that the channel remains constant within a block of L symbols. Let  denote 

the complex path gain from transmit antenna j to receive antenna i, which is modeled as samples of 

independent complex Gaussian random variables with mean zero and variance 0.5 per dimension. We 

also assume perfect channel knowledge at the receiver side only, through the use of training 

sequences. 

1 i m≤ ≤ ijh

Let  denote the transpose operator. The discrete received complex signal vector can now be 

written as 

( ) '⋅

SNR
m

= +t t ty Hx z ,         (1) 

where 
'1 2, ,..., m

t t tx x x⎡ ⎤= ⎣ ⎦tx  and . The additive noise  has i.i.d. entries , 

, which are all Gaussian complex random variables with mean zero and unit variance. Also 

 is the average signal-to-noise ratio at each receive antenna. 

'1 2, ,..., n
t t ty y y⎡= ⎣ty ⎤⎦

n

G

tz i
tz

1,...,i =

SNR

Assume that the transmit signals are divided into G groups, , with group size , 

. Then, (1) can be written as  

1 2, ,..., GG G G | |iG

1,...,i =

1 2
, ,...,

G

SNR
m

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1
t
2
t

t t

G
t

s
s

⋅ +y H H H z

s

G G G ,       (2) 

where  is the transmit vector of group  at time slot t, i
ts iG 1,...,t L=  and .  is the 

|  channel matrix of group , . 

1,...,i G=
i

HG

| in× G

G

iG 1,...,i G=

When group detection is adopted, two types of receiver can be deployed: Group Zero-Forcing 

(GZF) and Group Successive Interference Cancellation (GSIC). With GZF, groups are detected 

independently. In particular, at time slot t, group  is assumed to be detected. Then, the interference 

from the other groups  should be nulled out using an orthogonal projection. To 

iG

1 1 1,,..., , ...,i i− +G G G G
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obtain the projection matrix, we partition H into ,
i i

⎡ ⎤= ⎣ ⎦H H HG G , where 
i

HG  includes the columns 

of H corresponding to all the groups except . The projection matrix  is then defined as [20] iG i
PG

1( )
i i i i i

+ − += −nP I H H H HG G G G G ,        (3) 

where  denotes the complex conjugate transpose. Therefore, using the transformation 

 on 

( )+⋅

i i

+=iW H PG G ty , we have 

1
i i i i

iSNR SNR
m m

+= = + = +i i
t i t t t t

−
ty W y H P H s z Q s zG G G G

iG

,     (4) 

where 

1
i i i

− +=Q H P HG G G .         (5) 

It turns out that ( ) 1

| | | |
i

i i

−+

×

⎡ ⎤= ⎢ ⎥⎣ ⎦
Q H HG

G G
is the | | | |i i×G G  diagonal submatrix of ( ) 1−+H H  and the 

noise  has covariance . The transmit symbols of group  at time slot t can then be 

decoded using MLD based on  as follows: 

tz 1
i

−QG iG

i
ty

( )ˆ arg min
i

+

∈Ω
=

i
t

i i
t t

s
s r G

i
tQ r ,        (6) 

where  is the constellation set and  Ω

1
i

SNR
m

−= −i i
t tr i

ty Q sG .        (7) 

 When GSIC is adopted, the channel matrix H is updated by eliminating the columns 

corresponding to  before detecting . After obtaining , the interference introduced 

by  should be subtracted from 

1 2, ,..., i−G G G 1 iG ˆ i
ts

iG ty . The remaining process is similar to GZF. 

Throughout this paper, we denote by *( )⋅  and det( )⋅  the conjugate and the determinant 

operators, respectively.  and  represent an mmI m n×0 m×  identity matrix and an  zero matrix, 

respectively. For an arbitrary matrix ,  refers to its element at the i

m n×

A ija th row and the jth column, and 

 to its n n  diagonal submatrix. When  is a Hermitian positive definite matrix, we shall 

write it as . If A and B are both Hermitian matrices and we have , we write it as 

. Finally, 

( )n n×
A × A

>A 0 − >A B 0

>A B S  shall represent the complement of a set S with the length . | |S
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III. Combined STBC and LST 

We begin by presenting GLST, and then provide the details of the QoGST architecture. 

A. GLST 

A.1 Transmitter 

As shown in Fig. 1, all the m transmit antennas are partitioned into  groups, respectively, 

comprising  antennas with 

mG

1 2, ,..., Gm m m
1

mG

i
i

m m
=

=∑ . A block of input bits  with length K is 

divided into  groups, , and in each group, 

1...{ }i i Kb =

bG 1 2, ,...,
bGG G G

'

,1 ,2 ,| |, ,...,
ii i ib b b⎡ ⎤= ⎣ ⎦ib G , , is then 

encoded by a component space-time block code  associated with  transmit antennas. In 

GLST, it is required that . For simplicity, here we do not consider the case of 

variable-rate STBC. Therefore, we assume that all the component codes , , have the 

same code length T, and we have 

1,..., bi = G

G

m

iSTBC im

m bG G G= =

iSTBC 1,...,i =

im g=  and | |i gb=G  for 1,...,i G= . Then, the output m T×  

codeword matrix  over a block of T symbol intervals can be written as X
1 1 1 1
1 1

1 1

T T

m m G G
T T

x x

x x

⎡ ⎤ ⎡ ⎤ 1

G

⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ = ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

s s
X

s s S

S
,      (8) 

where  is the  codeword matrix of group , 1[ , , ]i i
i T=S s s mg T× iG 1,...,i G= . 

