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Asymptotic Capacity Bounds for Wireless
Networks with Non-Uniform Traffic Patterns

Stavros ToumpisMember, IEEE

Abstract—We develop bounds on the capacity of wireless variable. The authors show thaidth high probability (w. h.
multihop networks when the traffic pattern is non-uniform, i.e., p)), i.e., with probability going tol as the number of nodes

not all nodes are the sources and sinks of similar volumes of e K Ky
traffic. Our results are asymptotic, i.e., they hold with probability 7;( goesKto |nf|n|E|3_/F] Vn lfogn < i‘](n) <h vnlogn’ for some_rbl
going to unity as the number of nodes goes to infinity. We 2 > K1 > 0. Therefore, w. h. p., the maximum possible

study (i) asymmetric networks, where the numbers of sources aggregate throughputA(n) is on the order of the square
and destinations of traffic are unequal,(ii) multicast networks, in  root of the nodes/n, i.e., ignoring poly-logarithmic factors of
which each created. packet. has multiplg dgstinations(,iii) cluster the form k1 (log n)k2’ the aggregate throughput increases with
networks, that consist of clients and a limited number of clster . o /n. As a by-product of our contributions, we offer in
heads, and each client wants to communicate with any one of ¢h . : . .
cluster heads, and(iv) hybrid networks, in which the nodes are the.appendlx a simple proof for the lower bound, in a setting
supported by a limited infrastructure. Our findings quantify the ~ Similar to that of [3]. Many researchers have followed theea
fundamental capabilities of these wireless multihop netwds to  tangent, and a significant number of results of the same flavor

handle traffic bottlenecks, and point to correct design prirciples  have accumulated [4][ [5][[6]/[7]/ 18]/ 9], [10]. [11] B,
that achieve the capacity without resorting to overly compicated [13], [14]. ‘ ST ) )

protocols.

Index Terms— Asymmetric traffic, capacity, clustering, hybrid The traffic pattern used in[3] and almost all of the following

networks, infrastructure support, mobile ad hoc networks, multi- ~ WOrks is, in some sense, as simple as possible: All nodes
hop network, multicast routing, wireless access, wirelessetwork.  create data with the same raién), and each of them picks

at random one of the rest of the nodes as the destination
for these data. For lack of a better description, we call this
traffic patternuniform. The uniform traffic pattern is a good
model for certain networks, for example those used to suppor
icast voice transmission. On the other hand, there isteofios

I. INTRODUCTION
We study the setting in which nodes equipped with wirele

transceivers communicate over a shared wireless channe |5?)Iications in which the traffic patterns will be fundanesiyt
create a multihop network. In this cont_ext, we deyelop beun ifferent. For example, in a network designed to support
on the capacity of the network, which is defined as trWlultimedia traffic between soldiers in a battlefield mosthaf t

theore‘gcal Im,:.'tor; the tc:jt_al tt(aﬁ|cthat th(tehnetwc(;rk CaTmrJ]BOLL traffic will have multiple destinations. As another exampite
assuming optimal coordination among th€ nodes. 1he DOURGS;.o wireless sensor networks, a large number of sensors
are determined assuming a number of different non-unifor.

traffi ft del d hich q _ dl interested in communicating with a relatively small nnb
raffic pattern models under which some nodes are requireCfogny However, the asymptotic properties of the capacit

Yfider such non-uniform traffic patterns remain to a largereckt
L . - . ) rSnexplored. A few notable exceptions are [6], [7]} [8].1[10]
asymptotic, i.e., they hold W'th prc_)bab|l|ty going to unias [11]. (Of these works,[[7] considers localized traffic ah@][1
the number of nodes goes to infinity. considers a topology with only two clusters, and so theinltes

In [, the authors consider a setwihodes randomly placed re unrelated to our results. The relation of our work to each
on the surface of a sphere. Each of the nodes chooses anoilﬁeﬁr]e rest is clarified later in the text.)

node as the destination for its traffic, randomly, uniformly
and independently, and all traffic streams are assumed to
have a common rate requirement. The authors aim to fidd Contributions

the maximum possible rate per strean) that the network |, yhis work, we study wireless networks with no less than

can achieve: Note thaF, b?cause the placemgnt of the noﬂ)‘?ﬁ’ different non-uniform traffic patterns, which colleely
and the choice of destinations are randorfy) is a random cover a wide variety of scenarios. In the process, we develop

The author is with the Department of Electrical and Comp&agineer- a Ve.rsat'le methOdOIOQV that can easﬂy be eXtenqed to other
ing of the University of Cyprus, Kallipoleos 75, P.O. Box 205 1678 traffic patterns as well, such as the traffic pattern with liaed
Nicosia, Cyprus. Part of this work was conducted while ththauwas at traffic of [7] which we do not study here. We calculate bounds

the Telecommunications Research Center Vienna (ftw.), ienMa, Austria. th it hich defi th . ibl
Work was supported bXplus funding for the ftw. project 10 “Signal and on the capacity, which we denne as the maximum possible

Information Processing” and FP6 IST funding through theRégound project. aggregate throughput that the network can support under an
A preliminary version of Sectiorls . V!, arfd Vil appeared|[li]. The basic gptimal coordination of the nodes. Following the approach

result of Sectio 1V also appeared, with sketches of prdaf§2]. The basic N .
result of Sectiol Y appeared, with a sketch of the proof, éndtal presentation of [311 our results are asymptotic, 1.e., they Only hold with

of [l. probability going tol as the number of nodesgoes to infinity.

