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Abstract

In recent years, there has been a growing interest in mallaptess communication systems that
spread their transmitted energy over very large bandwidthgese systems, which are referred to as
ultra wide-band (UWB) systems, have various advantages nasow-band and conventional wide-
band systems. The importance of multiuser detection foreaitg high data or low bit error rates in
these systems has already been established in severadsstddiis paper presents iterative (“turbo”)
multiuser detection for impulse radio (IR) UWB systems owriltipath channels. While this approach
is demonstrated for UWB signals, it can also be used in oysems that use similar types of signaling.
When applied to the type of signals used by UWB systems, theptaxity of the proposed detector can
be quite low. Also, two very low complexity implementatioofsthe iterative multiuser detection scheme
are proposed based on Gaussian approximation and softeirgece cancellation. The performance of
these detectors is assessed using simulations that deatertsieir favorable properties.
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. INTRODUCTION

In recent years, there has been a growing interest in ultdeWwand (UWB) systems, which resulted
in the U.S. Federal Communications Commission (FCC) regula that allow, under several restrictions,
the widespread use of such systems. The common definitiorVéB ldystems, which was adopted by
the FCC as well, states that a system is a UWB system if bothlikelute and the fractional bandwidths
are large. The absolute bandwidth should be at l16d@siGHz, while the fractional bandwidth, which
is the signal bandwidth divided by the carrier frequencyatideast20% [8]. UWB systems offer many
advantages over narrow-band or conventional wide-bangsygs Among these advantages are reduced
fading margins, simple transceiver designs, low probgbdf detection, good anti-jam capabilities, and
accurate positioning (see, [5], [33], [14], and referentte=gein). The advantages of UWB technology
have caused this technology to be considered for use as fsmcphlayer of several applications; for
example, the IEEE 802.15.4a wireless personal area nettVeBAN) standard employs this technology
as one of the signaling options [37].

There are many signaling methods for transmitting over UWnmels, and it is obvious that,
apart from engineering difficulties, one can use any exjstipread spectrum technique for transmitting
over UWB channels [10], [32]. However, these difficultiesgimi be quite significant, preventing the
actual use of conventional spread-spectrum methods fosrdting over UWB channels. Consider,
as an example, long-code direct-sequence code-divisidtipte-access (DS-CDMA) systems. In these
systems, implementing even the simplest detector, narhelynatched filter detector, requires sampling
of the received signal at least at the chip rate, which unidercurrent regulations might be as large as
7.5 GHz. Such sampling rates are difficult to achieve, and rasuligh power consumption.

In order to overcome some of the difficulties associated WIWB signaling, impulse radio (IR)
systems, and especially time-hopping impulse radio (THsi§&tems have been proposed as the preferred
modulation scheme for UWB systems [26]. In TH-IR systemsa@ tof short pulses is transmitted, and the
information is usually conveyed by either the polarity czdtion of the transmitted pulses. In addition, in
order to allow many users to share the same channel, an@udditandom (or pseudo-random) time shift,
known to the receiver, is added to the starting point of eadbep This way, probability of catastrophic
collisions between two users transmitting over the samerlaat the same time is significantly reduced

[26].



TH-IR modulation, e.g., binary phase shift keyed (BPSK) IRj-to be discussed in the following
sections, has many advantages over conventional modul@itniques. By using very short pulses, the
transmitted energy is spread over a very large bandwidthadidition, by using pseudo-random time
intervals between the transmitted pulses and random pulkeities, spectral lines and other spectral
impairments are avoided [13]. The implementation of theeresr is usually easier for this technique
because the channel is excited for only a fraction of thd tcdasmission time. For example, the matched
filter detector needs to sample the filter matched to the vedgiulse only at time instants when pulses
corresponding to the user of interest arrive at the recelMereover, base-band pulses are typically used
in UWB systems, saving the need for complex frequency syghation and trackiru; These advantages
make TH-IR the preferred modulation scheme for transngittiver UWB channels in various applications.
It should be noted that IR-UWB has been chosen as one of thelatah formats for the IEEE 802.15.4a
WPAN standard.

It has been observed [9], [21], [27], [35] that the transeditand received signals of TH-IR systems can
be described by the same models used for describing thartited and received signals of DS-CDMA
systems. The main difference between classical DS-CDMAatggand TH-IR signals is that TH-IR
signals use spreading sequences whose elements belorgtesriary alphabet, i.e{—1,0,+1}, instead
of the binary alphabet, i.e{—1,+1}. This observation leads to the immediate conclusion thatyev
multiuser detector designed for CDMA systems can be usedHARI systems as well. In particular,
the optimal multiuser detector can be easily deduced frobh, [@d the complexity of this detector for
systems transmitting over multipath channels is known te@xmgonential in the number of active users
and the number of transmitted symbols falling within theagiedpread of the channel. Linear receivers
can be designed as well, resulting in multiuser detectovsngacomplexity that is polynomial in the
number of active users and the size of the observation wisdmsed by the detector [1], [22].

