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Abstract

In recent years, there has been a growing interest in multiple access communication systems that

spread their transmitted energy over very large bandwidths. These systems, which are referred to as

ultra wide-band (UWB) systems, have various advantages over narrow-band and conventional wide-

band systems. The importance of multiuser detection for achieving high data or low bit error rates in

these systems has already been established in several studies. This paper presents iterative (“turbo”)

multiuser detection for impulse radio (IR) UWB systems overmultipath channels. While this approach

is demonstrated for UWB signals, it can also be used in other systems that use similar types of signaling.

When applied to the type of signals used by UWB systems, the complexity of the proposed detector can

be quite low. Also, two very low complexity implementationsof the iterative multiuser detection scheme

are proposed based on Gaussian approximation and soft interference cancellation. The performance of

these detectors is assessed using simulations that demonstrate their favorable properties.

Index Terms—Ultra wide-band (UWB), impulse radio (IR), iterative multiuser detection, soft inter-

ference cancellation.
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I. INTRODUCTION

In recent years, there has been a growing interest in ultra wide-band (UWB) systems, which resulted

in the U.S. Federal Communications Commission (FCC) regulations that allow, under several restrictions,

the widespread use of such systems. The common definition of UWB systems, which was adopted by

the FCC as well, states that a system is a UWB system if both theabsolute and the fractional bandwidths

are large. The absolute bandwidth should be at least0.5 GHz, while the fractional bandwidth, which

is the signal bandwidth divided by the carrier frequency, isat least20% [8]. UWB systems offer many

advantages over narrow-band or conventional wide-band systems. Among these advantages are reduced

fading margins, simple transceiver designs, low probability of detection, good anti-jam capabilities, and

accurate positioning (see, [5], [33], [14], and referencestherein). The advantages of UWB technology

have caused this technology to be considered for use as the physical layer of several applications; for

example, the IEEE 802.15.4a wireless personal area network(WPAN) standard employs this technology

as one of the signaling options [37].

There are many signaling methods for transmitting over UWB channels, and it is obvious that,

apart from engineering difficulties, one can use any existing spread spectrum technique for transmitting

over UWB channels [10], [32]. However, these difficulties might be quite significant, preventing the

actual use of conventional spread-spectrum methods for transmitting over UWB channels. Consider,

as an example, long-code direct-sequence code-division-multiple-access (DS-CDMA) systems. In these

systems, implementing even the simplest detector, namely the matched filter detector, requires sampling

of the received signal at least at the chip rate, which under the current regulations might be as large as

7.5 GHz. Such sampling rates are difficult to achieve, and resultin high power consumption.

In order to overcome some of the difficulties associated withUWB signaling, impulse radio (IR)

systems, and especially time-hopping impulse radio (TH-IR) systems have been proposed as the preferred

modulation scheme for UWB systems [26]. In TH-IR systems, a train of short pulses is transmitted, and the

information is usually conveyed by either the polarity or location of the transmitted pulses. In addition, in

order to allow many users to share the same channel, an additional random (or pseudo-random) time shift,

known to the receiver, is added to the starting point of each pulse. This way, probability of catastrophic

collisions between two users transmitting over the same channel at the same time is significantly reduced

[26].
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TH-IR modulation, e.g., binary phase shift keyed (BPSK) TH-IR, to be discussed in the following

sections, has many advantages over conventional modulation techniques. By using very short pulses, the

transmitted energy is spread over a very large bandwidth. Inaddition, by using pseudo-random time

intervals between the transmitted pulses and random pulse polarities, spectral lines and other spectral

impairments are avoided [13]. The implementation of the receiver is usually easier for this technique

because the channel is excited for only a fraction of the total transmission time. For example, the matched

filter detector needs to sample the filter matched to the received pulse only at time instants when pulses

corresponding to the user of interest arrive at the receiver. Moreover, base-band pulses are typically used

in UWB systems, saving the need for complex frequency synchronization and tracking1. These advantages

make TH-IR the preferred modulation scheme for transmitting over UWB channels in various applications.

It should be noted that IR-UWB has been chosen as one of the modulation formats for the IEEE 802.15.4a

WPAN standard.

It has been observed [9], [21], [27], [35] that the transmitted and received signals of TH-IR systems can

be described by the same models used for describing the transmitted and received signals of DS-CDMA

systems. The main difference between classical DS-CDMA signals and TH-IR signals is that TH-IR

signals use spreading sequences whose elements belong to the ternary alphabet, i.e.,{−1, 0,+1}, instead

of the binary alphabet, i.e.,{−1,+1}. This observation leads to the immediate conclusion that every

multiuser detector designed for CDMA systems can be used in TH-IR systems as well. In particular,

the optimal multiuser detector can be easily deduced from [30], and the complexity of this detector for

systems transmitting over multipath channels is known to beexponential in the number of active users

and the number of transmitted symbols falling within the delay spread of the channel. Linear receivers

can be designed as well, resulting in multiuser detectors having complexity that is polynomial in the

number of active users and the size of the observation windows used by the detector [1], [22].

Although the classical algorithms for multiuser detectioncan be used in TH-IR systems, it is evident

that low complexity multiuser detection algorithms for systems that use generalized spreading sequences

in general and IR systems in particular are required. These detectors should exploit the special type

of signals TH-IR systems transmit in order to reduce the complexity of multiuser detectors. In [9], an

iterative multiuser detector exploiting the special structure of TH-IR signals is proposed for additive white

1It should be noted, however, that if the channel is composed of a very large number of equipower paths, then the receiver
complexity becomes very large due to the need to sample all ofthem in order to achieve diversity combining.
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Gaussian noise (AWGN) channels. Iterative multiuser detectors can be designed for TH-IR systems by

considering the TH-IR signaling structure as a concatenated coding system, where the inner code is the

modulation and the outer code is the repetition code. Such a technique makes use of the similarity between

TH-IR signaling and bit interleaved coded modulation (BICM), where the inner code is modulation and

the outer code is channel coding [2], [6], [18], [36].