Following the approach introduced inl[3], our results a



In addition, we bound the capacity only up to the exponent td route a substantial part of their traffic, bottlenecks v
n, wheren is the number of nodes in the networks. In thereated. Therefore, it is better for the wireless nodesrtplsi
interest of brevity, we focus on constructive lower bouraig] ignore the presence of the access points, and communidate wi
formally derive only a few upper bounds. In addition, we alseach other exclusively over the wireless channel. It folohat
present a few other non-critical upper bounds with no formtie capacity is on the order of:. If, howeverd > % thereis a
proofs, but with strong heuristic justifications. sufficient number of access points to make a difference, faad t
Note that, although we are inspired by the results[of [3¢apacity is on the order af?. Furthermore this capacity can
we do not use them. Moreover, in contrast[td [3], we achiewe achieved without multihop wireless communication betwe
our results using basic tools of probability and a simpleireless nodes.
methodology, introduced in_[14] and extended here, which The rest of this paper is organized as follows: in Sedtibn II
determines the rate with which the probability converges e specify our network models and formally present our
unity. We also use a realistic channel model that includesresults. In Sectiof Tll we present three lemmas that will be
general model for flat fading. used throughout the text. Proofs for the results for asymmet
We first studyasymmetric networks These consist of two ric, multicast, cluster, and hybrid networks are developed
types of nodesn source nodes, and? destination nodds Sections[1V,[V,[V), and_ VIl respectively. We conclude in
where0 < d < 1. Sources create packets with a commo8ectiorLVIIl. In the appendix, we have included a proof fa th
data rate, and the packets of each source must be delivdmeer bound of [3] we mentioned, in a setting similar to that
to a single one of the destinations, chosen at random. Qirff3]. The proof is included here for reasons of completenes
main find is that whenl < % there are so few destinationsand, as it uses parts of the proofs of the other results, itiig v
that bottlenecks start to form around them, constrainireg tishort.
maximum possible aggregate throughput to be arouhdf,
on the other hand/ > 1, bottlenecks can be avoided, and the _
capacity is on the order of?, as in the uniform traffic setting A- Channel and Physical Layer Models
of [3]. Nodes are equipped with transceivers used for communi-
We then considemulticast networks. These consist of cation over a wireless channel of bandwidih, and cannot
n nodes, each creating packets with a common data rar@nsmit and receive simultaneously. Each nggean transmit
Each packet must be delivered td distinct nodes chosenwith any powerP; < P,, where F, is a global maximum.
randomly among the rest. (Agaif,< d < 1.) In this context, WhenZ; transmits with powei’;, Z; receives the transmitted
the capacity is on the order of“=", and can be achievedsignal with powerG; P;, whereG,; = K fi;|Z; — Z;|~*. K
without any multicasting in the media access layer, andgusiis @ constant, the same for all nodes; — Z;| is the distance
a multicast routing tree that can be constructed using augll between node&; and Z;, a > 2 is thedecay exponentand
information. the factorf;; is thefading coefficient a non-negative random
We also studycluster networks, which consist of: cluster Vvariable that models fading.
nodes and:? cluster heads, where < d < 1. Each cluster =~ We assume that the expectatiéiif;;] = 1, and thatf;; =
node is the source of a traffic stream and the sink of a trafffgi- Distinct fading coefficients are independent and idefifica
stream. The traffic must be between the node anglof the distributed (iid). We also assume that:
cluster heads, and all traffic streams have a common data rate F(z) £ P[fi; > 2] < exp[—qa] V& > a1, (1)
We show that the maximum possible aggregate throughput is '
on the order ofn?, and can be achieved (up to the orderdP’ SOmeg, z1 > 0. In other words, the complementary
without routing along multiple hops, even in the presence G¢mulative distribution function of the fading distriboi has
fading. an exponeptlally thl_n .ta|I. Intuitively speaking, very higalues
We conclude by studyingybrid networks, continuing the for the_ fading c_oefﬁments are very rare. Also, we assurr;e tha
work of [6], [7]. These consist of. wireless nodes ang? there is a median valugy > 0 such thatP(fi; > fu] > 5.
access points, wher@ < d < 1. Access points are equippeoBOth of these ass_umptmns are satisfied by mos_t dl_strlba;mon
with wireless transceivers that are identical to the traivers US€d to model fading, for example the Nakagami, Ricean, and

carried by the wireless nodes. In addition, they are commeciRayleigh distributions, and the trivial distribution forhveh
with each other through an independent network of prad:yicalp[fij =1]=1 . i
infinite capacity. Each of the wireless nodes is creatinticra . -6t {Z: : ¢ € 7} be the transmitting nodes at a given
destined for one of the other wireless nodes, chosen at randdMe: nodeZ; transmitting with powerr. Let us assume
The access points have no traffic requirements of their owmn, lShat nodeZ;, j ¢ T, is receiving a data packet frord;,

are there to support the communication of the wireless nodesS 7- Then theSignal to Interference and Noise Ratio

: Gi;jPi
In this setting, we find that il < %, then there are so few (SINR) at nodeZ; will be ~; = n+§:kg,]k¢iakjpk' wherer

access points that if the wireless nodes attempt to use thisnihe receiver thermal noise power, same for all nodes. The
transmission will be successful if and only if, for the whole

INote that formallyn? must be an integer, which only occurs for certainperiod of transmission, the transmission rate used satisfies
combinations ofn and d. However in the following we will ignore this and the inequality
similar issues, as a more formal treatment, for example ygus:?|, i.e., the

integer part ofn?, would encumber the notation without affecting the essence

1
of the derivations. R; < fR(Vj) £ W logy (1 + f%’)-

II. NETWORK MODELS AND RESULTS




For various values of" > 1, the equation approximates the Theorem 1: In asymmetric networks the capadityn) is
maximum rate that meets a given BER requirement undebaunded with high probability (w. h. p.), i.e., with probkyi
variety of modulation and coding schemes|[15]. With= 1, it approaching unity as goes to infinity, as follows:

gives the Shannon bound. We can thinkfg{y;) as a function 4aW
. . . d
modeling the capabilities of the receiver. C(n) < [ng} n“logn, (2
We do not make any additional assumption regarding the N
physical layer. We note, however, that we implicitly assdme ‘2/—75 0 "2)% if % <d <1,
a single common wireless channel. For lack of space we do C(n) > D x o 3
not consider the case of having multiple channels, but it is [1=24] h?;n if 0<d<3,

intuitively clear that, had there been multiple channels O vhere the constanb is given by

capacity calculations would hold in each of them, and the .

capacity would not change. (See [3] for a formal development [30& - 6] o {WCIfM51

of this argument.) Also, under our current model, nodes try 3a—5 676 log2 |-

to decode only the signal of one transmitter, therefore eoop

erative communication schemes are excluded. Such schemé¥hend < 3, bottlenecks form around the destinations,

have recently been shown to have dramatic capacity improligiting the capacity of the network. Intuitively speakinip

ments [16]. However in our work we focus on the effects dhis case there are so few destinations, that the convezgenc

traffic asymmetries, and for this reason we keep the physi@ditraffic streams to each of them is so intense that the areas

layer relatively simple. around them must carry many more traffic streams than other
We also place no particular restriction on the access sche@igas in the network. Therefore, each of these traffic sseam

used by the nodes. The nodes are free to use, for exampl!st have a very small data rate, and this drives the whole

random access schemes such as Aloha, Code Division MultigfPacity down.

Access (CDMA), Time Division Multiple Access (TDMA), If, however,; < d < 1, no bottlenecks are formed around

or any other access scheme they choose. However, in 8ig destinations, and the capacity can increase as fast as

constructive lower bounds, we use simple TDMA schemes thag in the uniform traffic pattern case ofl [3]. Intuitively,eth

as we show, operate very close to the capacity. number of destinations is large enough so that, despite the

asymmetry that still exists, the network can find a routing

scheme that avoids congesting the areas around the destina-

tions, and spreads the traffic evenly through the whole rndtwo
Asymmetric networks consist of n source nodesXi, As the proof of the theorem will show, in order to achieve an

Xy, ..., X, andm(n) = n? destination nodesYi, Y2, aggregate throughput af2, an average location in the network

..., Y, placed randomly, and in particular uniformly ands required to support, on the average, traffic streams. When

independently, in the unit squarf(z,y) : |z|,]y] < 3}. 1 < d < 1, the numbern'~? of streams converging to a

We call d € (0,1) the destination exponent Each source destination, which the location around the destination tmus

node is creating data traffic with a fixed data rate:) bps, support, is much less than that average loachdfstreams.