 An m-antenna-T-time-slot-K-symbol STBC  can be represented as [23] xO

* *
1 1 2 2, ,...,x ⎡ ⎤= +⎣ ⎦A x B x A x + B x A x + B xO *

T T       (9) 

where  is an x 1K ×  complex variable vector and  are constant coefficient matrices in 

, . The matrix  is called [m, T, K] STBC for short in the following. Therefore,  

can be written as  

,tA Bt

T

*
i ⎤⎦

G i
t

m K×R 1,...,t = xO iS

*
1 1,..., ,...,i i i i

i i T i i T⎡ ⎤ ⎡= +⎣ ⎦ ⎣S A b A b B b B b ,       (10) 

for , where  are constant coefficient matrices in 1,...,i = ,i
tA B m bg g×R , . 1,...,t T=

It can be seen that in this transmit architecture, the bit streams of each group are space-time coded. 
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Therefore, a higher diversity gain can be achieved compared to the conventional LST. Besides, the 

multiplexing gain is higher than the conventional STBC due to the use of multiple group transmission. 

We can thus conclude that this transmit scheme offers a good tradeoff between the diversity gain and 

multiplexing gain. 

A.2 Receiver 

The detector presented in [14-17] is to suppress signals transmitted from other groups of antennas 

by virtue of a group detector first, and then perform space-time decoding for the desired group. 

Particularly, assume that GZF is adopted. At each time slot t, the nulling matrix  for 

group  can be computed, as shown in Section II. However, to decode the whole codeword  of 

group , an ML space-time decoder should be adopted instead of the one given by (6) as 

i ii
+=W H PG G

iG iS

iG

( )
1

ˆ arg min
i

i

T
i

i t
t

+

∈Ω
=

= ∑b
b r G

i
tQ r ,        (11) 

where  is given by (7).  i
tr

In this paper, we adopt a new detector, in which space-time decoding is performed first followed 

by group detection. To do so, an equivalent channel is obtained by virtue of the linear nature of STBC. 

GZF is then performed. Particularly, by combining (8) and (10), the received signal vector can be 

written as  

1 1
1 1

1 1 1 1

* *
1 1

1 1
1 1 1 1

* *

,..., , , ,...,

,..., , , ,..., .

G G
G T G

G G

G G
G T G T

G G

SNR
m

SNR
m

⎡ ⎤

T

⎡ ⎤ ⎡
⎢ ⎥

⎤
⎢ ⎥ ⎢⎡ ⎤ ⎡ ⎤= ⋅⎣ ⎦ ⎣ ⎦⎢ ⎥

⎥⋅ +⎢ ⎥ ⎢
⎢ ⎥

⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤

⎦

⋅ ⋅ +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

b b
Y H A H A H A H A

b b

b b
H B H B H B H B Z

b b

   (12) 

Let iy  represent the i-th column vector of  and 'r y . Then, from (12) we have Y ' ' '
1 2[ , ,..., ]T= y y

1 1
1 1 1 1 1 1 1 1

1 1
1 1

G G
G G

G G
T G T G T G T G

SNR
m

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥= ⋅ +⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣⎩ ⎭

H A H A b H B H B b
r v

H A H A b H B H B b

*

*

⎤
⎥⋅ +⎥
⎥⎦

  (13) 

[23] has proposed an algorithm for constructing any [m, T, K] STBC that guarantees that  and 

 will not appear in the same time slot t. Under this assumption, (13) is equivalent to 

b

*b
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1

1 * 1* * *
1 1 1 1 1 1 1 1

1 * 1 * * *
1 1

,...,
G

G G
G G

G G
T T G T G T G G

SNR SNR
m m

⎧ ⎫⎡ ⎤+ + ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤= ⋅ + =⎨ ⎬⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + ⎣ ⎦ ⎣ ⎦⎣ ⎦⎩ ⎭

H A H B H A H B b b
r v

H A H B H A H B b b
G G ⋅ +H H v

' T

  (14) 

where  and , ' '
1[ ,..., ]T=r y y *

,
,

m b

m b

i
t g gt

t i
t t g g

×

×

=⎧
= ⎨

=⎩

B 0y
y

y A 0
1,...,t = . Also  has covariance . For 

any group , , its corresponding subchannel matrix is given by 

v TnI

iG 1,...,i = G

* *
1 1

* *
i

i i
i i

i i
i T i T

⎡ ⎤+
⎢ ⎥= ⎢ ⎥
⎢ ⎥+⎣ ⎦

H A H B
H

H A H B
G .         (15)  

Notice that (15) is an equivalent subchannel for each group with subchannel . From (15), it 

can be also seen that the equivalent subchannels of each group are independent. This is because an 

independent STBC is adopted for each group in GLST. Notice that  and , are the 

coefficient matrices of , . We present the following proposition. 

iH

1,...,{ }i
t t T=A 1,...,{ }i

t t T=B

iSTBC 1,...,i = G

Proposition 1: For the equivalent channel matrix of any group, ,1 ,[ ,..., ]
i bi i g=H h hG , 1,...,i G= , 

its column vectors are orthogonal to each other, namely,  

, ,
1

0

mg

i l i l
lik ij

j k

otherwise

+
+

=

⎧
=⎪= ⎨

⎪
⎩

∑h h
h h ,       (16) 

where  is the th
,i lh (( 1) mi g− ⋅ + )l  column vector of the channel matrix H, l=1,…,  and i=1,…,G. mg

Proposition 1 can be easily obtained from the properties of  and . Therefore, 

we omit the proof here. 

1,...,{ }i
t t T=A 1,...,{ }i

t t T=B

From (14) it is clear that after obtaining this Tn K×  equivalent channel of GLST, the decoding 

process is done. Group detection can then be applied so as to get the original transmit symbols. The 

details have been presented in Section II and we do not repeat them here. Besides, it should be noticed 

that there should be some constraint on the number of receiver antennas since group detection is 

applied to a  equivalent channel at the receiver. In particular, Tn  should be larger than 

 in order to ensure that the group detector works.  