In this paper, we first present an extension of the iterative multiuser detector in [9] to more realistic

multipath channels. Namely, we propose an iterative detector structure that combines energy from a

number of multipath components. Although only random TH-IRsystems are described in the sequel, the

multiuser detectors presented in this paper can be applied to any other type of DS-CDMA system whose

spreading sequences contain large fraction of zeros. As such the contribution of this paper goes beyond the

theory of UWB systems into the theory of general DS-CDMA systems. In addition, we propose two very

low-complexity implementations of the iterative algorithm, which are based on Gaussian approximation

for weak interferers, and on soft interference cancellation.

The rest of the paper is organized as follows: In Section II, the signal model that is used throughout

the paper is described. In Section III, an iterative multiuser detector, called the pulse-symbol iterative

detector, is presented for frequency-selective environments. Then, two novel and low-complexity imple-

mentations of the proposed receiver are described in Section IV. In Section V, simulations demonstrating

the performance of the proposed detector when transmittingover indoor UWB channels are presented.

Finally, a summary and some concluding remarks are providedin Section VI.

II. D ISCRETE-TIME SIGNAL MODEL

TH-IR systems can be modeled as DS-CDMA systems with generalized spreading sequences that

take values from the set{−1, 0,+1} [20], [12]. Therefore, aK-user DS-CDMA synchronous system

transmitting over a frequency-selective channel is considered in order to obtain the discrete-time signal

model for a TH-IR system2. It is assumed that each user transmits a packet ofP information symbols, and

N denotes the processing gain of the system. In addition, the channel between each user and the receiver

is modeled to haveL taps, andhk = [hk1 · · · hkL] denotes the discrete time channel impulse response

between thekth transmitter and the receiver. Finally,sk,i = [ski,0 · · · ski,N−1] represents the spreading

2The synchronous assumption is made for notational convenience, but as we discuss in the sequel, the proposed algorithm
works equally well in asynchronous systems.
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sequence that thekth user uses for spreading itsith information symbol. Note that ifsk,i = sk,j for every

i andj, then the systems is a short-code system; otherwise it is a long-code system.

A chip-sampled discrete-time model for the received signalcan be described by the following model:

r =
K∑

k=1

√

Ek HkSkbk + n, (1)

where, for thekth user (k = 1, . . . ,K): Ek is the transmitted energy per symbol;Hk is an(NP+L−1)×

NP matrix, whoseith column is equal to[0i−1,hk,0NP−i]
T and0l is the all zero row vector of lengthl;

Sk is anNP×P spreading matrix containing theP spreading sequences that thekth user uses for spread-

ing the transmitted symbols,Sk =
[
[sk,1 0N(P−1)]

T , [0N sk,2 0N(P−2)]
T , . . . , [0N(P−1) sk,P ]

T
]
; andbk =

[b1, . . . , bP ]
T is the vector containing the transmitted information symbols of the kth user. Throughout

this paper, it is assumed that the transmitted information symbols are binary (i.e., elements of{−1,+1})

although the extension to more general cases is straightforward. Here,n = [n1, . . . , nNP+L−1]
T is the

sampled additive noise vector, assumed to be normally distributed with zero mean and correlation matrix

σ2
nI, i.e.,n ∼ N

(
0, σ2

nI
)
. In the sequel, this system is referred to as a BPSK TH-IR system.

Denote byb
△
= [bT

1 ,b
T
2 , . . . ,b

T
K ]T the vector containing the transmitted symbols of the various

users, byS the block diagonal matrix with the users’ spreading matrices on its diagonal, and by

H
△
= [H1,H2, . . . ,HK ] the concatenation of the users’ channel matrices. With the aid of H,S, and

b, the following model for the received signal can be deduced:

r = HSb+ n. (2)

In deriving (2), it is assumed without loss of generality that the users’ channel impulse responses are

scaled to absorb the transmitted energy per bit.

Equation (2) can also be used to describe DS-CDMA systems, inwhich case it is usually assumed

that all the elements ofS belong to
{

± 1√
N

}

, whereN is the spreading gain. IR systems are, in a

sense, generalizations of DS-CDMA systems, where in IR systems all the elements ofS belong to
{

± 1√
Nf

, 0

}

, whereNf is the number of pulses (or “chips” in the CDMA terminology) each user

transmits per information symbol. Since each symbol interval in an IR system is divided intoNf equal

intervals, calledframes, and a single pulse is transmitted in each frame,Nf is also called the number of

frames per symbol.
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In practice each user, say thekth user, is assigned a random, or a long pseudo-random, TH sequence,

denoted by{ckj }. This sequence is known to the receiver, but the elements of this sequence can be modeled

for analytical purposes as independent and identically distributed (i.i.d.) random variables, uniformly

distributed in{0, 1, . . . , Nc− 1}. Denote bysk = [sTk,1, s
T
k,2, . . . , s

T
k,P ] the concatenation of the spreading

sequences of thekth user. The elements ofsk are related to thekth user’s TH sequence as follows: the

elements ofsk corresponding to indices{(j − 1)Nc + ckj + 1}NfP
j=1 are binary random variables, while

the remaining elements are zero. Note that random CDMA systems can be described by this model by

takingNf = N .

III. T HE PULSE-SYMBOL ITERATIVE DETECTOR

In this section, a low-complexity receiver structure, called the “pulse-symbol (iterative) detector” is

proposed for TH-IR systems in frequency selective environments. Since the receiver does not require

chip-rate or Nyquist rate sampling, it facilitates simple implementations in the context of UWB systems.

Denote byLk = {lk1 , . . . , lkM}, with lkm ∈ {1, 2, . . . , L} andM ≤ L, the indices of the signal paths the

receiver combines for userk. In other words, the proposed receiver samples the receivedsignal at the

time instances when pulses arrive through the paths indexedby Lk for k = 1, . . . ,K. It can be easily

seen that these sampling times are{((j − 1)Nc + ckj + lkm)Tc}NfP,K,M
j=1,k=1,m=1, whereTc is the pulse width.