common for all sources, that must be delivered to one of th@erefore, the extra workload of locations close to desitina

destination nodes. Each source selects its destinatigionaly, s insignificant with respect to the average workload.

again uniformly and independently of the others. Both types Although we do not formally prove the upper bound on

of nodes are allowed to transmit, receive, and relay packetshe capacity for the casé> 1, it is intuitively clear from the
The fundamental difference of this network from previouslwork in [3] that it holds, and so the lower bound is always

considered networks, such as the onelin [3], is not that theight up to a poly-logarithmic factor of the forr (logn)*2.

are two types of nodes (sources and destinations), but the fa An important practical implication of Theorefd 1 is that

that their numbers andm(n) are different, and so the traffic networks can handle welsome asymmetry in the traffic

pattern is asymmetric: on the average more packets mugearpattern, but designers should avoid agxtremeasymmetry.

at each destination, than there are leaving each sourcactn fln particular, the number of destinatioms(n) should be at

as will become intuitively clear, we could have assumed, jugast on the order ofiz, wheren is the number of sources.

as well, that there are destination nodes and oniy(n) = For applications in whichn(n) is a design parameter and it

nd source nodes, and arrived at essentially the same resu#isiseful to minimize it (because, for example, destinatiare

Applications where traffic pattern asymmetries are expmkectmore expensive) the network has a ‘sweet-spat{n) should

are, for example, vehicular ad hoc networks in which marbe aroundn. Using more destinations will not improve the

users will be downloading infotainment from a few centrgberformance significantly, but using fewer will severelduee

locations, and wireless sensor networks where the sensesnat.

will be exchanging data with a small number of sinks. Before moving to the results for the other types of traffieg on
We define thecapacity C(n) of the network as the clarification is needed regarding the selection of the nurnbe

supremum of all rates(n) that are uniformly achievable by all destinations asn(n) = n¢. The result we provided holds for

sources, multiplied by their number Since the locations of anyd € A = (0,4) U (3,1). Therefore, the result allows us

the nodes, the destination of each data stream, and thegfadimscan a wide range of variations of with respect ton. Al-

coefficients are random, the capacity is a random variable. though we could have adopted a more general condition, such

B. Asymmetric Networks



asm < n, we do not do so, because the additional derivationandomly, uniformly and independently, in the arfa;,y) :
needed for addressing this more general case would be iength|, |y| < 3}. We calld € (0,1) the cluster head exponent
without the value of the results increasing accordinglyotimer Each client wants to establish a bidirectional communicati
words, our model is specific enough to keep the derivations(with rate A\(n) in each direction) wittanyof the cluster heads.

a manageable level, but general enough to provide intuiion This model approximates well the traffic patterns that exist
all cases of interest. This discussion applies also to therotin wireless networks that operate using hierarchical ehirsg
types of networks we study, for which similar assumptiores aprotocols, as for example Bluetooth [17]. Another applaat

made. are sensor networks that consist of sensors and fusionrsente
We define thecapacity C'(n) of the network as the
C. Multicast Networks supremum of all rates(n) that are uniformly achievable by

all data streams in the network, multiplied by their number
dAs in the previous cases, the capacity is a random variable.

Theorem 3: In cluster networks the capacity is bounded w.
h. p. as follows:

Multicast networks consist ofn wireless nodesX;, Xo,
..., X,, placed randomly, and in particular uniformly an
independently, in the aref(z,y) : ||, |y| < 3}. Each node
creates traffic with a common raten) that is intended for

m(n) = n¢ other nodes, that are chosen randomly, uniformly c daW ay 5
and independently, among the rest. We dadl (0, 1) themul- (n) log 2 o ®)
ticast exponent Examples of networks with a multicast traffic Wqfub= %] [3a—6 nd

pattern are wireless networks used in military or searaf-an Cn) = [ 6761 log 2 } {304 — 5} (logn)?’ (6)

rescue operations where each user might want to communicate
with an arbitrary subset of the other users.

We define thecapacity C'(n) of the network as the
supremum of all rates(n) that are uniformly achievable by
all sources in the network, multiplied by their numbeland
Fhe nu.mber of destmayona(n) = n?. Note that the capacity the capacity increases with
is again a random variable.

. I In the context of networks that use clustering, the theorem
Theorem 2: In multicast networks the capacity is bounded - . .
) suggests that, to maximize capacity, the size of clusterst mu
w. h. p. as follows:

be bounded, and so their number should increase linearty wit
3a—6] [ Wqfub 2 ns n. If network designers are not willing to accept such a large
30 — 5] [220001“ 10g2] 4 number of clusters, they should be ready to sacrifice part of
the capacity. The exact tradeoff is very simple, and is aaptu
The improvement on the capacity over the uniform case By TheoreniB. In the context of networks where the cluster
due to the possibility for the routing of each packet alongeads are gateways to the outside world, the theorem ssggest
a tree that passes through all destinations, as opposedN@ there is no limit to how many gateways are needed: the
sending the same packet individually to each destination, greater the investment of the network provider (i.e., thrgda
an uncoordinated manner. Although we formally present onflyis). the larger the capacity is going to be. Again, the tréfdeo
a lower bound, we will use intuitive arguments to show that tHS very simple and is captured by Theorkin 3.
routing tree employed by the constructive lower bound is of Finally, as the proof will show, the lower bound on the
the same order of length as the minimum length multicast tré@Pacity can be achieved even if clients do not transmit ¢h ea
that the source can employ. For this reason, the lower boupi@#er, and even in the presence of fading (but in this last,cas
is tight up to a poly-logarithmic factor. provided the client nodes are not restricted to communicate
An interesting side result is that the tight lower bound can BVith the nearest cluster head). In other words, advancetthgou
achieved without employing multicasting on the media agceRrotocols cannot change the capacity by more than a poly-
layer. The intuitive justification of this rather unexpettesult logarithmic factor, and designers should focus instead on
is that any efficient multicast trees will have such a sméfficient polling algorithms that are aware of the channafest
number of bifurcations, so that employing multicasting fie t and the efficient handling of bottlenecks around the cluster
media access layer cannot change the order of the capacflﬁ@ds-
Another interesting side result is that the tight lower bdun
can be achieved without the source discovering the locationg Hyprid Networks
the destinations, or the destinations discovering thetimcaf brid network ist ofn wirel desy: X
the source. The only requirement is that each destinationr{%cyy nd ne Woi sdcon5|s otn vywe;:ssyno € }} 2|’ d
discovered by a node carrying its packets that is on a dietarien’ 20 (1) = n® access pointsYs, ¥y, ..., Y, place
randomly, uniformly and independently, in the two-dimemsil

d . .
at mostn—z away from that destination. area((z,y) : |z, |y| < 1}. We calld (0, 1) theaccess point
exponent We assume that the access points are connected with
D. Cluster Networks each other through a data link of infinite capacity that does
Cluster networks consist ofn client nodes X;, Xs, ..., not consume any of the available bandwidfh. There are
X,, andm(n) = n? cluster headsY;, Ya, ..., Y, placed n traffic streams and each wireless node is the source of a