Tn K×

mm g−
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B. QoGST 

B.1 Transmitter 

 In GLST, the bit streams of each group are encoded separately so that the output streams 

 are independent of each other. No special transmit design is adopted to suppress the 

interference among the groups. Besides, the mapping from different groups to the transmit antennas is 

always fixed over all the time slots. Therefore, no interleaving gain can be achieved. In this section, 

we will present a new space-time architecture, in which all the groups are encoded together via an 

“inter-group STBC” encoder. We call it Quasi-Orthogonal Group Space-time (QoGST).  

, ,...,1 2 GS S S

 As Fig. 2 shows, the input stream  and all the m transmit antennas are equally 

partitioned into  and  groups with the group size  and , respectively, as GLST does. 

However, instead of being encoded separately, all the groups  are encoded together. The 

design of the inter-group STBC is given by 

1...{ }i i Kb =

bG mG bg mg

1 2, ,...,
bGb b b

*
1 1,..., ,...,T⎡ ⎤ *

T⎡ ⎤= + ⎣ ⎦⎣ ⎦X A b A b B b B b ,        (17) 

where 

1,..., bG
t t t⎡ ⎤= ⎣ ⎦A A A , 1,..., bG

t t t⎡ ⎤= ⎣ ⎦B B B ,       (18) 

and , [:, ]i
t t gi= ⊗A A I [:, ]i

t t gi= ⊗B B I G, 1,..., bi =  and 1,...,t T= .  and  are the i[:, ]t iA [:, ]t iB th 

column vector of  and , respectively.  and , t =1,…,T, are the coefficient matrices of a 

[G

tA tB tA tB

m,T, ] STBC. Here it is required that bG m bg g g= = . 

 To further illustrate this encoding process, we consider the following example. Assume that the 

bit streams are divided into  groups and transmitted by 2bG = 4m =  transmit antennas over 2T =  

time slots. Obviously, we have  and 2g = 2b mG G= = . For a [2,2,2] STBC, the coefficients 

matrices  are given by:  1 2 1, , ,A A B B2

1

1 0
0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A , 2

0 1
1 0

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

B , 2 1 2 2×= =A B 0 .      (19) 

Then, the new coefficients matrices can be obtained as: 
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1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A , 2

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

B , .    (20) 2 1 4×= =A B 0 4

Therefore, the output codeword matrix of QoGST is given by: 
*

1,1 2,1
*

1,2 2,2
*

2,1 1,1
*

2,2 1,2

QoGST

b b
b b
b b
b b

⎡ ⎤−
⎢ ⎥−⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X .        (21) 

Compared to the codeword matrix of GLST: 
*

1,1 1,2
*

1,2 1,1
*

2,1 2,2
*

2,2 2,1

GLST

b b
b b
b b
b b

⎡ ⎤−
⎢ ⎥
⎢ ⎥= ⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

X  ,        (22) 

it is obvious that in QoGST the mapping from the bit streams of different groups to the transmit 

antennas is not constant any more. Therefore, a higher diversity gain can be achieved thanks to an 

interleaving gain that is obtained as a result of this non-constant mapping. Besides, here STBC is 

applied to the transmit vectors. The interference among the groups is not independent any more and 

thus can be better suppressed.  

B.2 Receiver 

From (17), we have 

1 1
1 1
1 1

* *
1 1

1 1
1 1

* *

,..., , , ,...,

,..., , , ,..., .

b b

b b

b b

b b

G G
T T

G G

G G
T T

G G

SNR
m

SNR
m

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤= ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤

⋅ +

⋅ ⋅ +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

b b
Y HA HA HA HA

b b

b b
HB HB HB HB Z

b b

   (23) 

Similarly, we can get 
1 1
1 1 1 1 1 1

1 1

b b

b b

b b

G G

G G
T T G T T G

SNR
m

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅ +⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦⎩ ⎭

HA HA b HB HB b
r v

HA HA b HB HB b

*

*

⋅ +    (24) 

and 
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1

1 * 1* * *
1 1 1 1 1 1

1 * 1 * * *

,...,

b b

Gb
b b

b b

G G

G G
T T T T G G

SNR SNR
m m

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ +
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤= ⋅ + =⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + ⎣ ⎦ ⎣ ⎦⎣ ⎦⎩ ⎭

HA H B HA H B b b
r v

HA H B HA H B b b
G G ⋅ +H H v   (25) 

where for ,  1,..., bi G=

* *
1 1

* *
i

i i

i i
T T

⎡ ⎤+
⎢ ⎥

= ⎢ ⎥
⎢ ⎥+⎣ ⎦

HA H B
H

HA H B
G .         (26) 

Given , group detection can then be applied. r

Clearly, the equivalent channel matrix of QoGST with the element given by (26) also has Tn K×  

dimensions. However, in contrast to GLST, here ’s are dependent on each other. Notice that when 

the group size g is one, QoGST is reduced to an STBC scheme and thus all ’s are orthogonal. 

However, when g is larger than one, ’s are not strictly orthogonal. Actually, for any i j

i
HG

i
HG

i
HG ≠ , 

 is a matrix with zero diagonal elements instead of 
j

+H HG Gi g g×0 . Nevertheless, compared with GLST, 

QoGST is expected to achieve better performance since the interference among the groups is better 

suppressed. We further provide the following proposition. 

Proposition 2: The row vectors, , [ ,:]
i

jHG 1,...,j Tn= , of any sub-channel matrix , 

, are independent. 

i
HG

1,..., bi = G

Proof: See Appendix I. 

IV. Performance Evaluation 

In this section, we evaluate the performance of QoGST and GLST in terms of 

diversity-multiplexing tradeoff. From (14) and (25), it is clear that QoGST and GLST both have a 

 equivalent channel. Group detection can be then applied based on the equivalent channel so as 

to get the original transmit symbols. This implies that the diversity gain of GLST and QoGST should 

be the same as the m-transmit Tn-receive systems with a group detector over a channel given by (14) 

and (25), respectively. Therefore, before investigating the diversity-multiplexing tradeoff of GLST and 

QoGST, we first derive the tradeoff function of an m-transmit-Tn-receive system over Rayleigh 

quasi-static channels with GZF (we refer it to as (m, N) GZF, where N=Tn). 