Denote byrkj,m the received sample corresponding to thejth pulse of thekth user via themth signal

path. Note that the total number of samples per symbol from all frames and signal paths of all users

can be as high asNfMK, which can result in a very high-complexity receiver structure. Therefore, we

consider a receiver that combines the samples from different multipath components in each frame by

maximal ratio combining (MRC) for each user. Letr̃kj denote this combined sample in thejth frame of

userk. Then,

r̃kj =

M∑

m=1

hklkmr
k
j,m, (3)

and the samples from userk can be expressed asr̃k = [r̃k1 · · · r̃kNfP
]. The proposed receiver is depicted

in Figure 1. It is easy to verify thatrkj,m is the((j − 1)Nc + ckj + lkm)th element ofr defined in (2), and

therefore a matrix,Gk, which performs selection and MRC of selected samples, can be designed such

that r̃k = Gkr.
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Based on the samples obtained as in (3), the pulse-symbol detector performs an iterative estimation of

users’ symbols. In general, iterative algorithms provide low complexity and close-to-optimal solutions for

many problems (see, [15], [23], [31], [6], [18], among many others; a review is found in [24]). The main

property of the problems that can be solved efficiently by iterative techniques is that these problems have

a very special structure, which allows productive use of iterative procedures. Consider as an example the

problem of joint multiuser detection and decoding of error correcting codes in CDMA systems [23]. In

this problem, one can employ any multiuser detection algorithm (or more precisely a multiuser receiver

[28]) that results in soft decision statistics about every channel symbol. These soft decisions can be

fed into any soft decoding algorithm, and the result will be the estimated information symbol. Turbo

based algorithms provide an efficient way of iterating between the results obtained by the two constituent

algorithms, where each one of these algorithms is designed to solve one part of the problem. Although

no such structure exists in the problem of multiuser detection of TH-IR signals, some of thea priori

information can be neglected in order to impose a structure suitable for an iterative decoding algorithm.

In other words, the spreading operation is regarded as a simple error correcting encoding to facilitate

iterative solutions. In this light, TH-IR signaling can be considered as a concatenated coding system,

where the inner code involves the modulation of a UWB pulse, and the outer code is a repetition code3.

This structure is similar to BICM, for which modulation and channel coding comprise the inner and outer

codes, respectively [2], [6].

Consideration of TH-IR systems as BICM systems facilitatesthe design of the pulse-symbol iterative

detector, which is composed of two stages [9]. The first stageis denoted as the “pulse detector”, while the

second stage is denoted as the “symbol detector”, and the detector iterates between these stages. In the

first stage, it is assumed that different pulses from the sameuser correspond to independent information

symbols, while in the second stage the information that several pulses from the same user correspond to

the same information symbols is exploited. The second stageacts effectively as a decoder.

3Unlike conventional turbo receivers, there is not a separate interleaver unit between the coding units in the proposed structure.
However, the function of an interleaver in reducing the correlation between the soft output of each decoder unit and the input
data sequence (called the iterative decoding suitability criterion [17], [25]) is performed by the TH and polarity randomization
codes in the proposed system. By means of TH and polarity codes [11], inputs to the demodulator and the decoder blocks
become essentially independent.



8

A. The Pulse Detector

Denote bybkj the information symbol carried by thejth pulse of thekth user. Note that although we

know a priori that bk(i−1)Nf+1 = · · · = bkiNf
for everyk = 1, . . . ,K and i = 1, . . . , P , this information

will be ignored by the pulse detector. As such, at thenth iteration the pulse detector computes thea

posteriori log-likelihood ratio (LLR) ofbkj , given r̃kj in (3), the information about the transmitted pulses

from other users and thea priori information aboutbkj provided by the symbol detector, as

Ln
1 (b

k
j )

△
= log

Pr(bkj = 1|r̃kj )
Pr
(

bkj = −1|r̃kj
) = log

f
(

r̃kj |bkj = 1
)

f
(

r̃kj |bkj = −1
) + log

Pr
(

bkj = 1
)

Pr
(

bkj = −1
) , (4)

for j = 1, . . . , PNf andk = 1, . . . ,K, wheref
(

r̃kj |bkj = i
)

is the likelihood of thejth combined sample

corresponding to thekth user given that the transmitted symbol wasi ∈ ±1. It is seen that thea posteriori

LLR is the sum of thea priori LLR of the transmitted symbol,log
Pr(bkj=1)
Pr(bkj=−1)

△
= λn−1

2 (bkj ), and theextrinsic

information provided by the pulse detector about the transmitted symbol,log
f(r̃kj |bkj=1)
f(r̃kj |bkj=−1)

△
= λn

1 (b
k
j ) [9].

We first consider the computation oflog f
(

r̃kj |bkj
)

in (4). From (2), it is easy to deduce the following

model forrkj,m, which is the received sample from themth path of thekth user’s signal in thejth frame:

rkj,m = [H]l(j,k,m):Sb+ nl(j,k,m) =

K∑

q̃=1

NfP−1
∑

ã=0

b
q̃
⌊ã/Nf ⌋[Sq̃]ãNc+cq̃ã,⌊ã/Nf ⌋h

q̃

l(j,k,m)−ãNc−cq̃ã
+ nl(j,k,m), (5)

wherel(j, k,m) is the arrival time of thejth pulse of thekth user via themth path, that isl(j, k,m) =

(j−1)Nc+ ckj + lkm; [H]l(j,k,m): is thel(j, k,m)th row ofH; [Sm]k,l is the(k, l)th element of the matrix

Sm; andnl(j,k,m) is the l(j, k,m)th element of the noise vector,n. This model can be simplified further

by noting that the vast majority of the summands in (5) are zero. Let A denote the set of distinctive

(q̃, ã) pairs in the right-hand-side (RHS) of (5) such that the corresponding element in the double sum

is not zero; i.e.4,

A = {(q̃, ã) ∈ K × F | [Sq̃]ãNc+cq̃ã,⌊ã/Nf⌋h
q̃

l(j,k,m)−ãNc−cq̃ã
6= 0}, (6)

whereK = {1, . . . ,K} andF = {0, . . . , PNf − 1}. If Kk
j,m represents the number of summands in (5)

that are different from zero,A consists ofKk
j,m pairs. Note that the pair(k, j) is always inA; hence,

Kk
j,m ≥ 1 for everyj, k andm. Assume, without loss of generality, that the pair(k, j) is the first element

4Note that the dependence ofA on j, k andm is not shown explicitly for notational simplicity.
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of the setA.