The theorem shows that, ignoring poly-logarithmic factors
the capacity increases with roughly asn?. The upper bound
(B) comes from the need of the network to share the area
around the cluster heads. Therefore, the laryjés, the faster

C(n) > [

(logn)?



single stream, and the destination of a single stream. A nodéNe note that a similar result was first reported(in [6], [7].
cannot be the source and destination ofgsamestream. Apart Our setup, however, is different in a number of critical ways
from this restriction, all other combinations of sources arFirstly, we require that all wireless nodes are guarantéed t
destinations are equally probable. The access points do saine throughput. Secondly, the locations on the accessspoin
have any communication needs of their own, but are thereare random, and finally we assume a more realistic channel
support the wireless nodes. model, that includes a general fading model. Our resultss al
This network shares important common characteristics wigitraightforward to derive, because its proof is based otspar
both pure wireless multihop networks and also pure cellulaf the proofs of the other theorems presented in this work.
networks: On the one hand, it partly consists of a large numbe
of wireless nodes that communicate over a wireless channel I1l. USEFULLEMMAS

and can route each others trafflc., as in wireless mUItIhOpThe first lemma is closely related to the well-known Coupon
networks. On the other hand, the wireless nodes are Suupor(t;%llector’s Problem[[18], however, to the best of our under-

by access points that form an independent network with mf'n'standing, it has not appeared elsewhere in this form.

capacity and do not have any traffic needs of their own; thelrl_ernma 1: Letn balls be placed in urns, uniformly and
role is similar to that of base stations in cellular network§n ependen;[Iy of each other. Ligt, j = 1 ibe the number
The asymptotic capacity of such networks was first studi% balls that end up in thg-th urn. The’n fovr any > 0 there
in [6], [[7], and is of great practical interest, as future getion

i i (1—e)2 <b; < o>

cellular systems will be using this hybrid topology. |13_<':1261(;)(pT_(()5(i1)J§? thatPlvj (1 —€)7 < b < (1 +€)7] 2
We define thecapacity C'(n) of the networlf as the proof e makle use of Chernoff's bounds [19]: L&t be

supremum of all rates(n) that are uniformly achievable bY 2 binomial random variable, with parametdrsthe number

all data streams in the network, multiplied by their numher of experiments) and (the probability of success of each

As in the previous cases, the capacity is a random Var'ableexperiment). For any > 0,

Theorem 4: In hybrid networks the capacity is bounded w. )

h. p. as follows: PIX < (1—e)kp] < exp[—kp%], 9)
1 [Wqfu5 2] [3a—6 n? explekp]
> = - 4 —
Cln) 2 2 [ 6761 log 2 } {304 — 5} (logn)?’ (D PIX > (14e)kp] < (1+¢)0taky — exp[—kpf(€)], (10)
o > 30— 6] [Wqfmb—$ ns @) wheref(e_) £ (1+¢) log(1+4€)—e. By calculating the derivative
= |3a=5) |3600010g2 (logn)?’ of f(e) with respect tce, we have thatf(e) > 0 for € > 0.

Since each ball is placed in an urn independently of the
others,b; follows the binomial distribution, with number of
@xperiments equal ta and probability of success equal to
%. (Note, however, that thg; are not independent.) Applying
Chernoff’s bounds, we have:

Although we do not formally prove upper bounds, w
provide an intuitive justification thak{7) is tight wheh> %
and [8) is tight wheni < 1.

The theorem suggests that more then access points are 9

needed for the infinite-capacity infrastructure to have effigct Pl < (1— E)ﬁ] < exp[—e—ﬁ], (11)
on the performance of the network. As the proof will reveal, é 2 ln
no access point can expect to receive packets with a bit rate Pl; > (1+e€)7] < exp[-f(e)7]. (12)

larger thanlogn. Therefore, wheni < % there are so few o _ .
access point, so that even if they were receiving packets wit We note the basic inequality[U¥_, E;] < >°7_, P[Ej],

that maximum possible rate, they would not be able to compéy@ically referred to as thenion bound Then:

with the wireless network formed by the nodes, which can ) n n
achieve an aggregate throughput on the ordes f Plj(1-e)7 <bj<(1+e)7]
If, however,1 < d < 1, there is a simple time division = 1-PVj(1- E)E <b; < (1 +€)ﬁ]c
scheme, that does not depend on multihop wireless transmis- 1= !
sion, so that each wireless node can communjlg?te with one of _— l Plb 1 ™ P ] n
its neighboring wireless access nodes with rge_>, which = Z{ [b; < (1~ 6)7] +Plo; > (1+ 6)7]}

. . j=1
is much larger thamz2. Therefore, the wireless nodes should !

2
not depend on each other for routing their traffic, but rather > 11 {exp[—e—ﬁ] + exp[—f(e)ﬁ]}
should make heavy use of the infrastructure. 2 ln !
Note that there is a surprising phase transition: depending > 1-—2] exp[—é(e)j],

on how many access points there are, they should either be

totally ignored, or used extensively. It is intuitively alethat whered(e) = min{%, f(e)} > 0. The first inequality comes
the best strategy would be to use the full resources of bdtbhm the union bound, and the second inequality frbm (11) and
existing networks, however there will be no gain by doing,thi (12). O

in terms of the exponentith which the aggregate throughput In subsequent sections, we will have to bound the effects
increases. of interfering transmissions in the reception of signals.the



fading distribution has an exponentially thin tail, theléating T y
lemma applies: 0

Lemma 2: Let nodes communicating over a wireless chan-
nel that satisfies the assumptions set out in Setfion II. kiggh
probability, the maximum value of fading coefficients betwe
all pairs of nodes is bounded as follows: G

()

3
<z .
s o} < Jlogn

r cells

Proof: Let the eventd;(n) £ {fi; > glogn}. Then:

3
P Lglfj}in{f”} S alogn} =1- P[U1§i<j§nFij(n)]

>1— Y PlF;n)]>1-

1<i<j<n

n(n — l)Tf3
2

— 1.

The first inequality comes from the union bound. The second
comes from symmetry and applyingl (1), and holds only for (1,1)~ r cells - (1)
sufficiently highn. O

Finally, observe that if a sequence of everdts occurs W. Fig. 1. Partition of the square regidi(z, y) : |z, |y| < 1} into a regular
h. p., and a second sequence of eveBjsoccurs w. h. p. lattice ofr2 cells. We defines; as the number of source nodes in egl] M;

conditioned on the sequen , then B,, will also occur w. 2 the number oourcenodes lying in cells who share the sa_me_x-coordinate
q ok, " with ¢; (the shaded cell column) anll; as the number oflestinationnodes

h. p. without the Conditioning: lying in cells who share the same y-coordinate with(the shaded cell row).
Lemma 3: Letlim P[A4,] = 1 and lim P[B,|A4,] = 1.
n—oo

Then lim P[B,] = 1.