Tn m×
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A.  Tradeoff of (m, N) GZF 

Assume that an (m, N) system is given by  

SNR
m

= +y Hb z          (27) 

where the elements of H and z are all independent complex Gaussian random variables with mean 

zero and variance 0.5 per dimension. 

From (4) we know that, for any group , iG 1,...,i G= , we have 

1
i i i

SNR
m

−
i

= +y Q b zG G G G ,        (28) 

where { }
1,..., i

ij j
b

= G
 are independent with the covariance matrix Γ .  has the covariance 

i
zG

1
i

−QG . 

Therefore, the mutual information is given by 

( ) ( ) ( )
1 1 1

1 1
| |1

/
; | log det log deti i i

i i i i

i

SNR m SNRI
m

+− − −

i

+− −
−

⎛ ⎞+ ⋅ ⎛ ⎞⎜ ⎟= = = +⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟
⎝ ⎠

Q Q Γ Q
b y H Q I Γ Q

Q
G G G

G G G G
G

G . (29) 

From [4], we know that the outage probability ( )1
, ( ) ; |

i i i i ioutP R P I R−
i

⎡ ⎤= = <⎣ ⎦b y H QG G G G G G  is 

given by 

( ) ( )1
, | |

1

( ) log det log 1
i

i i i i iout j
j

P R P SNR R P SNR Rλ−

=
i

⎡ ⎤
⎡ ⎤+ ⋅ < = + ⋅ <⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

∏I Q
G

G G G G G G ,  (30) 

where  is defined in [4], specifically, ( ) bf SNR SNR  means that log ( )lim
logSNR

f SNR b
SNR→∞

= . Also 

1,...,{ }
ij jλ = G  are the ascending ordered eigenvalues of 1

i

−QG .  

Theorem 1: 1 (
i i iW N− ∼ −QG G G )  and the joint probability density function (pdf) of 1,...,{ }

ij jλ = G  is 

given by 

( ) 1
21

1 2 ,
1

( , ,..., )

i

i j
i i j

i i i

N
j j kN

j j k

p e
λ

λ λ λ λ λ λ =

−
− −−

−
= <

∑
= −∏ ∏K

G
G

G G
G G G .    (31) 

Proof: See Appendix II. 

In [4], it has been proved that for an n m×  Rayleigh channel H, . Then, the 

diversity-multiplexing tradeoff 

( )mW n∼+H H

( ) log ( ) / log ( )( )out outd r P R SNR m r n r− = − − , where r is the 
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multiplexing gain and . Therefore, by applying a similar approach as the one in [4], 

it can be derived that 

/ log( )r R SNR=

( )( ), ( )
i i iout i id r N m r r= − + − −G G G GG G

i
      (32) 

where  is the spatial multiplexing gain of group . / log( )
i i

r R SNR=G G iG

Theorem 2: When the block length | | | |x xL N≥ − + −G G 1

⎫= ⎬

i

 (where ), the 

diversity-multiplexing tradeoff of an m-transmit-N-receive system with GZF is given by 

1,...,
arg max | |x ii G=

=G G

{ },1,... 1

( ) min ( ) ;
i i i

G

outi G i

d r d r r r
=

=

⎧= ⎨
⎩ ⎭

∑G G G        (33) 

where  is defined by (32). , ( )
i outd rG G

Proof: See Appendix III. 

The tradeoff function presented in Theorem 2 clearly depends on the rate 
i

RG  and size  of 

each group. If all G groups are assumed to be allocated the same rate with the same size g, the 

diversity-multiplexing tradeoff is given by 

| |iG

( )( )( ) / /eqrd r N m g r G g r G= − + − − .      (34) 

From (34), it can be seen that (m, N) GZF can achieve the maximum diversity gain ( )g N m g− + . 

With an increasing group size , a better diversity-multiplexing tradeoff can be achieved but at the 

cost of higher complexity.

g

2

B.  Tradeoff of GLST 

The equivalent  channel of GLST has been given by (14). It can be seen that although the 

row vectors of H, , 

Tn m×

ih 1,...,i n=  are independent Gaussian distributed vectors, the row vectors of 

 (given by (15)) are not i.i.d. any more. Hence, Theorem 1 cannot be directly applied. Here, we 

resort to the upper and lower bounds of the tradeoff function. 

i
ΗG

Theorem 3: The diversity-multiplexing tradeoff of GLST is bounded by 

_ _( ) ( ) ( )lower GLST GLST upper GLSTd r d r d r≤ ≤ , 

where 

                                                        
2 In the following, equal rate allocation is assumed in QoGST, GLST and LSTBC. 
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( )_ ( ) 1 /upper GLST md r g n Tr= − K  and ( )( )_ ( ) / /lower GLST bd r x Tr G g Tr G= − − ,   (35) 

with ( )min , bx n Tn K g= − + . 

Proof: See Appendix IV. 

Orthogonal design and VBLAST can both be regarded as special cases of GLST. When 

 and , GLST is reduced to VBLAST. Notice here that  and G m K n= = = 1b mg g= = n K= 1T = . 

