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Asymptotic Capacity Bounds for Wireless
Networks with Non-Uniform Traffic Patterns

Stavros Toumpis,Member, IEEE

Abstract—We develop bounds on the capacity of wireless
multihop networks when the traffic pattern is non-uniform, i .e.,
not all nodes are the sources and sinks of similar volumes of
traffic. Our results are asymptotic, i.e., they hold with probability
going to unity as the number of nodes goes to infinity. We
study (i) asymmetric networks, where the numbers of sources
and destinations of traffic are unequal,(ii) multicast networks, in
which each created packet has multiple destinations,(iii) cluster
networks, that consist of clients and a limited number of cluster
heads, and each client wants to communicate with any one of the
cluster heads, and(iv) hybrid networks, in which the nodes are
supported by a limited infrastructure. Our findings quantif y the
fundamental capabilities of these wireless multihop networks to
handle traffic bottlenecks, and point to correct design principles
that achieve the capacity without resorting to overly complicated
protocols.

Index Terms— Asymmetric traffic, capacity, clustering, hybrid
networks, infrastructure support, mobile ad hoc networks,multi-
hop network, multicast routing, wireless access, wirelessnetwork.

I. I NTRODUCTION

We study the setting in which nodes equipped with wireless
transceivers communicate over a shared wireless channel to
create a multihop network. In this context, we develop bounds
on the capacity of the network, which is defined as the
theoretical limit on the total traffic that the network can support,
assuming optimal coordination among the nodes. The bounds
are determined assuming a number of different non-uniform
traffic pattern models under which some nodes are required to
either create or receive much more traffic than other nodes.
Following the approach introduced in [3], our results are
asymptotic, i.e., they hold with probability going to unityas
the number of nodes goes to infinity.

In [3], the authors consider a set ofn nodes randomly placed
on the surface of a sphere. Each of the nodes chooses another
node as the destination for its traffic, randomly, uniformly
and independently, and alln traffic streams are assumed to
have a common rate requirement. The authors aim to find
the maximum possible rate per streamλ(n) that the network
can achieve. Note that, because the placement of the nodes
and the choice of destinations are random,λ(n) is a random
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variable. The authors show thatwith high probability (w. h.
p.), i.e., with probability going to1 as the number of nodes
n goes to infinity, K1√

n log n
< λ(n) < K2√

n logn
, for some

K2 > K1 > 0. Therefore, w. h. p., the maximum possible
aggregate throughputnλ(n) is on the order of the square
root of the nodes

√
n, i.e., ignoring poly-logarithmic factors of

the formk1(log n)
k2 , the aggregate throughput increases with

n as
√
n. As a by-product of our contributions, we offer in

the appendix a simple proof for the lower bound, in a setting
similar to that of [3]. Many researchers have followed the same
tangent, and a significant number of results of the same flavor
have accumulated [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14].

The traffic pattern used in [3] and almost all of the following
works is, in some sense, as simple as possible: All nodes
create data with the same rateλ(n), and each of them picks
at random one of the rest of the nodes as the destination
for these data. For lack of a better description, we call this
traffic patternuniform . The uniform traffic pattern is a good
model for certain networks, for example those used to support
unicast voice transmission. On the other hand, there is a host of
applications in which the traffic patterns will be fundamentally
different. For example, in a network designed to support
multimedia traffic between soldiers in a battlefield most of the
traffic will have multiple destinations. As another example, in
typical wireless sensor networks, a large number of sensors
is interested in communicating with a relatively small number
of sinks. However, the asymptotic properties of the capacity
under such non-uniform traffic patterns remain to a large extend
unexplored. A few notable exceptions are [6], [7], [8], [10],
[11]. (Of these works, [7] considers localized traffic and [10]
considers a topology with only two clusters, and so their results
are unrelated to our results. The relation of our work to each
of the rest is clarified later in the text.)

A. Contributions

In this work, we study wireless networks with no less than
four different non-uniform traffic patterns, which collectively
cover a wide variety of scenarios. In the process, we develop
a versatile methodology that can easily be extended to other
traffic patterns as well, such as the traffic pattern with localized
traffic of [7], which we do not study here. We calculate bounds
on the capacity, which we define as the maximum possible
aggregate throughput that the network can support under an
optimal coordination of the nodes. Following the approach
of [3], our results are asymptotic, i.e., they only hold with
probability going to1 as the number of nodesn goes to infinity.
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In addition, we bound the capacity only up to the exponent of
n, wheren is the number of nodes in the networks. In the
interest of brevity, we focus on constructive lower bounds,and
formally derive only a few upper bounds. In addition, we also
present a few other non-critical upper bounds with no formal
proofs, but with strong heuristic justifications.

Note that, although we are inspired by the results of [3],
we do not use them. Moreover, in contrast to [3], we achieve
our results using basic tools of probability and a simple
methodology, introduced in [14] and extended here, which
determines the rate with which the probability converges to
unity. We also use a realistic channel model that includes a
general model for flat fading.