The proof follows immediately by noting thaP[B,] = Note that we could have selected a different value dor
P[B,|An|P[An] + P[Bn| A5 P[A7]. In practical terms, if we within (0, 1); the critical requirement is to show that w. h. p.
need to prove that a sequence of events occurs w. h. p., ¥yequaldogn, up to at most a constant factor. Next, 1&f(n)
are free to condition the discussion on any sequence of ®velié the event that the source nalie cannot find a source node
that occurs also w. h. p. It is also clear that we can iterbtivein one of its neighboring cells;, such that their mutual fading
condition on more than one sequence of events. We will ugeefficient is greater or equal tfi,;. By the independence

this lemma repeatedly, in many cases implicitly. of the fading coefficients, and usin§ _{13), it follows that
P[F;;(n)] < (3)°!°8™. By using the union bound, and noting
IV. ASYMMETRIC NETWORKS that there arer source nodes, each with at mdsteighboring

We first develop a constructive proof for the lower bodnd (3ells, it follows thatP[U; ; F;] < 4n($)°'°¢™ — 0. Therefore,
of Theoreni 1 in the spirit of |3]: we develop a communications. h. p. each source node will be able to find another source
scheme whose aggregate throughput equals the lower booonde in each of the neighboring cells, such that their mutual
w. h. p., and as the capacity is the supremum of the aggredmiging coefficient is equal to or greater thgjy.
throughputs ol schemes, it will necessarily exceed this lower Finally, let Gi;(n) be the event that a destination nolg

bound. and a source nod#; lying in the same cell will not be able
to find a relaying source nod&;, also on that cell, such that
A. Cell Lattice the mutual fading coefficientgy, x, > far and fx, x; > fur.
As shown in Fig[dl, we divide the square regipfx,y) : BY the independence of the fading coefficients, the prottgbil
|z|,|y| < 1} in a regular lattice ofy(n) = e 2,2 cells that a particular source node cannot be used is at mipst
? — ogn . .
C1y 2y - .., Cymy. Each cell can be identified by its coordinategnd the probability that there is no source node that can be

(v1,v2) in the lattice, wherel < vy, v, < r; the cell on Used is at most3)?'¢™. Applying the union bound, it follows
the lower left corner has coordinaték 1). We call two cells that the probabilityP[u; ;Gi;(n)] < n?(2Tlogn)(3)'8™ —
neighborsif they share a common boundary edge, so that eaéh Therefore, w. h. p. any destination node will be able to
cell has at most four neighbors. communicate with any source node in its cell, by using anothe
Let s; be the number of source nodes in cgll Thinking Source node in that cell as a relay, and in both hops the fading

of cells like urns and source nodes like balls, we see tH@efficient will be greater or equal to the medifn.

Lemmall applies. Setting = 1, I = g(n), b; = s, Let us summarize the results until now: We have divided our
5(e) = min{%, (1+€)log(l+¢€) — e} > %' it follows that area intom cells and we have shown that the following
8

properties hold w. h. p.{i) The numbers of source nodes in
all cells are bounded by (1L3}ii) Each source node can find
a source node in any of its neighboring cells so that their
Vi, 9logn < s; < 27logn. (13) mutual fading coefficient is greater than or equal to the @redi

P[¥j 9logn < s; < 2Tlogn] > 1 — {2, which goes tol
asn — oo. Therefore, w. h. p.,




fa. (iii) Each source node can communicate with any of the T y
destination nodes in its cell through a relaying source rinde

that cell, so that the fading coefficients of both hops aratgre
than or equal to the mediafy,;. From now on, we condition

the discussion on the assumption that these three resudts ho R R L2
By Lemmal[3, if a property such as a capacity bound holds @ S
w. h. p. conditioned on these results, it will also hold w. h. p A L
without the conditioning. i ! Y
A Y Y
B. Routing Protocol -

As shown in Fig[R, packets are routed according to the
following rules: A
(i) If a source nodeX; has data packets (possibly not created at A Y -—
X ) that must be delivered to a destination ndgéying in the (7

same cell, andfx,y; < far, X; will transmit the data packets S

to another source nod&; lying in the same cell, for which D,

fx;x, > fu and fx,y, > fu. Node X, will then transmit

the packet to the destination nodé. By the discussion of <« rcells >

Sectior1V-A, we can assume that such a node exists.

(i) If the destination nodé&’; of a source nodeX; lies in a Fig. 2. Examples of routes used in asymmetric networks.

different cell from X;, the packets ofX; are routed through

intermediate cells. In particular, only communicationvibetn

source nodes who lie in neighboring cells and whose mutl@Y Lemmal3, we are allowed to assume that:

fading coefficient is at least equal to the median is allowed. 1 , 9 1

addition, the packets are first transmitted along cells whes d> 5= Vi, Nj = 7§"d 2y/logn. (15)
coordinate is the same as the x-coordinate of the sourci, unt )

they arrive at a cell whose y-coordinate is the same as the yFinally, we uniformly bound the\V; for the cased < %
coordinate of the destination. Then, the packets are triaes FOr this we use[(10), noting thay; follows the binomial
along cells whose y-coordinate is the same as the y-codedindistribution with p = (g2+)"2 andk = n?. Settinge to
of the destination, until they arrive at a source node lyingatisfy (1+e€)kp = z, wherez will be specified later, we have
in the same cell with the destination. By the discussion &fat:

Section[IV-4, we can assume that such relays always exist.

Once the packets arrive at the cell of the destination, they a PIN; > z] < explz — kp|(
delivered to the destination as specified by rfije

exp|z] d—t ——\"
To evaluate the performance of this scheme, we must calcu- < (3\/5” ?/log ”) :

late the load that the routing protocol creates for each tell Aoplvina the union bound. we have th&3i : N
this end, let us defind/; as the number of source nodes tha;xir[)m]y g & ;> <

1 & . .
lie in cells whosez-coordinate is the same as thecoordinate ~z* (3\/5”0175\/10% ”) \/ T8gn» Which goes to0 if we
of cell ¢;, and N; as the number of destination nodes that lichoosez > -, for examplez = 2. Applying Lemma
in cells whosey-coordinate is the same as thecoordinate of [3, we can assume that:
cell ¢;. We develop bounds on the values f; and V; that 1 2
we will use to bound the traffic that each cell must support. d<g=Vj, Nj< 1 (16)

To bound the value ol/;, we note that there arg/ 55— . .
) ’ ) 'y 18logn Lemma 4: Letr; be the number of routes arriving, and
cells with the same-coordinate with celt;, each with at most possibly terminating, at celt;. Then w. h. p.:

27 logn source nodes. Therefore:

kp. .,
—)

27 T
=(nlogn)z if 7 <d<1,

] " 9 V' 7, 7 < Tmax(n 20V2
Vi, M; < 1/m(Qﬂogn) = ﬁ\/nlogn. (14) IR (n) 5_,1—d if 0<d<i.

1-2d

Next, we boundV; for the casel > £. Applying Lemmal Proof: Let r;; be the number of routes that crosswhile
with e = 1 where the balls are the destination nodes and tbe their vertical leg (see Fi@l 2). The sources of those mute

urns are the rows: share a commorm-coordinate withc;. Also, let r;» be the
3 ) 9 ) number of routes that crosg while on their horizontal leg. The
P[vj Endj Viegn < N; < End’f V/logn] destination nodes of these routes share a comyamordinate

with ¢;. Each route crossing; will belong to one or both of the

1 .
exp[_5(§)3\/§nd*% Vlogn] — 1. Fwo t)_/pes of routes, so necessam'!y§ rj1 + rj2. Therefore,
it suffices to bound both;; andr;, uniformly for all cellsc;.