Therefore, . From Appendix IV, we know that the lower bound can be achieved 

only when 

1bx Tn K g= − + =

bx Tn K g= − + . Therefore, we have ( ) 1 / ( )GLST VBLASTd r r K d r= − ≡ , which is exactly the 

same as the one presented in [4]. On the other hand, we also show in Appendix IV that when there is 

only one group, the upper bound can be achieved, i.e., ( )( ) 1 /GLSTd r mn Tr K= − . In this case, GLST 

is reduced to orthogonal design and obviously we have3 . ( )( ) ( ) 1 /GLST orthod r d r mn Tr K= = −

C.  Tradeoff of QoGST 

The equivalent Tn  channel of QoGST has been given by (25). Since ’s are not 

independent,  is dependent on , 

m×
i

ΗG

i
PG i

HG 1,..., bi G= . Hence, Theorem 1 cannot be applied and we 

also resort to the upper and lower bounds of the tradeoff function. 

 Theorem 4: The diversity-multiplexing tradeoff of QoGST is bounded by 

_ _( ) ( ) ( )lower QoGST QoGST upper QoGSTd r d r d r≤ ≤  

where  

_ ( ) ( / )( / )upper QoGST m b bd r G n Tr G g Tr= − − G  and ( )( )_ ( ) / /lower QoGST m b bd r G n m g Tr G g Tr G= − + − − .(36) 

 Proof: See Appendix V. 

  reflects the optimal case with no interference among the groups. In other words, 

 can reach the upper bound  when all the groups are orthogonal. However, 

this condition is satisfied only with the group size 

_ ( )upper QoGSTd r

r r( )QoGSTd _ ( )upper QoGSTd

1g = . In this case, QoGST is reduced to an 

orthogonal design and obviously we have ( ) (1 / ) ( )QoGST orthod r mn Tr K d r= − = . 

                                                        

)

3 In [4], the diversity-multiplexing tradeoff of the orthogonal design with 2 transmit antennas and n receive antennas has been presented 
as . Through a similar analysis, the tradeoff of the orthogonal design with an arbitrary m and n can be derived as 

. We omit the proof due to space limitation. 
( ) 2 (1 )d r n r= −

(( ) 1 /d r mn Tr K= −
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When there is only one group, i.e., 1G = , QoGST turns into an m-transmit n-receive system with 

a maximum likelihood detector over Rayleigh quasi-static channels. In this case, the upper bound and 

lower bound converge to _ _( ) ( ) ( )( )lower QoGST upper QoGSTd r d r n r m r= = − − . Therefore, the 

diversity-multiplexing tradeoff function of QoGST can be exactly given by , 

which is exactly the same as the optimal tradeoff function for an (m, n) over Rayleigh channels as 

shown in [4].  

( ) ( )( )QoGSTd r n r m= − − r

D.  Tradeoff comparison 

Fig. 4 presents the diversity-multiplexing tradeoff curves of GLST and QoGST when m =K =4 

and n =2. For comparison, we also show the optimal tradeoff curve for an (m, n) over Rayleigh 

channels. In GLST, assume that there are 2 groups, i.e., 2G =  and . For QoGST, 

assume that the group size  and thus 

2m bg g= =

2g = 2m bG G= = . Both GLST and QoGST needs 2T =  time 

slots. Since , the lower bound tradeoff function of GLST can be achieved. 

Therefore, from (34) and (35), the tradeoff function of GLST and the lower and upper bound tradeoff 

functions of QoGST can be obtained. As Fig. 4 shows, the tradeoff curve of GLST is exactly the same 

as that of the lower bound of QoGST. This implies that QoGST always has a better 

diversity-multiplexing tradeoff than GLST. Besides, the upper bound tradeoff of QoGST overlaps with 

the optimal one. Actually, it is not always the same as the optimal tradeoff. As Fig. 5 shows, when n 

increases to 3, the maximum multiplexing gain  of the optimal one will increase to 3, while  

of the upper bound of QoGST is only 2. In this case, the lower bound tradeoff of QoGST is even 

better than the upper bound tradeoff of GLST, thus, indicating a more significant gain.  

2bx Tn K g= − + =

maxr maxr

Fig. 6 and Fig. 7 show the case of m =K =6 and n =4. Since 6 symbols (antennas) can be divided 

into 2 groups with 3 symbols (antennas) in each group, or 3 groups with 2 symbols (antennas) in each 

group, we consider both of these possible partitions. In Fig. 6, the bit stream and transmit antennas are 

assumed to be separated into 2 groups, i.e., 3m bg g g= = =  and 2m bG G G= = = . Recall that in 

QoGST, STBC is adopted among the groups. Therefore, for a 2-symbol-2-antenna transmission, only 

 time slots are needed. However, for GLST, STBC is adopted inside the group. We take the 

[3,4,3] STBC code given in [23] (pp. 2485, Eqn. (99)), and so 

2QoGSTT =

4GLSTT = . As Fig. 6 shows, QoGST 
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can always get a much better diversity-multiplexing tradeoff than GLST as its lower bound is always 

better than the upper bound tradeoff of GLST. Besides, GLST can only get a maximum multiplexing 

gain of 1.5, which is lower than that of QoGST. This is because GLST needs more time slots to 

transmit all K symbols.  

Fig. 7 shows the latter partition, i.e., 2m bg g g= = =  and 3m bG G G= = = . Here GLST needs 2 

time slots, while QoGST needs 4 time slots. From Fig. 7, it can be seen that in this case despite a 

much higher diversity gain, QoGST has a smaller maximum multiplexing gain due to its lower 

transmission rate. Nevertheless, if we compare the tradeoff of QoGST with Gm =Gb =3 and g =2 to 

that of GLST with gm =gb =3 and G =2, it is found that QoGST can always achieve a better diversity 

gain while keeping the same multiplexing gain as GLST. As Fig. 8 shows, the lower bound tradeoff 

curve of QoGST is always higher than the upper bound tradeoff curve of GLST. The same conclusion 

holds true for the comparison of QoGST with g =3, Gm =Gb =2 and GLST with gm =gb =2, G =3. 

Therefore, we can conclude that QoGST always has a better diversity-multiplexing tradeoff than 

GLST. 

V. Further Results and Discussions 

We have shown that the proposed QoGST has a better diversity-multiplexing tradeoff than GLST. 