Although the classical algorithms for multiuser detect@@mn be used in TH-IR systems, it is evident
that low complexity multiuser detection algorithms for tgyas that use generalized spreading sequences
in general and IR systems in particular are required. Thedectbrs should exploit the special type
of signals TH-IR systems transmit in order to reduce the derily of multiuser detectors. In [9], an
iterative multiuser detector exploiting the special stiue of TH-IR signals is proposed for additive white

It should be noted, however, that if the channel is compogeal \@ry large number of equipower paths, then the receiver
complexity becomes very large due to the need to sample d@lesh in order to achieve diversity combining.



Gaussian noise (AWGN) channels. Iterative multiuser detsacan be designed for TH-IR systems by
considering the TH-IR signaling structure as a concatehabeling system, where the inner code is the
modulation and the outer code is the repetition code. Suebrmtque makes use of the similarity between
TH-IR signaling and bit interleaved coded modulation (BI;Mhere the inner code is modulation and
the outer code is channel coding [2], [6], [18], [36].

In this paper, we first present an extension of the iterativdtiuser detector in [9] to more realistic
multipath channels. Namely, we propose an iterative detestructure that combines energy from a
number of multipath components. Although only random THsk®tems are described in the sequel, the
multiuser detectors presented in this paper can be apmliadyt other type of DS-CDMA system whose
spreading sequences contain large fraction of zeros. Astheacontribution of this paper goes beyond the
theory of UWB systems into the theory of general DS-CDMA eyss. In addition, we propose two very
low-complexity implementations of the iterative algonthwhich are based on Gaussian approximation
for weak interferers, and on soft interference cancelatio

The rest of the paper is organized as follows: In Sectionhi, signal model that is used throughout
the paper is described. In Section I, an iterative muéiiudetector, called the pulse-symbol iterative
detector, is presented for frequency-selective envirgnisaelhen, two novel and low-complexity imple-
mentations of the proposed receiver are described in $eldtidn Section V, simulations demonstrating
the performance of the proposed detector when transmittirgy indoor UWB channels are presented.

Finally, a summary and some concluding remarks are proviideékction VI.

Il. DISCRETETIME SIGNAL MODEL

TH-IR systems can be modeled as DS-CDMA systems with gdmedakpreading sequences that
take values from the set—1,0,+1} [20], [12]. Therefore, aK-user DS-CDMA synchronous system
transmitting over a frequency-selective channel is carsid in order to obtain the discrete-time signal
model for a TH-IR systeH1 It is assumed that each user transmits a packétioformation symbols, and
N denotes the processing gain of the system. In addition,iharel between each user and the receiver
is modeled to havd. taps, andh;, = [h’f---h’z] denotes the discrete time channel impulse response

between thekth transmitter and the receiver. Finally, ; = [Sf,o”‘sf,zv_ﬁ represents the spreading

2The synchronous assumption is made for notational conweejebut as we discuss in the sequel, the proposed algorithm
works equally well in asynchronous systems.



sequence that thieth user uses for spreading itth information symbol. Note that §;, ; = s, ; for every
1 and 7, then the systems is a short-code system; otherwise it isgrdode system.

A chip-sampled discrete-time model for the received sigaal be described by the following model:

K
r=> \/E,H;Syby +n, 1)
k=1

where, for thekth user & = 1,. .., K): E} is the transmitted energy per symbHj, is an(NP+L—1) x
N P matrix, whoseith column is equal td0;_1, hy, 0xp_;]7 ando; is the all zero row vector of length
Sy is anN P x P spreading matrix containing th spreading sequences that #th user uses for spread-
ing the transmitted symbolSy, = [[si1 On(p—1)]”, [On Sk2 On(p—2)]7 -, [On(p—1) skp]”]; andby, =
[b1,...,bp|T is the vector containing the transmitted information sytshaf the kth user. Throughout
this paper, it is assumed that the transmitted informatjont®ls are binary (i.e., elements p£1,+1})
although the extension to more general cases is straigfafdr Heren = [ny,...,nyxpyr_1]7 is the
sampled additive noise vector, assumed to be normallyileliséd with zero mean and correlation matrix
021, i.e.,n~ N (0,02I). In the sequel, this system is referred to as a BPSK TH-IResyst

Denote byb 2 I b, ... bL]T the vector containing the transmitted symbols of the vaiou
users, byS the block diagonal matrix with the users’ spreading masriom its diagonal, and by
H 2 [Hi,Hs, ..., Hg| the concatenation of the users’ channel matrices. With tdeofH, S, and

b, the following model for the received signal can be deduced:
r = HSb + n. (2)

In deriving [2), it is assumed without loss of generalitytttfze users’ channel impulse responses are
scaled to absorb the transmitted energy per bit.
Equation [(2) can also be used to describe DS-CDMA systemwhioh case it is usually assumed

that all the elements o8 belong to{i where N is the spreading gain. IR systems are, in a

L}

\/N 1

sense, generalizations of DS-CDMA systems, where in IResystall the elements d& belong to

{i\/LN_,O}, where N; is the number of pulses (or “chips” in the CDMA terminologyaof user
f

transmits per information symbol. Since each symbol irteiv an IR system is divided int&V; equal

intervals, calledrames, and a single pulse is transmitted in each frafig|s also called the number of

frames per symbol.