>1-2,/——
18logn




As each source node is the source of a single stream,
rj1 < Mj. To boundr;2, we note that, by a straightforward ap-
plication of LemmalL, at mogtn'~ routes can be terminating
at each destination, w. h. p. Thereforg < 2n'~4N; w. h. p.
Combining these inequalities we have that< M;+2n'~N;

w. h. p., for all cellsc;. The result follows by usind (14)._(1L5),
and [I6), also noting that wheh< &, ¥4egn _, (. O

Since there arex routes, each requiring a number of hops

on the order of( "n)%, and the total number of hops must

lo,

be shared b% cells, on the average each cell will be

required to relay a number of routes on the ordefrabg n)%.
Therefore, Lemmal4 implies that wheh > % no cell will
have to carry much more that its ‘fair share’ of the traffig. If
however,d < % then there are so few destinations, that a few
‘unlucky’ cells (those on the same column with a destingtion
will be required to serve arouna'~? routes, which is much
more than their ‘fair share’ of traffic. In those cells, bettecks

will form.

y
T (rn)

—
[N
=

=

! N
miindintEnktn

rcells —

Jji_EN BN BN BN BE

B EE EE

-~

L e (1)

—
(N
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C. Time Division Fig. 3. One of the9 sub-lattices of cells appears shaded. Only nodes in
. o ) that sub-lattice are allowed teceivein the corresponding slot, and only from
Until now, we have specified a routing protocol, based afvdes in the same or neighboring cells. The neighbors ofcgetire lightly

cells, provided guarantees that communication will be letw shaded. The celis belonging to the same sub-lattice as:cefiay be placed

d that tin d fad d db d |ﬂ%at mostL’g | concentric squares of increasing size, centered,afThe
nodes tha are_ not in deep ta e_s, and proved bounds on dfl€yyo such squares are denoted by dashed lines.
amount of traffic that each cell will need to support. However
we have not specified a medium access protocol. Such a _ _ _
medium access protocol is needed so that each cell knows whgHares, whose center is cell Irrespective of the coordinates
to transmit, and also there are guarantees about the minim@fnck, all the cells of its sub-lattice are located along the
amount of traffic that each cell can support. In this sectioﬁ?rlmetefs of at mOSE%J squares. There are at _m@t
we develop such a medium access protocol, based on tifrferers corresponding to theth square, whose distances
division. from the receiver will be at least;(3i — 2). Consequently, the

We divide theg(n) = 72 cells into nine regular sub-lattices,interference at the receiver is upper bounded by
such that any two cells belonging in the same sub-lattice are } ==Y

i i 3 2 81K F
separated by at least two cells belonging to different sub- L < |Zlogn Z [ 1K Py
T

lattices. This property will be used to bound the amount of I 1 = [wo(Bi—2)]
interference experienced by receivers. In Elg. 3 we havdesha '3 18K P r
the cells belonging to one of thesub-lattices. < |Slogn| /= 14+ (3i—2)'7
We divide time into frames, and each frame into nine slots, L4 1 %o i=2
each slot corresponding to a sub-lattice. At any time during (3 18K P, " I
that slot, only one node from each cell of the corresponding < _a log n_ zg 1+ 0 (3z+1) da]
sub—latticg is allowed t_cuecei_ve(but many nodes in that cell M3 18KP [3a—5
may receive consecutively in the same slot). Because of the < alog" 20 |[3a—6 (18)

way we constructed the routing protocol, the transmitter of We also need a lower bound on the power of the useful
that transmission will have to lie in the same cell, or in one, b

of the four neighboring cells. All transmissions are witte th3|gnal. Qlearly,_ since the maximum possible .d'StanC.e that t
maximum powerR useful signal will need to travel, under the routing assuoms,
0-

Lemma 5: The SINR; at any source or destination node's V5xo, and the fading coefficient between the transmitter

. ; N and the receiver is at least equal f@;, w. h. p. we have
Z; that is receiving is bounded w. h. p. by that 5, > K Py far(v/5a0)—2. Combining this with [T8), and
3o — 6} {qu} 1 noting that the thermal noise remains bounded, and therefor

3a—5| | 25 (17) becomes negligible as — oo, we arrive at[(l7). O
We now assume that all transmitters transmit with rate

Proof: We first bound the interferenck. For this, we first fr(Ymin(n)). By Lemmalb, w. h. p. all transmissions will be
note that by Lemm@l2, w. h. p. no fading coefficient is greatgHccessful.

than 2 log n. Next, letzy = 1 be the length of the sides of the

cells, and letc;, be the cell in which the receiving node liesD- Lower Bound

Working as in [20], we note that the rest of the cells in the The nodes of each cell are allowed to receive during
same sub-lattice are located along the perimeters of ctmicenonly 1 out of 9 slots, and with rate equal tgr(Ymin(n)).

A p_a
i min =5 .
Yj > Ymin(n) 2 [ Togn
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The number of routes that will be crossing each egllis destinations and has as small a length as possible. Let ua find
upper bounded by,.x(n), determined by Lemmf] 4. Mostlower bound on the length @ytree that connects all destina-
of these routes will require one reception, however a few tbns. For this, let us divide the whole regiond(v) = %

these, in particular those whose destination lies in egll regular cells, each with side length equalgta)~2. Working
may require three receptions. Therefore, each route, and 4§ sectiofi 1V, it follows that there will be a destination ach
associated source node, is guarap}eed a rate of commonicag them, so a tree connecting all of them will have a length on
A(n) = fr(Ymin) [3 X 9 X Tmax(n)] . Multiplying by n, and  the order ofg(n) x q(n)~* = q(n)* ~ n#, ignoring logarith-
substituting forrmax(n) and ymin(r) from Lemmad ¥ an@l5 mic factors. Assuming transmissions across distanceshwhic
respectively, we see that our scheme achieves an aggreggieas small as possible, i.e., on the ordenof, it follows
throughput equal to the lower bound (3). Since the capaciya each packet will need roughly’s" transmissions to be
is the supremum of the aggregate throughputalbpossible qelivered to all? destinations. As the number of simultaneous
schemes, it will necessarily be greater than the aggreggigsmissions (across distances on the orderof) over the

throughput of our scheme, and the result follows. whole network is on the order of (using, for example the
time division scheme of the previous section), it followatth
E. Proof of Upper Bound the maximum possible aggregate rate of packet deliveries at

. . . d dti. 4 dil
Let d,,;, be the minimum of all distances between aih des;matlons 1S ogﬁthzorder mT)" >:j[n : ]I h_? i Ep d
source-destination pairs, and &, (x) be the evenf|X, — to the exponent ok, this upper bound equals the lower boun