In this section, we further provide the FER performance of both schemes. For the sake of comparison, 

we also present the FER performance of LSTBC4 proposed in [15]. QPSK is assumed to be adopted. 

As Fig. 9 shows, when m =4 and n =2, both QoGST and GLST have 2 groups with group size 2. In 

this case, QoGST can achieve a gain of 3 dB over GLST at a FER of 10-3. Besides, in high-SNR 

conditions, the FER curve of QoGST has a larger slope than that of GLST, which implies that QoGST 

has a better diversity gain. Notice that these two schemes have the same spectral efficiency. As a result, 

we can conclude that QoGST achieves a better diversity-multiplexing tradeoff, which is consistent 

with our analysis in Section IV. Here we did not show the FER curve of LSTBC since it cannot work 

in this case. Recall that in LSTBC, group detection is performed before space-time decoding. 

Therefore, the group detector is applied to an 1n×  receive signal vector, which requires that 

. However, for GLST or QoGST, recall that it is only required that  since mn m g> − mTn m g> −

                                                        
4 In order to make a fair comparison, an equal group size is assumed in LSTBC.  
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group detection is performed after decoding. This implies that both GLST and QoGST have a lower 

requirement on the number of receive antennas than LSTBC. 

When m =6 and n =4, the transmit antennas of both QoGST and GLST can be divided into 2 or 3 

groups. To keep the same transmission rate, the group size of QoGST as well as that of GLST and 

LSTBC is assumed to be 3 and 2 (or 2 and 3), respectively. As Fig. 9 shows, for the case of 

, QoGST can achieve at least 4 dB gain at a FER of 103QoGST GLSTg G= = -3, and the FER curve of 

QoGST is much steeper than that of GLST, which implies a much better diversity gain. Again LSTBC 

cannot work in this case. When , QoGST will not achieve such a significant gain as 

before. Nevertheless, a larger slope and 1 dB gain can be seen. LSTBC gets the worst performance. At 

a FER of 10

2QoGST GLSTg G= =

-3, 12 dB and 11 dB gains can be achieved by QoGST and GLST, respectively. These 

observations clearly validate our analysis on the diversity-multiplexing tradeoff. 

VI. Conclusions 

 To achieve a good tradeoff between multiplexing gain and diversity gain in MIMO systems, this 

paper proposed two combined STC and LST architectures, which we refer to as QoGST and GLST. In 

QoGST, the transmit stream is divided into multiple groups and the different groups are encoded 

together via a quasi-orthogonal inter-group STBC coder. While in GLST, STBC is used inside each 

group instead of among the groups. We analyzed their diversity-multiplexing tradeoff functions and 

found that both QoGST and GLST can achieve a good diversity-multiplexing tradeoff. Besides, the 

lower bound tradeoff of QoGST is always higher than the upper bound tradeoff of GLST, which 

indicates a significant gain. The simulation results validated our analysis and demonstrated that 

QoGST can always achieve much better FER performance than GLST and both of them can achieve 

substantial gains than the existent LSTBC scheme.  

 

Appendix I: Proof of Proposition 2 

 For an [m, T, K] STBC , we have * *, ,...,x ⎡ ⎤= +⎣ ⎦1 1 2 2 T TA x B x A x + B x A x + B xO *

( )'
[:, ] [:, ] 0j ki i⋅ =A A , ( )'

[:, ] [:, ] 0j ki i⋅ =B B , and ( )'
[:, ] [:, ] 0j ki i⋅ =A B    (37) 
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for , , .  , 1,...,j k T= j k≠ 1,..., bi G=

Since , , for [:, ]i
t t gi= ⊗A A I [:, ]i

t t gi= ⊗B B I G1,..., bi =  and 1,...,t T= , then from (37) it can 

be obtained that 

( )'i i
j k g g×⋅ =A A 0 , ( )'i i

j k g g×⋅ =B B 0 , and ( )'i i
j k g×⋅ =A B 0 g

= +H HA H BG 1,...,t T

    (38) 

for , , . , 1,...,j k T= j k≠ 1,..., bi G=

Notice that  and  will not appear in the same time slot t. Therefore, by combining (26) and 

(38), it is obvious that , 

b *b

* *i i i
t t t = , are independent of each other. Furthermore, 

since the row vectors of  are also independent, Proposition 2 can be obtained.       ■ i
tHG

Appendix II: Proof of Theorem 1 

From (5) we know that , where  is an 1
i i i

− +=Q H P HG G G iG i
PG N N×  projection matrix given by 

(3). [20] has shown that  has 
i

PG iN − G  unit eigenvalues and iG  zero eigenvalues. By applying 

Singular Value Decomposition (SVD) to , we have 
i

PG

i i i

+=P U Λ UG G G iG
,          (39) 

where  is an  unitary matrix, and  is an 
i

UG N N×
i

ΛG N N×  diagonal matrix whose elements are 

the descending ordered eigenvalues of . Therefore, we have 
i

PG

1

1

i

i i i i i i i

N m

i i
i

− +
− + + +

=

= = = ∑Q H P H V Λ V
G

G G G G G G G v v

iG

 ,     (40) 

where  with the row vector , 
i i
=V U HG G iv 1,...,i N= . 