Let q(i) anda(i) represent, respectively, the first and the second components of theith pair in setA

for i = 1, . . . ,Kk
j,m. Then, (5) can be further simplified as follows:

rkj,m = hklkmb
k
j [Sk]jNc+ckj ,⌊j/Nf⌋ + h̃

k
j,mb̃

k
j,m + nl(j,k,m), (7)

whereh̃k
j,m =

[

[
Sq(2)

]

a(2)Nc+cq(2)
a(2)

,⌊a(2)/Nf ⌋ h
q(2)

l(j,k,m)−a(2)Nc−cq(2)
a(2)

,

. . . ,
[

Sq(Kk
j,m)

]

a(Kk
j,m)Nc+c

q(Kk
j,m)

a(Kk
j,m)

,⌊a(Kk
j,m)/Nf⌋

h
q(Kk

j,m)

l(j,k,m)−a(Kk
j,m)Nc−c

q(Kk
j,m)

a(Kk
j,m)




 andb̃k

j,m =
[

b
q(2)
a(2), . . . , b

q(Kk
j,m)

a(KK
j,m)

]T
.

From (3) and (7),̃rkj can be expressed as

r̃kj = Abkj +
M∑

m=1

hklkmh̃
k
j,mb̃

k
j,m + ñk

j , (8)

where A = [Sk]jNc+ckj ,⌊j/Nf⌋
∑M

m=1

(

hklkm

)2
, and ñk

j =
∑M

m=1 h
k
lkm
nl(j,k,m), which is distributed as

N
(
0 , σ̃2

)
with σ̃2 = σ2

n

∑M
m=1

(

hklkm

)2
.

Based on (8), the log-likelihood of̃rkj given bkj is,

log f
(

r̃kj |bkj
)

= C + log
∑

b̌∈{±1}K̃k
j

exp






− 1

2σ̃2

(

r̃kj −Abkj −
M∑

m=1

hklkm h̃
k
j,mb̃j,m

)2





Pr(b̌), (9)

whereC is a constant independent ofj andk, b̌ is a vector comprised of the distinctbln’s in b̃
k
j,1, . . . , b̃

k
j,M ,

andK̃k
j is the size of̌b. Note thatK̃k

j represents the total number of pulses that have at least one multipath

component arriving at the receiver at the same time as one of the sampled signal paths originating from

the jth pulse of thekth user. Also note that for a given value ofb̌, b̃k
j,m in (9) is uniquely defined,

and Pr(b̌) is the a priori probability, which is obtained from the extrinsic information provided by

the symbol detector. Since the extrinsic information from the symbol detector is the following LLR,

λn−1
2

(
bli
)
= log Pr(bli=1)

Pr(bli=−1)
[cf. (12)], it can be shown, with the aid of some algebraic manipulations, that

[9]

Pr(b̌) =
1

2K̃
k
j

K̃k
j∏

i=1

[

1 + [b̌]i tanh

(
1

2
λn−1
2

(
[b̌]i
)
)]

. (10)
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From (9) and (10), thea priori LLR of bkj can be written as follows:

log
f
(

r̃kj |bkj = 1
)

f
(

r̃kj |bkj = −1
)

△
= λn

1

(

bkj

)

= log

∑

b̌∈{±1}K̃k
j
e
− 1

2σ̃2

“

r̃kj −A−P

M

m=1 h
k

lkm
h̃k

j,mb̃k
j,m

”2
∏K̃k

j

i=1

[
1 + [b̌]i tanh

(
1
2λ

n−1
2

(
[b̌]i
))]

∑

b̌∈{±1}K̃k
j
e
− 1

2σ̃2

“

r̃kj +A−P

M

m=1 h
k

lkm

h̃k
j,mb̃k

j,m

”2
∏K̃k

j

i=1

[
1 + [b̌]i tanh

(
1
2λ

n−1
2

(
[b̌]i
))]

. (11)

From (11) and (4), it is observed that thea posterioriLLR is given by the sum of the prior information

obtained from the symbol detector and the extrinsic information.

B. The Symbol Detector

The symbol detector exploits the fact thatbk(i−1)Nf+1 = · · · = bkiNf
for every k = 1, . . . ,K and

i = 1, . . . , P . Therefore, the symbol detector computes thea posteriori LLR of bkj given the extrinsic

information from the pulse detector, and givenbk(i−1)Nf+1 = · · · = bkiNf
for every k = 1, . . . ,K and

i = 1, . . . , P . It can be shown that this LLR has the following general structure [9]:

Ln
2 (b

k
j )

△
= log

Pr
(

bkj = 1|{λn
1 (b

k
j )}

PNf ,K
j=1,k=1; constraints on pulses

)

Pr
(

bkj = −1|{λn
1 (b

k
j )}

PNf ,K
j=1,k=1; constraints on pulses

) =

Nf ⌊(j−1)/Nf ⌋+Nf∑

i=Nf⌊(j−1)/Nf ⌋+1,i 6=j

λn
1 (b

k
i )

︸ ︷︷ ︸

λn
2 (b

k
j )

+λn
1 (b

k
j ),

(12)

where the constraints arebk(i−1)Nf+1 = · · · = bkiNf
for everyk = 1, . . . ,K andi = 1, . . . , P . In (12), the

a posterioriLLR at the output of the symbol detector is expressed as the sum of the prior information

from the pulse detector,λn
1 (b

k
j ), and the extrinsic information aboutbkj , denoted byλn

2 (b
k
j ). This extrinsic

information is obtained from the information about all the pulses except thejth pulse of thekth user. In

the next iteration this information is fed back to the pulse detector asa priori information about thejth

pulse of thekth user.

Note that the structure of the pulse-symbol detector is similar to the joint-over-antenna turbo receiver

in [18], which employs multiple turbo loops for each antenna, by considering “composite” modulation

for multiple antennas as the inner code, and channel coding for different users as the outer code. The

main differences are that, for the pulse-symbol detector, the outer code is a simple repetition code,

while the inner code is a binary phase shift keying modulation, and that there are also TH and polarity
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randomization operations in the pulse-symbol detector, which randomize the positions and the polarities

of the pulses in different frames.

C. Complexity

It is easily seen that computingλ1

(

bkj

)

of (11) is the most complex task in the pulse-symbol

detector. The complexity of computingλ1

(

bkj

)

is exponential in the total number̃Kk
j of pulses that

have at least one multipath component arriving at the receiver at the same time as one of the sampled

signal paths originating from thejth pulse of thekth user. That is, as can be observed from (11),

the complexity of computingλ1

(

bkj

)

is O
(

2K̃
k
j

)

. Since there areNf pulses per symbol per user, the

complexity of one iteration per symbol per user is easily seen to beO
(
∑Nf

j=1 2
K̃k

j

)

= O
(
2Y (K)

)
, where

Y (K)
△
= maxj=1,...,Nf

K̃k
j . Denoting byNi the number of iterations made by the pulse-symbol detector,

the complexity of the pulse-symbol detector isO
(
Ni2

Y (K)
)

per symbol per user.