Y;| < z}. Then: we now derive.
= ' Moving to the constructive proof of the lower bound, ideally

n_m we would like to construct a scheme that uses a multicast tree
Pldmin < @] = P[U;;Hij(2)] <> Y P[Hy(w)] that is as short as possible, for example a Steiner tree on a
i=1 j=1 properly defined graph. However, we also need a tree that is
amenable to analysis. The tree we now specify represents a
= nmP[Hy, (z)] < nmra®. (19) 9ood compromise between these goals.
o _ _ First, we divide the square regiof(z,y) : |z|,|y| < 4}
The first inequality comes from the union bound. The secofgtg g(n) = g2~ cells. The propertiegi)-(iii) of Section
equality comes from using symmetry. The last inequality e@esm[y-A]continue to hold, where now propertjii) applies to the

from noting that the nodes are placed in a square with surfaggmmunication of two wireless nodes in the same cell. As

area equal tol, and that nodesY; and Y1 will be within  shown in Fig[#%, the tree we use consists of three legs:
distancer of each other ifY; is placed on the intersection OfFirst leg: The packet is propagated along a straight line to

the square Wi_th "f‘ disk of radius centered at nodé(;. all cells which have the samg-coordinate as the cell of the
The capacity is less than the aggregate throughpt) source.

that _vv_ould_ have bee_n ac_h|eved if all destination nc_)d_es WeE cond leg:Starting from the cell of the source, evégn) 2
receiving (i) all the time, (i) from sources at the minimum 1-d

distanced,,;, and with fading coefficient equal to the uppergil/ljﬂ cells along the first leg, the packet also propagates

bound of Lemmal2(iii) using the whole bandwidth, an@) along the vertical direction. Therefore, there dp vertical
without experiencing interference from competing trarssmi

. legs per tree, separated by a distance,of .
sions. Therefore, we can boufit{n) as follows: gs p P y

Third leg: Each destination receives the packet from the cell
1 KPyd=% 3 1ogn that received the packet in the second leg which is closest.

T(n) < mW log,(1 + T o As with the routing protocol of Sectidn TViB, communication
3K Py ATV is between nodes those mutual fading coefficient is no smalle
< mWlogy(1+ n**logn) < {—} nlogn. than the mediary,;. Also, if a packet reaches a node in the
nal log 2 cell of the destination other than the destination, it wélich
The second inequality holds w. h. p., and comes by applyititge destination by two more hops, through a relay node, such
(I9) with z = n—=3. The last holds for sufficiently large valuesthat both mutual fading coefficients are at least equal to the
of n, and comes using simple properties of the logarithmedian.

Ui

function. SinceC'(n) < T'(n), the bound follows. The aim of the first two legs is to spread the packet uniformly
through the whole region, and the number of vertical sestion
V. MULTICAST NETWORKS strikes the optimal balance between having a small number

In order to better motivate the proof of the lower boun$f total hops and a thick coverage. Ignoring poly-logarithm

) L actors and the fact that packets do not follow exactly gtrai
of Theoremi?, we first present a heuristic upper biurd lines, we note that the length of the treelig- n% x 14+nd x

minimize t_he ”“”?bef_ of tra_mgmlssmns needed for a packet Wwe . n. Therefore, this tree has the potential to achieve our
reach all its destinations, it is clear that the packet must

routed along amulticast tree which passes through all the euristic upper bound, at least up to a pon-Iogan_thmlctcfac
Next, we develop an upper bound on the traffic supported

2We note that a similar bound, based on a different heurigtiuraent, by each cell. For this, Ie'tj be the number of routes that cell
appeared in the independent work fin][11]. ¢; must support, and let;;, r;2, andr;s be the total number
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D given by [20). Most of these involve just one hop, how-
ever those few whose destination lies in cgllwill require
three transmissions. Therefore, each route is guaranteste a

of communication\(n) = fz(Ymin(n)) [3 X 9 X rmax(n)] .
Multiplying with n, for the number of nodes, and’, for the
number of destinations of each node, we arrive that the lower
bound [(3).

7
\
1

]
N

4o

3 X

VI. CLUSTERNETWORKS

Regarding the upper bourid (5) of Theoildm 3, we simply note
that we can prove it by applying the technique used for pigvin

| x —2 the upper bound{2): we must simply consider upper bounds
B on the aggregate throughput received at ¢hester headsas
L 3 opposed to thelestination nodes
T N We next present a constructive proof of the lower bolind (6).
— \5)( We divide the square regiof(x,y) : ||, |y| < 3} in a regular

SRR AR
(
)
e RS RS E R
)
N
\\/\//F\—?’ U
)
(
s

lattice of g(n) = dm £ 2 cells, as shown in FidJ1. Let
s; and d; be the numbers of client nodes and cluster heads
respectively in celk;. By Lemmall, it follows that w. h. p.

Fig. 4. An example of a multicast tree created according o rifles of

Sectior[¥. The three legs of the tree are denoted by the nsmber 3. The Vi, 9n'"logn < 5; < 270~ logn, (22)
source is denoted by a full circle and the destinations bgsas. Relaying .
nodes are not shown. Vj, 9logn < d; < 27logn. (22)

The probability that a client will not be able to find a cluster
head in its own cell such that their mutual fading coefficient
is greater than the mediafy, is, using the independence of

%jfferent fading coefficients, at mogt)®'°6™. Using the union

To boundr;1, we apply Lemmall as in the case of the bounIO : 2 .
- ‘ 9 ound, it follows that the probability thany of the clients
(I4) and conclude that, for ajl r;; < V2 nlogn. To bound will not be able to find such a cluster head is smaller than

rj2, we note that each of the nodes will contribute tor;e 1\9logn .
J: . . ) = , Which converges t0 asn — oo. Therefore, w. h.
with one route with probabilityx(n)~!, and so by a simple n(3) ges to asn — oo

application of the Chernoffdand union bounds, w. h. p., for P'e:gscl,:ﬁgisiswglt T:;;ifi(zlnfwcoeﬁ|0|ent to one of the ¢ars
Jyrj2 < %h(n)_ln = %n%\/logn. To boundr;;, we note q '

i . In addition, we impose on the nodes the time division
that a cellc; will only have to servesomeof the third legs of . . o .
. - S . scheme of Section TVAC: time is divided in frames, and each
routes with destinations that lie in eithey, or in one of the

h(n) cells on its left, or in one of thé(n) cells on its right. frame in 9 slots. At any time during a slot, only a single

Therefore r- is at most equal to the number of destinationnOde (either a cluster head or a client node) from each cell
. 3 d f the corresponding sub-lattice is allowed to transmit an
in 2h(n) + 1 cells. By LemméefLl, w. h. p. there are at mos

. ith maximum power. Since the receiver necessarily lies in
271ogn nodes in each of these cells, for a total of at mo%{ P y

- e same cell, the lower bound on the SINR of Lemma 5
[2(n) +1]27logn nodes. The probability that one of thesecontinues to hold. Therefore, if the transmitter transmiith
nodes is chosen when a node chooses his next destinatiopa{gf (Yonin (), WheTeymm; (7'1) is given by [I7), w. h. p. all
[2h(n) + 1]27(logn)n~1. Applying the Chernoff bound(10) transgisv;;g]ns V\;i|| be sJ(?lclgssful y T
: : rd o .
with number of experiments and probablllt){gf success By 1), there are less thaTn'~¢log n client nodes in each
[2h(n) +1]27(logn)n ', it follows thatr;; < 27n"= /logn, f

ith babilit ing fol tially fast. B ol slot. We divide each slot i@ x [27n'~%logn] time intervals,
with probabiiity going to’ exponentially fast. By a SIMPI€ o0 of which is devoted to the transmission of a packetreithe
application of the union bound, it follows that w. h. p. th

) . : . - §rom or to a client node. Each stream of data is guaranteed
inequality will hold for all j. Combining the bounds forji, . aie of communication equal (n) = fr(Ymin(n))[2 x

rj2, 73, it follows that w. h. p., and for alj, 27n'~4logn]~1. Multiplying by 2n for the total number of
streams, and substituting fgf,i, (n) from Lemmddb, we arrive

of routes passing throug}) in their first, second, and third leg
respectively. Clearlyy; < rj; + rjo + 753.