In practice each user, say tléh user, is assigned a random, or a long pseudo-random, Tieses,
denoted by{cf}. This sequence is known to the receiver, but the elements$équence can be modeled
for analytical purposes as independent and identicallyridiged (i.i.d.) random variables, uniformly
distributed in{0,1,..., N. — 1}. Denote bys;, = [s{ ;,s{,,...,sf. p] the concatenation of the spreading
sequences of théth user. The elements @f, are related to théth user's TH sequence as follows: the
elements ofs;, corresponding to indice$§(j; — 1)N. + c? + l}j.vsz are binary random variables, while
the remaining elements are zero. Note that random CDMA systean be described by this model by

taking Ny = V.

I1l. THE PULSE-SYMBOL ITERATIVE DETECTOR

In this section, a low-complexity receiver structure, edlithe “pulse-symbol (iterative) detector” is
proposed for TH-IR systems in frequency selective enviremis. Since the receiver does not require
chip-rate or Nyquist rate sampling, it facilitates simpigpiementations in the context of UWB systems.

Denote byck = {i¥,... 1%}, with I¥ € {1,2,..., L} and M < L, the indices of the signal paths the
receiver combines for usdr. In other words, the proposed receiver samples the recsigedl at the
time instances when pulses arrive through the paths indeyed for £ = 1,..., K. It can be easily
seen that these sampling times &(¢j — 1) N, + cg? + l’;l)Tc};.V:ff’kﬁ%:l, whereT, is the pulse width.
Denote byrﬁm the received sample corresponding to ittle pulse of thekth user via themth signal
path. Note that the total number of samples per symbol frdnfranes and signal paths of all users
can be as high ad/;M K, which can result in a very high-complexity receiver stuet Therefore, we
consider a receiver that combines the samples from differartipath components in each frame by
maximal ratio combining (MRC) for each user. Lf%‘t denote this combined sample in thn frame of
userk. Then,

M
= 2 s s )
m=1
and the samples from usércan be expressed &g = [} - '-f]’i,fp]. The proposed receiver is depicted
in Figure[1. It is easy to verify that?, is the ((j — 1)N.+ ¢} + I, )th element ofr defined in [2), and

therefore a matrixGy, which performs selection and MRC of selected samples, eaddsigned such

thatt, = Ggr.



Based on the samples obtained adin (3), the pulse-symbedtdeperforms an iterative estimation of
users’ symbols. In general, iterative algorithms provial® tomplexity and close-to-optimal solutions for
many problems (see, [15], [23], [31], [6], [18], among martlgess; a review is found in [24]). The main
property of the problems that can be solved efficiently bgatiee techniques is that these problems have
a very special structure, which allows productive use ohiiee procedures. Consider as an example the
problem of joint multiuser detection and decoding of errorrecting codes in CDMA systems [23]. In
this problem, one can employ any multiuser detection atlgwri(or more precisely a multiuser receiver
[28]) that results in soft decision statistics about evelmarmmel symbol. These soft decisions can be
fed into any soft decoding algorithm, and the result will be estimated information symbol. Turbo
based algorithms provide an efficient way of iterating bemvthe results obtained by the two constituent
algorithms, where each one of these algorithms is designedlve one part of the problem. Although
no such structure exists in the problem of multiuser detactf TH-IR signals, some of tha priori
information can be neglected in order to impose a structuitalde for an iterative decoding algorithm.
In other words, the spreading operation is regarded as alesierpor correcting encoding to facilitate
iterative solutions. In this light, TH-IR signaling can bensidered as a concatenated coding system,
where the inner code involves the modulation of a UWB pulseé, the outer code is a repetition cgde
This structure is similar to BICM, for which modulation anldasinel coding comprise the inner and outer
codes, respectively [2], [6].

Consideration of TH-IR systems as BICM systems facilitdbesdesign of the pulse-symbol iterative
detector, which is composed of two stages [9]. The first simgenoted as the “pulse detector”, while the
second stage is denoted as the “symbol detector”, and tleetdetterates between these stages. In the
first stage, it is assumed that different pulses from the sagee correspond to independent information
symbols, while in the second stage the information thatra¢yeilses from the same user correspond to
the same information symbols is exploited. The second statgeeffectively as a decoder.

3Unlike conventional turbo receivers, there is not a separaérleaver unit between the coding units in the proposerttsire.
However, the function of an interleaver in reducing the elation between the soft output of each decoder unit andrjeat i
data sequence (called the iterative decoding suitabititerion [17], [25]) is performed by the TH and polarity raomization
codes in the proposed system. By means of TH and polarityscfitld, inputs to the demodulator and the decoder blocks
become essentially independent.



A. The Pulse Detector

Denote bybé? the information symbol carried by thgh pulse of thekth user. Note that although we
know a priori that b’(‘fi_l)]\,erl =... = bef for everyk =1,...,K andi = 1,..., P, this information
will be ignored by the pulse detector. As such, at ilth iteration the pulse detector computes the
posteriorilog-likelihood ratio (LLR) ofbg?, given Ff in (@), the information about the transmitted pulses

from other users and the priori information abouﬁ;f provided by the symbol detector, as

Pr(bh =1)
Pr(bh=-1)

forj=1,...,PN;andk = 1,..., K, wheref (f§?|b§? = z) is the likelihood of thejth combined sample