K̃k
j is a random variable depending on the channel impulse response, the TH sequence, and the

number of users in the system. It is hard to compare the complexity of the pulse-symbol detector, which

is random, with the complexity of multiuser detection algorithms that have fixed complexity, e.g., the

optimal detector. Nevertheless, if, for example, the probability of the eventNi2
Y (K) > 2K is very low,

then, roughly speaking, the proposed algorithm is simpler than the optimal detector.

The exact distribution ofY (K) is very complicated, and moreover, this distribution depends on the exact

channel structure, the number of paths arriving at the receiver, and the TH sequences. In what follows,

numerical examples are used to demonstrate the complexity of the pulse-symbol detector. In particular,

consider a system with20 users, each transmitting at rate of2 MBits/sec over a0.5 GHz UWB indoor

channel [7]. The receiver is sampling the first10 multipath components; i.e.,L = {1, 2, . . . , 10}. Figure

2 depicts the empirical cumulative distribution function (CDF) of Y (K), averaged over100 different

channel realizations from the channel model1 (CM-1) of the IEEE 802.15.3a channel model, for systems

transmitting one, five and twenty pulses per symbols (Nf = 1, 5, 20). It is clear that the complexity of

the pulse-symbol detector decreases as the pulse rate,Nf , decreases. This is expected because, as the

pulse rate decreases, the probability of collisions decreases as well, which reduces the complexity of the

pulse-symbol detector. Nevertheless, the complexity of the pulse-symbol detector can be large even for

moderate numbers of pulses per symbol. In the next section, two low-complexity implementations are

presented.
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IV. L OW COMPLEXITY IMPLEMENTATIONS

The complexity of the pulse-symbol detector varies considerably with the system pulse rate,Nf . An

increase in the pulse rate increases the algorithm complexity, and this complexity can be large even

for moderate pulse rates or numbers of users. In what followstwo low complexity implementations are

described. The first one is based on approximating part of themultiple access interference (MAI) by a

Gaussian random variable, while the second one is based on soft interference cancellation.

A. Low-Complexity Implementation: The Gaussian Approximation Approach

The high complexity of the pulse-symbol detector is due solely to the pulse detector where thea priori

LLR of a received sample given the transmitted symbol,λ1(b
k
j ), is computed. In recent studies (see, [3],

[29], [34], [7], and references therein), UWB channels are commonly characterized as multipath channels

with large numbers of paths, and delay spreads of up to a few tens of nanoseconds. These large delay

spreads are equivalent to discrete-time channels having more than one hundred taps. Although the UWB

channel consists of many taps, most of them are weak comparedwith the strongest tap, and only about

five to ten taps are weaker by no more than10 dB than the strongest tap. Therefore, most of the pulses

colliding with the pulse of interest arrive via weak paths.

In order to reduce the complexity of the pulse-symbol detector, we propose to model the MAI resulting

from the pulses arriving via weak paths by a Gaussian random variable. Recall thathklkm is the gain of the

mth path, through which the pulse of interest arrives at the receiver. In order to reduce the complexity

of computingλn
1

(

bkj

)

, the receiver sets a thresholdT (in dB) and all the pulses colliding with the pulse

of interest are divided into two groups. The first group contains all the pulses that collide with the pulse

of interest and that arrive via paths that are weaker than themth path of userk by no more thanT dB

(i.e., each path has an amplitude of at least10 log10

∣
∣
∣hklkm

∣
∣
∣ − T dB). The second group contains all the

pulses that collide with the pulse of interest and that arrive via paths that are weaker thanhklkm by more

thanT dB. Denote byIkj,m and Īkj,m the indices of the pulses belonging to the first and second group,

respectively; that is,

Ikj,m =

{

i
∣
∣
∣ 10 log10

∣
∣
∣hklkm

∣
∣
∣− 10 log10

∣
∣
∣
∣
h
q(i)

l(j,k,m)−a(i)Nc−cq(i)
a(i)

∣
∣
∣
∣
≤ T, i = 2, . . . ,Kk

j,m

}

, (13)

and similarly definēIkj,m.
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A model for rkj,m can be written in terms ofIkj,m and Īkj,m as follows:

rkj,m = hklkmb
k
j [Sk]jNc+ckj ,⌊j/Nf⌋ +

∑

i∈Ik
j,m

b
q(i)
a(i)

[
Sq(i)

]

a(i)Nc+cq(i)
a(i)

,⌊a(i)/Nf ⌋ h
q(i)

l(j,k,m)−a(i)Nc−c
q(i)

a(i)

+
∑

i∈Īk
j,m

b
q(i)
a(i)

[
Sq(i)

]

a(i)Nc+cq(i)
a(i)

,⌊a(i)/Nf ⌋ h
q(i)

l(j,k,m)−a(i)Nc−c
q(i)

a(i)

+ nl(j,k,m), (14)

where the first term on the RHS represents the part of the received signal resulting from the pulse of

interest, the second term on the RHS represents that part of the MAI resulting from strong interference,

the third term on the RHS represents that part of the MAI resulting from weak interference, and the

fourth term on the RHS represents the additive Gaussian noise. Since most of the paths are considerably

weaker than the main path, it is expected that|Īkj,m| >> |Ikj,m|. As such, the third term on the RHS

of (14) is the sum of a large number of random variables and we propose to model this sum as a

Gaussian random variable. The mean and the variance of the third term on the RHS of (14) are zero and
∑

i∈Īk
j,m

∣
∣
∣
∣
h
q(i)

l(j,k,m)−a(i)Nc−cq(i)
a(i)

∣
∣
∣
∣

2

, respectively. Thus we use the following approximation:

∑

i∈Īk
j,m

b
q(i)
a(i)

[
Sq(i)

]

a(i)Nc+c
q(i)

a(i),⌊a(i)/Nf ⌋ h
q(i)

l(j,k,m)−a(i)Nc−cq(i)
a(i)