9 9 1td
r; <rj14rie+rs < 7 nlogn + 3N ? logn at the lower bound{6).
1+d 1+d 1
+27n7% \/logn < rmax(n) £ 32077 (logn)®.  (20) VII. HYBRID NETWORKS

Next, we specify that the nodes use the time division sched-Because of the similarities between cluster and hybrid net-
ule of Sectior IV-C, under which each receiver is guaranteeslorks, the wireless nodes can use for their communication
w. h. p.,, an SINR equal to the boung,,(n) given by the scheme that was used in Secfioh VI for proving the lower
(I7). Also, every transmitter transmits with rafg(ymin(n)). bound[(®). In particular, wireless nodes do not transmitatche
The number of routes crossing each cell is at mgst.(n), other, but rather transmit directly to an access point nearb
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The packet is then transmitted through the infinite capacithe proof is based on intermediate results of theorems that
network to an access point close to its destination, andeis thappeared in the main text. As a result, it is very short.
transmitted one more time through the use of the wirelessLet auniform network consist ofn identicalwireless nodes
interface to the destination. All the analysis of Secfiohgdes Xi, Xa,..., X,,, placed randomly, uniformly and indepen-
through, if we substitute client nodes with wireless nodes adently in the unit squarg(z,y) : |z|,|y| < %}. There are
cluster heads with access points. The only difference i tha traffic streams and each wireless node is the source of a
because each packet must be transmitted twice, the aggregatgle stream, and the destination of a single stream. A node
throughput is half the throughput achieved in cluster néta’o cannot be the source and destination ofghmestream. Apart
The bound[(I7) follows. from this restriction, all other combinations of sourcesl an
To derive [8), we consider the opposite extreme. In padestinations are equally probable. All streams have theesam
ticular, we note that the: wireless nodes are free to ignoredata rate\(n) bps.
the infrastructure of the access points, and establish amem We define thecapacity C(n) of the network as the
nication scheme using only themselves. This uniform traffsupremum of all rates(n) that are uniformly achievable by alll
case was the subject of![3], and latéri[14]. For reasons mbdes, multiplied by their number. The following theorem
completeness, in the Appendix we define such a network amolds:
prove that indeed it can achieve an aggregate throughpat equ Theorem 5: In uniform networks the capacity(n) is

to the lower bound of({8). bounded w. h. p. as follows:
Regarding upper bounds on the capacity, although we pro- _a 1
: L . 3a—6] [Wqfmb™ 2 nz
vide no formal proof, it is intuitively clear that, in the eas C(n) > 5. (23)
d > 3, the bound[{I7) is tight, up to a poly-logarithmic 3o = 5] |8600T'log2 ] (logn)>

factor. Indeed, the aggregate throughput of packets usiag t _ L L .
infrastructure, even for part of their transport, cannatesd Froof: Let us divide the square region into a latticegtf) =

the upper bound15), and the aggregate throughput of packets;zn CellS, as in Sectioh IV-A. The result®), (i), (iii) of
not using the infrastructure is much less, on the orden of that section continue to hold, with the understanding that t

by [3]. By a similar argument, the bound (8) is tight, up to Lesult(iii) applies to the communication of two wireless nodes

poly-logarithmic factor, whenl < 1. using a third wireless node as relay.
' 2 Furthermore, let us use the routing protocol of SediionV-B

where now the destination node is actually another wireless
) ) ) ) node. To bound the number of traffic streams that each cell
tern: asymmetric, multicast, cluster, and hybrid. The camm cqordinate with cellj, andN; be the number of nodes with the
aspect of these traffic patterns is their non-uniformityeath samey-coordinate with cellc;. Working as in Sectiofi 1V-B,

of them some nodes are required to either send or collect Myga readily have that, w. h. p., for afl, M; < %W’

more traffic than other nodes This lack of uniformity place e 9 T 2

a strain on the network, through the formation of bottlem;eclind by symmetry we also h{-j“m]- = V2 nlf)gn' Each node

that h h tent It’ d h o Wi | 15 the source and the destination of a single traffic stream,
athave the potential to reduce the capactly. VVe pres © and therefore the number of routes supported by each cell is

and upper bounds on the capacity that hold with prObab'I'B’ounded w. h. p. as follows:

going to unity as the number of nodes in the network goes to B '

infinity. In the interest of brevity, we also present a numbier Vi, 1; < M;+ Nj < rpax(n) £ 9v2y/nlogn.

conceptually straightforward upper bounds with only ititei

justification. Our work quantifies the inherent capabititief

VIIl. CONCLUSIONS

If nodes use the time division scheme of Secfion IV-C, then
wireless networks to handle various types of traffic patte%ﬂe bout”d@?) O':hthe SANR 2; ea_(lzlh recgptlon holds. I;{Iost of
non-uniformities, and provides useful guidelines to pcoto € routes going through a cel will require one reception,

designers, for creating protocols that perform close to tlj{]é)wever a few of these, in particular those whose destinatio

. . : : lies in cell ¢;, may require three receptions.
capacity, without being overly complicated. . J :
Recently, a number of tight capacity bounds have appearesdD :;ts'gg.;\ézry;g'gg t.(; gEth:r;nvt\l:ega;/er;:]eatofei%hmﬁuf&;nodn
that are based on stochastic geometry tools, and in pasnticdi - ! é' 9gu -1 Multiolving b unicat
tools from percolation theory [21]. An open question is Wit (n) = FR(Ymin(n)) [3 X 9 X rmax(n)] . Multiplying by n,

it is possible to sharpen or extend the results presentes hggﬁe;uebjgﬁggesm;m?(T% Zr;g Zﬁ}‘g&n)h \Lljvteesiill ttr:)aihzulrower
using such tools. Combining traffic non-uniformities wit-r : ggregate ghput €q
.bound [[28). Since the capacity is the supremum of the aggre-

sults from stochastic geometry is a promising but challeggi ) N .
task and so is the subject of future work. gate throughputs ddll possible schemes, it will necessarily be
greater than the aggregate throughput of our scheme, and the

result follows. O
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