~k |k
. A Pr(b% = 1|7k) frgivy =1
L7 () = log ;: {k = log <k p > + log (4)
Pr (bj = —1|7‘j) f (rj|bj = —1)

corresponding to théth user given that the transmitted symbol was +1. It is seen that tha posteriori
LLR is the sum of the priori LLR of the transmitted symbolpg % = Ag‘l(bg?), and theextrinsic
information provided by the pulse detector about the trattiechsymbol,log % 2 Xf(bg?) [9].
We first consider the computation bfg f (f§?|b§?> in (). From [2), it is easy to deduce the following
model forrﬁm, which is the received sample from theh path of thekth user’s signal in thgth frame:

K NfP—l
. ) )
P = B km):SP+ MiGem) =Y D blaw,) (Salan +et.a/N7 1P i gmy -y, —t T TG km)> ()
g=1 a=0

wherel(j, k,m) is the arrival time of theth pulse of thekth user via thenth path, that i9(j, k,m) =

(j = V)Ne+ck 15, Bl k) is thel(j, k, m)th row of H; [S,,]x is the (k, [)th element of the matrix
Sim; andny(; i.m) 1S thel(j, k, m)th element of the noise vectai, This model can be simplified further
by noting that the vast majority of the summands[ih (5) are.zeet A denote the set of distinctive
(q,a) pairs in the right-hand-side (RHS) df] (5) such that the spomding element in the double sum

is not zero; i.¢,

A= {((ja d) e xF ’ [St]]aNC+cg,La/NfJh?(j7k’m)_dNC_cg 7’é 0}7 (6)

where = {1,..., K} andF ={0,..., PNy — 1}. If Kj’“m represents the number of summanddin (5)
that are different from zerad consists oij’fm pairs. Note that the paifk, j) is always in.A; hence,

K]’fm > 1 for everyj, k andm. Assume, without loss of generality, that the pdirj) is the first element

“Note that the dependence gf on j, k andm is not shown explicitly for notational simplicity.



of the setA.
Let ¢(¢) anda(i) represent, respectively, the first and the second compsérheith pair in set4

fori=1,... ,K]’fm Then, [%) can be further simplified as follows:

o = hf}n bY[Sk] INo+eh /Ny T by Y g gm)s (7)

a(2)

e — q(2)
wherehj,,, = [ [SQ(z)]a(2)N6+cZ((z)),\_a(2)/Nf ! hl(j,k,m)—a(2)Nc—c‘I(2)’

K} ) u (2) a(Kt,01"
o IS, e S(xck p .y | andbf = o020 pt
|: q( ],m):| a(Kﬁyn)Nc“‘Ca((K?M;7La(Kﬁ7n)/NfJ l(j,k,m)—a(Kﬁm)NC—Cq((I;J;m; T (2) (Kj,m)
From [3) and[(]?);?}€ can be expressed as "
M ~ ~
=AY+ bbb bE ik (8)

m=1

2
where A = [Siljn.+ct, /N, | Somei (h&) ,and i = SS00 hf i km), Which is distributed as
2
N (0, 5%) with 52 = o2 S0, (hf )

Based on[(B), the log-likelihood of’ givenb¥ is,

M 2
- 1 ~ ~ o~ .
log f (rf\bi) =C + log g exp {W (rf — Abf — g hffnh§7mbj7m> } Pr(b), (9)
m=1

be{£1}5)
whereC is a constant independent pandk, b is a vector comprised of the disting's in b%,, ..., b¥ |
andKJ’?C is the size ob. Note that[i']’? represents the total number of pulses that have at least otipath
component arriving at the receiver at the same time as oneeo$ampled signal paths originating from

the jth pulse of thekth user. Also note that for a given value bf b* in @) is uniquely defined,

]7m

and Pr(b) is the a priori probability, which is obtained from the extrinsic inforriwat provided by
the symbol detector. Since the extrinsic information frdme symbol detector is the following LLR,
Ag—l (bi) = log % [cf. (I2)], it can be shown, with the aid of some algebraic ipalations, that

[9]

Pr(b) %]j[ {1 + [B); tanh (%/\3‘1 ([B]Z-)ﬂ . (10)
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From [9) and[(10), the priori LLR of bé? can be written as follows:

e (AL BB L) K e (L (1],
Dpe(an e [T [1+ [bli tanh (3257 ([bli))] 1)

= log Ca—
Tj +A Zm 1 Lk hf 7nbf m Kjk - n—1 1

ZBG{:I:I}R;'C e (% ) [T:21 [1+ [blitanh (057" ([bli))]

From [11) and[(4), it is observed that theposterioriLLR is given by the sum of the prior information

obtained from the symbol detector and the extrinsic infdroma

B. The Symbol Detector

The symbol detector exploits the fact twé‘t DNpp1 = = biy, for everyk = 1,...,K and
i =1,...,P. Therefore, the symbol detector computes #hposterioriLLR of bé? given the extrinsic
information from the pulse detector, and givéfrln_l)]\,erl = = by, foreveryk = 1,...,K and

i=1,...,P. It can be shown that this LLR has the following general streec[9]:

nois A Pr (béC — 1|Ux?(bf)};’”\?iC ,; constraints on pulsé NsL(G—1)/Ns | +N; o
Pr (bj = —1{AT ()}, 2 1,; |; constraints on pu|s§ SN, LG 7N |4+ Lk
Az (b5)
(12)
where the constraints a N == bef for everyk = 1,...,K andi = 1,..., P. In (I2), the

a posterioriLLR at the output of the symbol detector is expressed as the cfuthe prior information
from the pulse detectoNf(bg?), and the extrinsic information abobgt, denoted by\g(bg?). This extrinsic
information is obtained from the information about all thelges except thgth pulse of thekth user. In
the next iteration this information is fed back to the puls¢edtor asa priori information about theth

pulse of thekth user.