∼ N



0,
∑

i∈Īk
j,m

∣
∣
∣
∣
h
q(i)

l(j,k,m)−a(i)Nc−cq(i)
a(i)

∣
∣
∣
∣

2


 . (15)

Approximating the part of the MAI corresponding to weak pulses colliding with the pulse of interest

by a Gaussian random variable results in the following approximate model forrkj,m:

rkj,m ≈ hklkmb
k
j [Sk]jNc+ckj ,⌊j/Nf⌋ +

∑

i∈Ik
j,m

b
q(i)
a(i)

[
Sq(i)

]

a(i)Nc+c
q(i)

a(i),⌊a(i)/Nf ⌋ h
q(i)

l(j,k,m)−a(i)Nc−cq(i)
a(i)

+ ňk
j,m

= hklkmb
k
j [Sk]jNc+ckj ,⌊j/Nf⌋ +

˜̃
h
k
j,m

˜̃
b
k
j,m + ňk

j,m, (16)

whereňk
j,m is a zero mean Gaussian random variable with variance(σk

j,m)2 = σ2
n+
∑

i∈Īk
j,m

∣
∣
∣
∣
h
q(i)

l(j,k,m)−a(i)Nc−cq(i)
a(i)

∣
∣
∣
∣

2

;

˜̃
h
k
j,m =

[
[
Sq(I1)

]

a(I1)Nc+c
q(I1)

a(I1)
,⌊a(I1)/Nf ⌋ h

q(I1)

l(j,k,m)−a(I1)Nc−c
q(I1)

a(I1)

,

. . . ,
[
Sq(I|I|)

]

a(I|I|)Nc+c
q(I|I|)
a(I|I|)

,⌊a(I|I|)/Nf ⌋
h
q(I|I|)

l(j,k,m)−a(I|I|)Nc−c
q(I|I|)
a(I|I|)




 and ˜̃

b
k
j,m =

[

b
q(I1)
a(I1)

, . . . , b
q(I|I|)
a(I|I|)

]

. Us-

ing the same derivations leading to (11) and (16), thea priori log-likelihood ratio ofr̃kj =
∑M

m=1 h
k
lkm
rkj,m
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given bkj is then approximated by,

λ̃n
1

(

bkj

)

= log
f
(

r̃kj |bkj = 1
)

f
(

r̃kj |bkj = −1
) ∼= (17)

log

∑

ˇ̌
b∈{±1}

˜̃
Kk

j
e
− 1

2˜̃σ2

“

r̃kj −Ã−P

M

m=1 h
k

lkm

˜̃
hk

j,m

˜̃
bk

j,m

”2
∏ ˜̃Kk

j

i=1

[

1 + [ˇ̌b]i tanh
(
1
2λ

n−1
2

(

[ˇ̌b]i

))]

∑

ˇ̌
b∈{±1}

˜̃
Kk

j
e
− 1

2˜̃σ2

“

r̃kj +Ã−P

M

m=1 h
k

lkm

˜̃
hk

j,m

˜̃
bk

j,m

”2
∏ ˜̃Kk

j

i=1

[

1 + [ˇ̌b]i tanh
(
1
2λ

n−1
2

(

[ˇ̌b]i

))] ,

whereÃ = [Sk]jNc+ckj ,⌊j/Nf⌋
∑M

m=1

(

hklkm

)2
, ˜̃σ2 is the variance of

∑M
m=1 h

k
lkm
ňk
j,m, which is

∑M
m=1 |hklkm |

2(σk
j,m)2,

ˇ̌
b is a vector comprised of the distinctbln’s in ˜̃

b
k
j,1, . . . ,

˜̃
b
k
j,M , and ˜̃

Kk
j is the size ofˇ̌b.

The proposed low complexity implementation computes the approximatea priori log-likelihood ratios,
{

λ̃n
1

(

bkj

)}

, instead of the exacta priori log-likelihood ratios. The symbol detector uses these approximate

LLRs as the extrinsic information, and it computes a new set of extrinsic information variables,{λn
2 (b

k
j )},

based on the approximate LLRs provided by the pulse detector. The algorithm continues to iterate between

the two stages until convergence is reached.

The complexity of the proposed scheme depends on the exact number of strong pulses colliding

with the pulse of interest, which is again a random variable.It is easily seen that the complexity of

this implementation isO
(

2Ỹ (K)
)

, where Ỹ (K) = maxj=1,...,Nf

˜̃
Kk

j . Again, we resort to a numerical

example in order to demonstrate the complexity of the proposed detector. Consider a system having20

users, each transmitting at a rate of2 MBits/sec over a0.5 GHz UWB indoor channel [7]. The receiver

is sampling the first10 multipath components; i.e.,L = {1, 2, . . . , 10}, and the thresholdT is set to3

dB. Figure 3 depicts the empirical CDF ofỸ (K), averaged over100 different channel realizations from

the channel model1 (CM-1) of the IEEE 802.15.3a channel model, for systems transmitting one, five

and twenty pulses per symbols (Nf = 1, 5, 20). By comparing Figure 2 and Figure 3, the reduction in the

complexity compared with the complexity of the pulse-symbol detector can be observed. In Figure 4, the

empirical CDF is plotted forNf = 5 and various threshold values. It is observed that as the threshold is

decreased, fewer collisions are considered as strong ones,which reduces the complexity of the algorithm.

Using the same approach, there are other ways of reducing thecomplexity of the pulse-symbol detector.

For example, one can divide the received pulses into two groups based on their relative strengths. In this

approach, a thresholdδ will be set in advance, and the MAI caused by all but theδ strongest colliding

pulses will be modelled as a Gaussian random variable. In this approach the complexity of the receiver
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is limited byNf2
δ per symbol per user.

B. Low-Complexity Implementation: The Soft Interference Cancellation Approach

The complexity of the low-complexity implementation presented in the previous subsection might still

be high for large numbers of users or pulse rates. As such, an even simpler implementation method is

required. In what follows a very low complexity implementation based on soft interference cancellation

is presented.