Notice that  is independent of  and the row vectors of  are independent Gaussian 

distributed. Then, from [21] (pp. 91, Lemma 7.2) we know that 

i
PG i

HG i
HG

1
i

−QG  is Wishart distributed with 

iN m− + G  degrees of freedom. Therefore, the joint pdf of 1,...,{ }
ij jλ = G  is given by (31) [22].  ■ 
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Appendix III:  Proof of Theorem 2 

From [4], we know that the outage probability of the whole channel is  

 [ ]( ) ( ; | )outP R P I H R= <b y H .       (41) 

Clearly, with GZF any group in outage will lead to the outage event of the whole system. Therefore, 

we have 

,
1

( ) 1 (1 ( ))
i i

G

out out
i

P R P R
=

= − −∏ G G .       (42) 

Furthermore, since , , where  is the 

spatial multiplexing gain of group  and 

, ( )
, ( ) outi i

i

d r
outP R SNR− G G

G
( )( ) outd r

outP R SNR− / log( )
i i

r R SNR=G G

iG
1

i

G

i
r r

=

= ∑ G , we obtain from (42) that 

,1,..., 1
( ) min { ( )};

i i i

G

out outi G i
d r d r r

=
=

⎧ ⎫= ⎨ ⎬
⎩ ⎭

∑G G G .      (43) 

Similar to [4], for a sufficiently long block length | | | |x xL N≥ − + −G G 1

iG

 (where 

), and by assuming an input to be i.i.d. Gaussian random code, we can obtain the 

overall system tradeoff function as 

1,...,
arg max | |x i G=

=G

,1,..., 1
( ) ( ) min { ( )};

i i i

G

out outi G i
d r d r d r r

=
=

⎧ ⎫= = ⎨ ⎬
⎩ ⎭

∑G G G .       ■ 

Appendix IV: Proof of Theorem 3 

We begin by considering the upper bound. From (3) and (5), we know that 

( )1 1( )
i i i i i i i ii i i iN

− + + + − + += = − = −Q H P H H I H H H H H H H ΦG G G GG G G G G G G G Gi
, where 1( )

i i i i i i

+ + − +=Φ H H H H H HG G G G G G iG
. 

Obviously,  is positive-definite Hermitian, i. e.,  
i

ΦG
1

i i i i

+ −= − ≥Φ H H Q 0G G G G (only when | | 0i =G , 

i.e., , ). Therefore, we have 1G =
i
=Φ 0G ( ) ( )1det det

i i

− +≤Q H HG G iG
 and for an arbitrary R,  

 ( )( ) ( )( )1det det
i i

P R P− +< ≥ <Q H HG G i
RG .      (44) 

As shown in Section IV. A, the outage probability of any group  is given by iG

 ( ) ( ) ( )1 1
, | |( ) log det det b i

i i i i i i

g r
outP R P SNR R P SNR− −− −⎡ ⎤⎡ ⎤+ ⋅ < ≈ <⎣ ⎦ ⎣ ⎦I Q Q G

G G G G G G .   (45) 

By combining (44) and (45), it can be obtained that 
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( )( )( )
, ( ) det b i

i i i i

g r
outP R P SNR− −+≥ <H H G

G G G G .     (46) 

From Proposition 1 in Section III A.2, we know that ( ) , ,
1

det
b

m

i i

gg

i l i l
l

+ +

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑H H h hG G . Let . 

Obviously, x is chi-square distributed with dimension . Therefore,  

, ,
1

mg

i l i l
l

x +

=

= ∑h h

mg n

( )( ) ( )( ) (1 / ) (1 / )det b bi i

i i

m big r r gP SNR P x SNR SNR− − − − − −+ < = < =H H G G
G G

g n r gG

)i

.  (47) 

Let ( )( ) *( ) (det b i

i i

g rP SNR SN− − −+ <H H G
G G

d rR G . From (46), we get 

*
, ( ) ( ) (1 / )

i i i iout m bd r d r g n r g≤ = −G G G G .      (48) 

Assume that equal rate allocation scheme is applied. By applying Theorem 2 we have 

*( ) ( ) (1 / )md r d r g n r K≤ = −        (49) 

As stated in Section IV, GLST should have the same diversity gain as an m-transmit Tn-receive 

system over a channel given by (14) with a GZF. However, in contrast to an (m, Tn) system in which 

all the K symbols are transmitted simultaneously, T transmit time slots are needed in GLST. Therefore, 

despite the same diversity gain, the multiplexing gain of GLST should be 1/T of that of this (m, Tn) 

system. By substituting  for  in (49), we have Tr r

_( ) ( ) (1 / )GLST upper GLST md r d r g n Tr K≤ = − .     (50) 

The upper bound can be achieved when 1
i i i i

+ −= − =Φ H H Q 0G G G G , i.e., 1G = . 

Now consider the lower bound. From (14) it can be seen that  is independent to 
i

HG j
HG , for 

any . Therefore,  is independent of  and from (40) we have i ≠ j

+v v

⎤⎦ n

i
PG i

HG

1

1

b

i

Tn K g

i i
i

− +
−

=

= ∑QG .         (51) 

Assume that , where  is the i1 2, ,...,
i Tn

+ ⎡= ⎣
+ + +H h h hG ih th row vector of ,  Obviously, 

only 

i
HG 1,..., .i T=

{ }
1,...,i i=

h
j

 are independent where j n≤ . Therefore, let ( )min , bx n Tn K g= − +  and 

. Then for an arbitrary R, clearly we have  1

1
i

x

i i
i

−

=

=∑Q vG
+v

( ) ( )1det( ) det( )
i

P R P− 1
i

R−< ≤Q QG <G       (52) 

The outage probability of any group  of GLST is thus upper bounded by iG
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( )* 1
, , | |( ) ( ) log det

i i i i i iout outP R P R P SNR R−
i

⎡ ⎤≤ + ⋅ <⎣ ⎦I QG G G G G G G     (53) 

Considering that  is Wishart distributed with x degrees of freedom, from Theorem 2 its 

corresponding tradeoff function can be obtained as 

1
i

−QG

( )( )*( )
i i bd r x r g r= − −G G iG

.        (54) 

Likewise, by assuming equal rate allocation and substituting  for , we have Tr r

( )( )_( ) ( ) / /GLST lower GLST bd r d r x Tr G g Tr G≥ = − − ,    (55) 

where ( )min , bx n Tn K g= − + . 