Note that the structure of the pulse-symbol detector islaintd the joint-over-antenna turbo receiver
in [18], which employs multiple turbo loops for each antenbw considering “composite” modulation
for multiple antennas as the inner code, and channel codinglifferent users as the outer code. The
main differences are that, for the pulse-symbol detectw, duter code is a simple repetition code,

while the inner code is a binary phase shift keying modutateind that there are also TH and polarity
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randomization operations in the pulse-symbol detectoichivlandomize the positions and the polarities

of the pulses in different frames.

C. Complexity

It is easily seen that computing; (bf) of (1) is the most complex task in the pulse-symbol
detector. The complexity of computing <b§> is exponential in the total numbeli’j’-€ of pulses that
have at least one multipath component arriving at the receit the same time as one of the sampled
signal paths originating from thgth pulse of thekth user. That is, as can be observed frdml (11),
the complexity of computing\; (bf) is O <2Kf). Since there aréVy pulses per symbol per user, the
complexity of one iteration per symbol per user is easilynseebe O (Ej.v:fl 2&"“) = 0 (2V5)), where
Y(K) 2 max;—1,. N, KJ’?. Denoting byN; the number of iterations made by the pulse-symbol detector,
the complexity of the pulse-symbol detector@s(NﬂY(K)) per symbol per user.

KJ’? is a random variable depending on the channel impulse respadhe TH sequence, and the
number of users in the system. It is hard to compare the coityplef the pulse-symbol detector, which
is random, with the complexity of multiuser detection algons that have fixed complexity, e.g., the
optimal detector. Nevertheless, if, for example, the philig of the eventN;2Y (5) > 2K is very low,
then, roughly speaking, the proposed algorithm is simgilantthe optimal detector.

The exact distribution of (K) is very complicated, and moreover, this distribution defssmn the exact
channel structure, the number of paths arriving at the veceand the TH sequences. In what follows,
numerical examples are used to demonstrate the compleityegoulse-symbol detector. In particular,
consider a system witB0 users, each transmitting at rate DMBits/sec over &.5 GHz UWB indoor
channel [7]. The receiver is sampling the fitét multipath components; i.e = {1,2,...,10}. Figure
depicts the empirical cumulative distribution functic®DF) of Y (K), averaged ovet00 different
channel realizations from the channel motiéCM-1) of the IEEE 802.15.3a channel model, for systems
transmitting one, five and twenty pulses per symbdis & 1,5,20). It is clear that the complexity of
the pulse-symbol detector decreases as the pulse Natedecreases. This is expected because, as the
pulse rate decreases, the probability of collisions deg®as well, which reduces the complexity of the
pulse-symbol detector. Nevertheless, the complexity efghlse-symbol detector can be large even for
moderate numbers of pulses per symbol. In the next sectiam |dw-complexity implementations are

presented.
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IV. Low COMPLEXITY IMPLEMENTATIONS

The complexity of the pulse-symbol detector varies comnsioly with the system pulse raté;. An
increase in the pulse rate increases the algorithm contplexid this complexity can be large even
for moderate pulse rates or numbers of users. In what follwweslow complexity implementations are
described. The first one is based on approximating part ofrthitiple access interference (MAI) by a

Gaussian random variable, while the second one is basedfoimt®sference cancellation.

A. Low-Complexity Implementation: The Gaussian ApprokionaApproach

The high complexity of the pulse-symbol detector is duelgdtethe pulse detector where tlaepriori
LLR of a received sample given the transmitted symb@[bf), is computed. In recent studies (see, [3],
[29], [34], [7], and references therein), UWB channels ammmonly characterized as multipath channels
with large numbers of paths, and delay spreads of up to a fes/ @& nanoseconds. These large delay
spreads are equivalent to discrete-time channels having than one hundred taps. Although the UWB
channel consists of many taps, most of them are weak compétiedhe strongest tap, and only about
five to ten taps are weaker by no more th&andB than the strongest tap. Therefore, most of the pulses
colliding with the pulse of interest arrive via weak paths.

In order to reduce the complexity of the pulse-symbol deiegte propose to model the MAI resulting
from the pulses arriving via weak paths by a Gaussian randuotable. Recall thahffn is the gain of the
mth path, through which the pulse of interest arrives at tleeiver. In order to reduce the complexity
of computing\} (b;f) the receiver sets a threshdld(in dB) and all the pulses colliding with the pulse
of interest are divided into two groups. The first group corgtall the pulses that collide with the pulse
of interest and that arrive via paths that are weaker thamitiepath of use: by no more thari” dB

(i.e., each path has an amplitude of at leHslog ‘hfk — T dB). The second group contains all the

pulses that collide with the pulse of interest and that ariia paths that are weaker thaﬁ by more
thanT dB. Denote byIj’fm and I_]’fm the indices of the pulses belonging to the first and secondpgro

respectively; that is,

L {z ( 101og 1, ‘hf& ~ 10logyg

a(@) P — k
"igmy—ativ—esy| ST T ij} ’ -

and similarly definef},.