Recall that the most complex task in the pulse-symbol detector is the computation of thea priori

log-likelihood ratio of the received sample given the transmitted pulse,λ1

(

bkj

)

= log
f(r̃kj |bkj=1)
f(r̃kj |bkj=−1)

. Our

aim is to find a simple way to approximateλ1

(

bkj

)

, and soft-interference cancellation provides us

with such a method [16], [19]. Recall that the model forr̃kj is given by r̃kj =
∑M

m=1 r
k
j,m, where

rkj,m = hklkm
bkj [Sk]jNc+ckj ,⌊j/Nf⌋ + h̃

k
j,mb̃

k
j,m + nl(j,k,m). In soft-interference cancellation methods, the first

step is to form a soft estimate of̃bk
j,m. This soft estimate is the conditional mean ofb̃

k
j,m based on our

current knowledge. We denote this soft estimate by¯̃
b
k
j,m = E

{

b̃
k
j,m

∣
∣{λ2

(

bkj

)

}
}

, which is given by

[
¯̃
b
k
j,m

]

i
=
[

E
{

b̃
k
j,m|{λ2

(

bkj

)

}
}]

i
= E

{

b
q(i)
a(i)

}

= Pr
(

b
q(i)
a(i) = 1

)

− Pr
(

b
q(i)
a(i) = −1

)

=
1

2

[

1 + tanh

(
1

2
λ2

(

b
q(i)
a(i)

))]

− −1

2

[

1− tanh

(
1

2
λ2

(

b
q(i)
a(i)

))]

= tanh

(
1

2
λ2

(

b
q(i)
a(i)

))

. (18)

Assuming that this soft estimate is reliable, the remodulated signalh̃k
j,m

¯̃
b
k
j,m is subtracted fromrkj,m

resulting in

r̄kj,m
△
= rkj,m − h̃

k
j,m

¯̃
b
k
j,m = hklkmb

k
j [Sk]jNc+ckj ,⌊j/Nf ⌋ + h̃

k
j,m

(

b̃
k
j,m − ¯̃

b
k
j,m

)

+ nl(j,k,m). (19)

Subtracting the remodulated signal fromrkj,m results in the reduction of the MAI. Since the number

of collisions is large, the remaining MAI,̃hk
j,m

(

b̃
k
j,m − ¯̃

b
k
j,m

)

=
∑Kk

j,m

i=2

[

h̃
k
j,m

]

i

(

b
q(i)
a(i) − E

{

b
q(i)
a(i)

})

, is

approximated by a Gaussian random variable, as follows:

Kk
j,m∑

i=2

[

h̃
k
j,m

]

i

(

b
q(i)
a(i) − E

{

b
q(i)
a(i)

})

∼ N
(

µk
j,m, (σ

k
j,m)2

)

(20)

with

µk
j,m = E







Kk
j,m∑

i=2

[

h̃
k
j,m

]

i

(

b
q(i)
a(i) − E

{

b
q(i)
a(i)

}

b̃
k
j,m

)






=

Kk
j,m∑

i=2

[

h̃
k
j,m

]

i
E
{(

b
q(i)
a(i) − E

{

b
q(i)
a(i)

})}

= 0 (21)
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and

(σk
j,m)2 = Var







Kk
j,m∑

i=2

[

h̃
k
j,m

]

i

(

b
q(i)
a(i) − E

{

b
q(i)
a(i)

})






= E











Kk
j,m∑

i=2

[

h̃
k
j,m

]

i

(

b
q(i)
a(i) − E

{

b
q(i)
a(i)

})





2






=

Kk
j,m∑

i=2

[

h̃
k
j,m

]

i
Var

{

b
q(i)
a(i)

}

=

Kk
j,m∑

i=2

[

h̃
k
j,m

]2

i

(

1−
([

˜̃
bkj

]

i

)2
)

, (22)

whereE
{(

b
q(i)
a(i) − E

{

b
q(i)
a(i)

})(

b
q(l)
a(l) − E

{

b
q(l)
a(l)

})}

= 0 for i 6= l, andVar
{

b
q(i)
a(i)

}

= E

{(

b
q(i)
a(i)

)2
}

−
(

E
{(

b
q(i)
a(i)

)})2
= 1−

([
˜̃
bkj

]

i

)2
are used.

Then, the soft estimate for̃rkj can be obtained as

¯̃rkj =

M∑

m=1

hklkm r̄
k
j,m = Ã bkj + ¯̃nk

j , (23)

whereÃ = [Sk]jNc+ckj ,⌊j/Nf⌋
∑M

m=1

(

hklkm

)2
, and¯̃nk

j =
∑M

m=1 h
k
lkm
n̄k
j,m, with n̄k

j,m = h̃
k
j,m

(

b̃
k
j,m − ¯̃

b
k
j,m

)

+

nl(j,k,m).

In the proposed very low-complexity implementation of the pulse-symbol algorithm, the pulse detector

computes thea priori log-likelihood ratio of ¯̃rkj given the transmitted symbol, instead of thea priori

log-likelihood ratio ofr̃kj given the transmitted symbol. Denote by˜̃λn
1

(

bkj

)

this log-likelihood ratio; that

is, ˜̃λn
1

(

bkj

) △
= log

f(¯̃rkj |bkj=1)
f(¯̃rkj |bkj=−1)

. By using the Gaussian approximation for the residual MAI asshown in

(20), ˜̃λn
1

(

bkj

)

is easily seen to be given by

˜̃
λn
1

(

bkj

)

=
−
(

¯̃rkj − Ã
)2

+
(

¯̃rkj + Ã
)2

∑M
m=1

(

hklkm

)2 (

σ2
n + (σk

j,m)2
) =

4Ã¯̃rkj
∑M

m=1

(

hklkm

)2 (

σ2
n + (σk

j,m)2
) . (24)

As in the previously proposed low complexity implementation, the pulse detector computes thea

priori log-likelihood ratios,
{
˜̃
λn
1

(

bkj

)}

, instead of the exacta priori log-likelihood ratios. The symbol

detector uses these approximated LLRs as its extrinsic information, and it computes a new set of extrinsic

information,{λn
2 (b

k
j )}, based on the approximated LLRs provided by the pulse detector. The algorithm

then continues to iterate between the two stages until convergence is reached.