The lower bound can be achieved when bx Tn K g= − + . 

By combining (50) and (55), (35) can be obtained.           ■ 

Appendix V: Proof of Theorem 4 

We begin by considering the upper bound. Similar to Appendix IV, for any group ,  iG

1
i i i i i

− + += − ≤Q H H Φ H HG G G G G iG
        (56) 

where 1( )
i i i i i i

+ + − +=Φ H H H H H HG G G G G G iG
. It turns out that 

i
=Φ 0G  only when . In this case, 

QoGST is reduced to the orthogonal design and no interference exists among the groups. When , 

our scheme cannot eliminate the inter-group interference entirely.  will be dependent to 

1g =

1g >

i
HG i

HG , but 

not orthogonal to 
i

HG .  

From Proposition 2 in Section III B.2, we know that  should be Wishart distributed with 

 degrees of freedom, which corresponds to a tradeoff function . 

Therefore, by applying a similar proof shown in Appendix IV, we can get 

i

+=X H HG Gi

i

mG n *( ) ( )( )md r G n r g r= − −

*
, ( ) ( ) ( )( )

i i i iout md r d r G n r g r≤ = − −G G G G G .      (57) 

Assume equal rate in each group. Then, by substituting  for  into (57), it can be obtained 

that 

/ bTr G
i

rG

_( ) ( ) ( / )( / )QoGST upper QoGST m b bd r d r G n Tr G g Tr G≤ = − − .    (58) 

The upper bound can be achieved when 1
i i i i

+ −= − =Φ H H Q 0G G G G , i.e., 1g = . 
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Now, consider a mG n K×  Rayleigh channel , whose entries are all independent Gaussian 

random variables with mean zero and unit variance. Next, let us separate it into  groups; namely, 

, where  is 

H

bG

1
,...,

Gb

⎡ ⎤= ⎣ ⎦H H HG G i
HG mG n g× , for 1,..., bi G= . Then, we have 

1 ( )
i i i i i i i i

− + + + − += −Q H H H H H H H HG G G GG G G G
1

iG

i i

.      (59) 

By comparing to (56), it can be seen that  and  have the same distribution. Since 

 is quasi-orthogonal to 

i

+H HG G i

+H HG G

i
HG i

HG  but  is independent to 
i

HG i
HG , it can be expected that ( )1det

i

−QG  

should have a better cumulative density function (cdf) than ( )1det
i

−QG . We resort to Monte Carlo 

simulations to verify this conclusion. Fig. 3 shows the pdf and cdf of  and 

 for 

( 1
1 det

i
X −= QG )

)( 1
2 det

i
X −= QG 4K = ,  and 2n = 2mG g= = . It can be seen that for an arbitrary R, we always 

have 

( ) ( )1 2P X R P X R< ≤ < .        (60) 

Actually, the conclusion is the same for any other values. Due to limited space, however, no further 

results are given. 
Next, from (60), we have 

( ) ( )( ) ( )( , )1 1
, ,( ) det ( ) (det )i m i

i i i i i i

g r g rK G n GZFQoGST
out outP R P SNR P R P SNR− − − −− −⎡ ⎤< ≤ <⎣ ⎦Q QG G

G G G G G G  (61) 

We have proved that for a  GZF, when equal rate allocation is adopted, the 

diversity-multiplexing tradeoff function of group  is given by 

( , )mK G n

iG

( , )
, ( ) ( )( )m

i i i

K G n GZF
out md r G n m g r g= − + − −G G G i

rG

i
−

.     (62) 

Therefore,  
( , )

, ,( ) ( ) ( )( )m

i i i i i

K G n GZFQoGST
out out md r d r G n m g r g r≥ = − + −G G G G G G .    (63) 

Similarly, by substituting  for  into (63), we get / bTr G
i

rG

_( ) ( ) ( / )( / )QoGST lower QoGST m b bd r d r G n m g Tr G g Tr G≥ = − + − − .    (64) 

By combining (58) and (64), (36) can be obtained.           ■ 
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Fig. 1:  Block diagram of GLST 
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Fig. 2:  Block diagram of QoGST 
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Fig. 3(a):  pdf of ( )1
1 det

i

QoGSTX −= QG  and ( )( , ) 1
2 detm

i

K G n GZFX −= QG  when K =4, n =2,  and 2mG = 2g = . 

 

Fig. 3(b):  cdf of ( )1
1 det

i

QoGSTX −= QG  and ( )( , ) 1
2 detm

i

K G n GZFX −= QG  when K =4, n =2,  and 2mG = 2g = . 
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Fig. 5:  Diversity-multiplexing tradeoff curves of the upper and lower bounds of GLST, the upper and lower 
bounds of QoGST and the optimal one when m =K =4, n =3. For GLST, G=2, 2m bg g= = , T=2. For QoGST, g=2, 

2m bG G= = , T=2. 
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Fig. 6:  Diversity-multiplexing tradeoff curves of the upper and lower bounds of GLST, the upper and lower 

bounds of QoGST and the optimal one when m=K =6, n =4. For GLST, G=2, 3m bg g= = , and T=4. For QoGST, 
g=3, 2m bG G= = , and T=2. 
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Fig. 7:  Diversity-multiplexing tradeoff curves of the upper and lower bounds of GLST, the upper and lower 

bounds of QoGST and the optimal one when m=K =6, n =4. For GLST, G=3, 2m bg g= = , and T=2. For QoGST, 
g=2, 3m bG G= = , and T=4. 
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Fig. 8:  Diversity-multiplexing tradeoff curves of the upper and lower bounds of GLST, and the upper and lower 

bounds of QoGST when m=K =6, n =4. For GLST, G=2, 3m bg g= = , and T=4. For QoGST, g=2, , and 
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Fig. 9:  FER vs. SNR for QoGST, GLST and LSTBC. 
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