k i i k 7k :
A model forr;,, can be written in terms of;,, andI;, as follows:

E  _ 1k 1k q(4)
o = W WIS Line) + D Bate) [300)] aiyecrer) Loty ) Py —aion,

a(i)?
ielk

J.m

q(i) ‘
+ 2 o [Suolaw, 0 La()/N ) M1 km)—a( N~z T Gk
iel®

J.m

q(i)

_Ca(1)
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(14)

where the first term on the RHS represents the part of theveteiignal resulting from the pulse of

interest, the second term on the RHS represents that pamedflAl resulting from strong interference,

the third term on the RHS represents that part of the MAI tewylfrom weak interference, and the

fourth term on the RHS represents the additive GaussiarenSiace most of the paths are considerably

weaker than the main path, it is expected ttﬁtmy >> \I]’fm\. As such, the third term on the RHS

of (I4) is the sum of a large number of random variables and mw@gse to model this sum as a

Gaussian random variable. The mean and the variance ofitdet¢hm on the RHS of{14) are zero and

) 2
D itk h?((;)k )—a(i)Ne—ct® | respectively. Thus we use the following approximation:
J,m kym)—a(i)Ne—c, )
q(@) -~ a(i
XI: ba(z (i) Ne+2,1a(0)/N1 | 1 m)—a) Ve N (0 ; 1 )=y~
S jm 1€ Jknl

. . . . . k
by a Gaussian random variable results in the following axiprate model forr7, ,

ko 1k 1k q(i)
Tm = i b5 [Sk]chJrc" Li/Ns) T Z b q(z a(i)Ne+c2?) |a(i)/Ny) hl(j,k,m)—a(i)Nc

a(i)?
ielr,,

= hfk b} [Sk]JN +ck,[3/Ny) + h] me m TN J mo

ks : . . . 9 9 .
wheren;  is a zero mean Gaussian random variable with varlamﬁg) = Un+zz'el;ﬁm h

:k = Q(Il)
B = | Satlasves 100 (1) /N7 P ) a(r . —ci)
. |S h‘](I\I\) andf)"? _ bq(Il)
[ q(Im)} a(111) (1) Ko -
a(Im)Nc—kca(Im)7La(Im)/NfJ l(j,k,m)—a([m)NC_CQ(I\;\‘)

ing the same derivations leading [0(11) and (16),ahpiori log-likelihood ratio off§€ =

q(i)

q(1i1))
"’ba(fm)

il

hk

k

2
) (15)

Approximating the part of the MAI corresponding to weak msl<olliding with the pulse of interest

1(j,k,m)—a(i)N.—

}. Us-

7,m

()
Ca(i)
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given bﬁ:’ is then approximated by,

i 7 (7105 =1
At (bf) = log ; (7(:; b;: 1>> ~ (17)

e s (P A= BB ) N 1+ (Bl tam (333 (151 )

_ (LA M e RE bR Yk < <
e (1A M BB5)” 1T (1 (B bt (1237 (B

2

<
———
———
[E—1

be{+1}%7

2
i M =9 - M . e M
whereA = [Sk];n, ek /N, ) Dom=1 (hf}) ,o” is the variance 0f,,,_, i i}, whichisy=_, [fi [*(0F )%,

b is a vector comprised of the distint}’s in l:)ﬁl, b andf(]’.‘f is the size ofb.

The proposed low complexity implementation computes th@@pmatea priori log-likelihood ratios,
{S\Tf <b§> } instead of the exaet priori log-likelihood ratios. The symbol detector uses these@pprate
LLRs as the extrinsic information, and it computes a new §ektinsic information variables{,)\g(bf)},
based on the approximate LLRs provided by the pulse detéidteralgorithm continues to iterate between
the two stages until convergence is reached.

The complexity of the proposed scheme depends on the exaaberuof strong pulses colliding
with the pulse of interest, which is again a random variakilés easily seen that the complexity of
this implementation i) (257“()), whereY (K) = max;_1__n, I%j’“ Again, we resort to a numerical
example in order to demonstrate the complexity of the pregatetector. Consider a system haviitg
users, each transmitting at a rate2oMBits/sec over &.5 GHz UWB indoor channel [7]. The receiver
is sampling the firsi0 multipath components; i.ef = {1,2,...,10}, and the threshold” is set to3
dB. FigureB depicts the empirical CDF Bf(K), averaged ovet00 different channel realizations from
the channel model (CM-1) of the IEEE 802.15.3a channel model, for systemsstratiing one, five
and twenty pulses per symbol¥{ = 1, 5,20). By comparing Figurél2 and Figuré 3, the reduction in the
complexity compared with the complexity of the pulse-syirdetector can be observed. In Figlie 4, the
empirical CDF is plotted forV; = 5 and various threshold values. It is observed that as thetibte is
decreased, fewer collisions are considered as strong whéd) reduces the complexity of the algorithm.

Using the same approach, there are other ways of reducingpthplexity of the pulse-symbol detector.
For example, one can divide the received pulses into twopgdased on their relative strengths. In this
approach, a threshold will be set in advance, and the MAI caused by all but ghstrongest colliding

pulses will be modelled as a Gaussian random variable. snapproach the complexity of the receiver
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is limited by Nf2‘S per symbol per user.