V. SIMULATIONS

In this section, simulation results are presented in order to investigate the performance of various

receiver structures as a function of the signal-to-noise ratio (SNR). The UWB indoor channel model
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reported by the IEEE 802.15.3a task group is used for generating UWB multipath channels [7], and

the uplink of a synchronous TH-IR system withNf = 5, Nc = 250, and a bandwidth of0.5 GHz is

considered. It is assumed that there is no inter-frame interference (IFI) in the system5. Note, however,

that the analysis in Section III and IV cover scenarios with IFI, as well.

In Figure 5, bit error rates (BERs) of various receivers are plotted as functions of the SNR using

100 realizations of CM-1 [7]. There are5 users in the environment (K = 5), where the first user is

assumed to be the user of interest. Each interfering user is modeled to have10 dB more power than the

user of interest so that an MAI-limited scenario can be investigated. Note that the benefits of iterative

multiuser detectors become more obvious in the MAI-limitedregime. At all the receivers, the first25

multipath components are employed; i.e.,L1 = {1, . . . , 25}. In the figure, the curve labeled “MRC-Rake”

corresponds to the performance of a conventional MRC-Rake receiver [4]; the curves labeled “LC”

correspond to the performance of the low complexity implementation method based on the Gaussian

approximation (T = 10 dB is used); and the curves labeled “SIC” correspond to the performance of

the low complexity implementation method based on soft interference cancellation. Also, the single user

bound is plotted for an MRC-Rake receiver in the absence of interfering users. From the figure, it is

observed that the BERs of the proposed detectors are considerably lower than those of the MRC-Rake.

In addition, after two iterations, the performance of the proposed receivers gets very close to that of a

single user system. Finally, the low complexity implementation based on the Gaussian approximation out-

performs the low complexity implementation based on soft interference cancellation on the first iteration,

which is a price paid for the lower complexity of the latter algorithm. In other words, the soft interference

approach estimates the overall MAI by first order moments, and approximates the difference between the

MAI and the MAI estimate by Gaussian random variables, whichreduces the complexity significantly

but also causes a performance loss due to a more extensive Gaussian approximation compared to the

low complexity implementation that uses Gaussian approximations only for weak MAI terms. However,

after two iterations, both receivers get very close to the single-user bound, and the low complexity

implementation based on soft interference cancellation becomes more advantageous due to its lower

computation complexity (cf. Figure 7).

In Figure 6, the same parameters as in the previous case are used, and performance of the low

5TH codes are generated randomly from{0, 1, . . . , Nc − L− 1} in order not to cause any IFI.
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complexity implementation based on the Gaussian approximation is investigated for various threshold

values. As can be observed from the plot, as the threshold is decreased; i.e., as more MAI terms are

approximated by Gaussian random variables, the performance of the algorithm degrades. In other words,

there is a tradeoff between performance and complexity as expected from the study in Section IV-A.

Also note that since each interfering user is10 dB stronger than the user of interest, there is not much

difference between theT = 10 dB andT = 0 dB cases (as most of the significant MAI terms are usually

above the threshold in both cases), whereas the performancedegrades significantly for theT = −10 dB

case.

Next, the performance of the receivers is investigated for CM-3 of the IEEE 802.15.3a channel model,

whereT = 0 dB is used for the low complexity implementation based on theGaussian approximation6.

The same observations as in Figure 5 are made. The main difference in this case is the increase in the

BERs, which is a result of the larger channel delay spread of the channel model used in the simulations.

In other words, less energy is collected on the average, which results in an increase in average BERs.

In order to compare the performance of the proposed receivers under computational constraints, the

performance loss (in dB) of each receiver compared to a single user receiver is plotted versus the

average number of multiplication operations per user in Figure 7. The performance loss is calculated

as the difference between the SNR needed for the receiver to achieve a BER of10−3 and the SNR

of the single user receiver at BER=10−3. For each receiver, the points on the curve are obtained for

1, 2 and 3 iterations. From Figure 7, it is concluded that the low complexity implementation based on

soft interference cancellation provides a better performance-complexity tradeoff than the low complexity

implementation based on the Gaussian approximation.

Finally, the performance of the receivers that are samplingonly the first5 multipath components (i.e.,

L1 = {1, 2, 3, 4, 5}) is investigated. In this case, it is observed from Figure 8 that the proposed receivers

can still perform very closely to the single-user bound, whereas the MRC-Rake receiver experiences a

serious error floor.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper an iterative approach, the pulse-symbol detector, for multiuser detection in TH-IR systems

has been presented for frequency-selective environments.In this approach, the detection problem is

6The curves are very similar to the ones in Figure 5; hence theyare not shown separately.
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divided, artificially, into two parts, and the proposed algorithm iterates between these two parts. In each

iteration, the algorithm passes extrinsic information between the two parts, resulting in an increase in

the accuracy of the decisions made by the detector. The complexity of the proposed detector is random;

hence, comparing the complexity of this detector with otherfixed complexity algorithms is complicated.

Nevertheless, we have demonstrated, via simulations, thatthere are scenarios were the complexity of the

proposed detector is lower than the complexity of the optimal detector, while in others it is higher.

In addition, two low-complexity implementations have beenpresented. The first implementation is

based on approximating parts of the MAI by a Gaussian random variable and the second is based on

soft interference cancellation. The complexity of both implementations is quite low, and we believe

that these algorithms could be used in practical systems. The performance characteristics of these low-

complexity implementations have been examined using simulations. We have shown that these algorithms

typically get very close to the single-user bound after onlya few iterations, and outperform the MRC-Rake

substantially.

The proposed multiuser detection algorithms were described under the assumption of synchronous

users. However, it is easily seen that this assumption was made only for notational simplicity. The pulse

detector inherently ignores any information about the symbols and their structure, and in particular their

timing. It uses only the information about the individual pulses that collide with the pulse of interest. The

symbol detector uses the results of the pulse detector for pulses that correspond to the symbol of interest.

As such, the symbol detector is independent of the other symbols from the same user or from the symbols

from other users. In summary, it is evident that synchronization among users is not required. Moreover,

it is easy to design a serialized version of the proposed algorithm in the sense that the receiver process

on-the-fly new samples at the expense of performance degradation. In summary, the only requirement

from the receiver is the knowledge of each user’s symbol timing, which is commonly obtained during

synchronization phases in practical systems.
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Fig. 1. The general structure of the receiver, whereprx(t) denotes the received UWB pulse.
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Fig. 5. BER as a function of the SNR for various receivers.
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