B. Low-Complexity Implementation: The Soft Interferene@mcellation Approach

The complexity of the low-complexity implementation pret in the previous subsection might still

be high for large numbers of users or pulse rates. As suchyeam gmpler implementation method is

required. In what follows a very low complexity implemendat based on soft interference cancellation
is presented.

Recall that the most complex task in the pulse-symbol detdstthe computation of tha priori

log-likelihood ratio of the received sample given the traitged pulse \; (b?) = log % Our
aim is to find a simple way to approximatg (bf) and soft-interference cancellation provides us
with such a method [16], [19]. Recall that the model fdr is given by 7

= Mk where

m=1"j3m’

ko _ pk 1k he bF
Tim = hlfnbj [Sk]ch"‘C?vU/NfJ +hy,.bi,

+ ny(j,k,m)- IN soft-interference cancellation methods, the first
step is to form a soft estimate f»ﬁm This soft estimate is the conditional meanl&ﬁm based on our

current knowledge. We denote this soft estimatelzaﬁ% =E {Bﬁm\{Ag (bf)}} which is given by
5], = [ {300 (1)), 23} P () =) - o)

— 5 1 v (e (09) )] = S |1t (0 (53) ) | = vam (30 (50) ) - 9

(@)
Assuming that this soft estimate is reliable, the remodmleﬁignalfl;‘?’ml:ajm is subtracted fromﬂ;?m
resulting in

7

]7m

k Tk vk
=Tjm = 05 bim

= i B[Skl et iy, | + B (Bﬁm - Bfm) + (ke m)- (19)
Subtracting the remodulated signal fro:rjjm results in the reduction of the MAI. Since the number
of collisions is large, the remaining MAh% (B’i — lzagfm> = {ﬁ?m] ' (b%% ~E {bZ%}) is

approximated by a Gaussian random variable, as follows:

Kk

7,m

Z; [flim]z (bggg - B {%8}) ~N <M§,m, (O‘im)z)

(20)

Kk K},
o= 32 ] (- ) ) | - 35 ]

GoE))y =0 ey
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and
G Kk, 2
(05" = Var { > (], (8 - E{bziz%D} -k (Z ] (o) {bqgg}))
Kfm .
i B var {8205 } = z_; [hfm]z (1 - ([55])2) : (22)

where E { (biig —E {bggz))}) (bZE& {biﬁg})} = 0 for i # [, and Var {bggg} 5 { (%8)2} -
({(59)}) =1 ([}5] ) are usea.

Then, the soft estimate f(fé€ can be obtained as

+ 7k, (23)

:z\

Zhlk m=Abk

whereA = [Sy];n, +oh /N, Somei (hf‘i)Q andnf = >, hf 0%, withnf | —hb (Bjm - Ejm)Jr
TU(g,k,m)

In the proposed very low-complexity implementation of thisg-symbol algorithm, the pulse detector
computes thea priori log-likelihood ratio of?é? given the transmitted symbol, instead of thepriori
log-likelihood ratio off;? given the transmitted symbol. Denote Ey (bé“) this log-likelihood ratio; that
is, /:\’f (béf) 2 log Mf_ll)) By using the Gaussian approximation for the residual MAshswn in

F(75 b}
(20), 5\? (bf) is easily seen to be given by

S (1) = _<7§f_1‘1)2+<7§f+‘4>2 _ 447 ' (24)
e () (34 0h07) S (k) (02 + (ok,0?)

As in the previously proposed low complexity implementafidghe pulse detector computes the

priori log-likelihood ratios,{i? (bf)} instead of the exad priori log-likelihood ratios. The symbol
detector uses these approximated LLRs as its extrinsicrivdtion, and it computes a new set of extrinsic
information,{)\g(bg?)}, based on the approximated LLRs provided by the pulse detelthe algorithm

then continues to iterate between the two stages until cgevee is reached.

V. SIMULATIONS

In this section, simulation results are presented in ordeinvestigate the performance of various

receiver structures as a function of the signal-to-noig® &6NR). The UWB indoor channel model
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reported by the IEEE 802.15.3a task group is used for gangr&fWB multipath channels [7], and
the uplink of a synchronous TH-IR system wifli; = 5, N. = 250, and a bandwidth 00.5 GHz is
considered. It is assumed that there is no inter-framefar@mce (IFI) in the systein Note, however,
that the analysis in Section lll and IV cover scenarios wih ks well.

In Figure[®, bit error rates (BERs) of various receivers dadt@d as functions of the SNR using
100 realizations of CM-1 [7]. There argé users in the environments{ = 5), where the first user is
assumed to be the user of interest. Each interfering usepodelad to havd0 dB more power than the
user of interest so that an MAI-limited scenario can be itigated. Note that the benefits of iterative
multiuser detectors become more obvious in the MAI-limitedime. At all the receivers, the fir&6
multipath components are employed; i£!,= {1,...,25}. In the figure, the curve labeled “MRC-Rake”
corresponds to the performance of a conventional MRC-Rakeiver [4]; the curves labeled “LC”
correspond to the performance of the low complexity impletaton method based on the Gaussian
approximation T = 10 dB is used); and the curves labeled “SIC” correspond to thréopeance of
the low complexity implementation method based on softrfatence cancellation. Also, the single user
bound is plotted for an MRC-Rake receiver in the absence teffering users. From the figure, it is
observed that the BERs of the proposed detectors are coalsigdower than those of the MRC-Rake.
In addition, after two iterations, the performance of thepgmsed receivers gets very close to that of a
single user system. Finally, the low complexity impleméotabased on the Gaussian approximation out-
performs the low complexity implementation based on sd#rfierence cancellation on the first iteration,
which is a price paid for the lower complexity of the lattegaiithm. In other words, the soft interference
approach estimates the overall MAI by first order momentd, aproximates the difference between the
MAI and the MAI estimate by Gaussian random variables, whigthuces the complexity significantly
but also causes a performance loss due to a more extensissi@awpproximation compared to the
low complexity implementation that uses Gaussian apprations only for weak MAI terms. However,
after two iterations, both receivers get very close to theglsiuser bound, and the low complexity
implementation based on soft interference cancellatiocoimes more advantageous due to its lower
computation complexity (cf. Figulg 7).

In Figure[6, the same parameters as in the previous case ace asd performance of the low

>TH codes are generated randomly frdiy 1,..., N. — L — 1} in order not to cause any IFI.
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complexity implementation based on the Gaussian apprdidmas investigated for various threshold
values. As can be observed from the plot, as the thresholédsedsed; i.e., as more MAI terms are
approximated by Gaussian random variables, the perforenahthe algorithm degrades. In other words,
there is a tradeoff between performance and complexity aseaed from the study in Section TVA.
Also note that since each interfering usernisdB stronger than the user of interest, there is not much
difference between th& = 10 dB and7" = 0 dB cases (as most of the significant MAI terms are usually
above the threshold in both cases), whereas the perforntegrades significantly for th€ = —10 dB
case.

Next, the performance of the receivers is investigated fdrZof the IEEE 802.15.3a channel model,
whereT" = 0 dB is used for the low complexity implementation based on@Gaeissian approximatign
The same observations as in Figlie 5 are made. The mainedifferin this case is the increase in the
BERSs, which is a result of the larger channel delay spreati@thannel model used in the simulations.
In other words, less energy is collected on the average,hm@sults in an increase in average BERs.

In order to compare the performance of the proposed receiveder computational constraints, the
performance loss (in dB) of each receiver compared to a esinger receiver is plotted versus the
average number of multiplication operations per user irutgfil. The performance loss is calculated
as the difference between the SNR needed for the receivechi@ve@ a BER ofl0~2 and the SNR
of the single user receiver at BER¥ 3. For each receiver, the points on the curve are obtained for
1, 2 and 3 iterations. From Figurg]7, it is concluded that the low caemjiy implementation based on
soft interference cancellation provides a better perforwaacomplexity tradeoff than the low complexity
implementation based on the Gaussian approximation.

Finally, the performance of the receivers that are sampimlg the first5 multipath components (i.e.,
L' ={1,2,3,4,5}) is investigated. In this case, it is observed from Figuréa the proposed receivers
can still perform very closely to the single-user bound, relas the MRC-Rake receiver experiences a

serious error floor.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper an iterative approach, the pulse-symbol tlatdor multiuser detection in TH-IR systems
has been presented for frequency-selective environmémtthis approach, the detection problem is

®The curves are very similar to the ones in Figlire 5; hence #eynot shown separately.
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divided, artificially, into two parts, and the proposed aithon iterates between these two parts. In each
iteration, the algorithm passes extrinsic informationwsstn the two parts, resulting in an increase in
the accuracy of the decisions made by the detector. The exihpbf the proposed detector is random;
hence, comparing the complexity of this detector with offirard complexity algorithms is complicated.
Nevertheless, we have demonstrated, via simulationsitieet are scenarios were the complexity of the
proposed detector is lower than the complexity of the optidedector, while in others it is higher.

In addition, two low-complexity implementations have bgaesented. The first implementation is
based on approximating parts of the MAI by a Gaussian randarahe and the second is based on
soft interference cancellation. The complexity of both lempentations is quite low, and we believe
that these algorithms could be used in practical systems.pEnformance characteristics of these low-
complexity implementations have been examined using sitiaus. We have shown that these algorithms
typically get very close to the single-user bound after afgw iterations, and outperform the MRC-Rake
substantially.

The proposed multiuser detection algorithms were desgtribeder the assumption of synchronous
users. However, it is easily seen that this assumption wakeraaly for notational simplicity. The pulse
detector inherently ignores any information about the syisand their structure, and in particular their
timing. It uses only the information about the individualgms that collide with the pulse of interest. The
symbol detector uses the results of the pulse detector feepthat correspond to the symbol of interest.
As such, the symbol detector is independent of the other sigriltbom the same user or from the symbols
from other users. In summary, it is evident that synchrdionaamong users is not required. Moreover,
it is easy to design a serialized version of the proposedristhgo in the sense that the receiver process
on-the-fly new samples at the expense of performance ddgmadin summary, the only requirement
from the receiver is the knowledge of each user's symbolngmiwhich is commonly obtained during

synchronization phases in practical systems.
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