We first studyasymmetric networks. These consist of two
types of nodes:n source nodes, andnd destination nodes1,
where 0 < d < 1. Sources create packets with a common
data rate, and the packets of each source must be delivered
to a single one of the destinations, chosen at random. Our
main find is that whend < 1

2 , there are so few destinations,
that bottlenecks start to form around them, constraining the
maximum possible aggregate throughput to be aroundnd. If,
on the other hand,d > 1

2 , bottlenecks can be avoided, and the
capacity is on the order ofn

1
2 , as in the uniform traffic setting

of [3].
We then considermulticast networks. These consist of

n nodes, each creating packets with a common data rate.
Each packet must be delivered tond distinct nodes chosen
randomly among the rest. (Again,0 < d < 1.) In this context,
the capacity is on the order ofn

d+1

2 , and can be achieved
without any multicasting in the media access layer, and using
a multicast routing tree that can be constructed using only local
information.

We also studycluster networks, which consist ofn cluster
nodes andnd cluster heads, where0 < d < 1. Each cluster
node is the source of a traffic stream and the sink of a traffic
stream. The traffic must be between the node andany of the
cluster heads, and all traffic streams have a common data rate.
We show that the maximum possible aggregate throughput is
on the order ofnd, and can be achieved (up to the order)
without routing along multiple hops, even in the presence of
fading.

We conclude by studyinghybrid networks , continuing the
work of [6], [7]. These consist ofn wireless nodes andnd

access points, where0 < d < 1. Access points are equipped
with wireless transceivers that are identical to the transceivers
carried by the wireless nodes. In addition, they are connected
with each other through an independent network of practically
infinite capacity. Each of the wireless nodes is creating traffic
destined for one of the other wireless nodes, chosen at random.
The access points have no traffic requirements of their own, but
are there to support the communication of the wireless nodes.
In this setting, we find that ifd < 1

2 , then there are so few
access points that if the wireless nodes attempt to use them

1Note that formallynd must be an integer, which only occurs for certain
combinations ofn and d. However in the following we will ignore this and
similar issues, as a more formal treatment, for example by using ⌊nd⌋, i.e., the
integer part ofnd, would encumber the notation without affecting the essence
of the derivations.

to route a substantial part of their traffic, bottlenecks will be
created. Therefore, it is better for the wireless nodes to simply
ignore the presence of the access points, and communicate with
each other exclusively over the wireless channel. It follows that
the capacity is on the order ofn

1
2 . If, however,d > 1

2 , there is a
sufficient number of access points to make a difference, and the
capacity is on the order ofnd. Furthermore this capacity can
be achieved without multihop wireless communication between
wireless nodes.

The rest of this paper is organized as follows: in Section II
we specify our network models and formally present our
results. In Section III we present three lemmas that will be
used throughout the text. Proofs for the results for asymmet-
ric, multicast, cluster, and hybrid networks are developedin
Sections IV, V, VI, and VII respectively. We conclude in
Section VIII. In the appendix, we have included a proof for the
lower bound of [3] we mentioned, in a setting similar to that
of [3]. The proof is included here for reasons of completeness,
and, as it uses parts of the proofs of the other results, it is very
short.

II. N ETWORK MODELS AND RESULTS

A. Channel and Physical Layer Models

Nodes are equipped with transceivers used for communi-
cation over a wireless channel of bandwidthW , and cannot
transmit and receive simultaneously. Each nodeZi can transmit
with any powerPi ≤ P0, whereP0 is a global maximum.
WhenZi transmits with powerPi, Zj receives the transmitted
signal with powerGijPi, whereGij = Kfij|Zi − Zj |−α. K
is a constant, the same for all nodes,|Zi −Zj | is the distance
between nodesZi andZj , α > 2 is thedecay exponent, and
the factorfij is the fading coefficient, a non-negative random
variable that models fading.

We assume that the expectationE[fij ] = 1, and thatfij =
fji. Distinct fading coefficients are independent and identically
distributed (iid). We also assume that:

F c(x) , P [fij > x] ≤ exp[−qx] ∀x > x1, (1)

for some q, x1 > 0. In other words, the complementary
cumulative distribution function of the fading distribution has
an exponentially thin tail. Intuitively speaking, very high values
for the fading coefficients are very rare. Also, we assume that
there is a median valuefM > 0 such thatP [fij ≥ fM ] ≥ 1

2 .
Both of these assumptions are satisfied by most distributions
used to model fading, for example the Nakagami, Ricean, and
Rayleigh distributions, and the trivial distribution for which
P [fij = 1] = 1.

Let {Zt : t ∈ T } be the transmitting nodes at a given
time, nodeZt transmitting with powerPt. Let us assume
that nodeZj , j 6∈ T , is receiving a data packet fromZi,
i ∈ T . Then theSignal to Interference and Noise Ratio
(SINR) at nodeZj will be γj =

GijPi

η+
∑

k∈T , k 6=i
GkjPk

, whereη
is the receiver thermal noise power, same for all nodes. The
transmission will be successful if and only if, for the whole
period of transmission, the transmission rate used,Rj , satisfies
the inequality

Rj ≤ fR(γj) , W log2(1 +
1

Γ
γj).



4

For various values ofΓ > 1, the equation approximates the
maximum rate that meets a given BER requirement under a
variety of modulation and coding schemes [15]. WithΓ = 1, it
gives the Shannon bound. We can think offR(γj) as a function
modeling the capabilities of the receiver.

We do not make any additional assumption regarding the
physical layer. We note, however, that we implicitly assumed
a single common wireless channel. For lack of space we do
not consider the case of having multiple channels, but it is
intuitively clear that, had there been multiple channels, our
capacity calculations would hold in each of them, and the
capacity would not change. (See [3] for a formal development
of this argument.) Also, under our current model, nodes try
to decode only the signal of one transmitter, therefore coop-
erative communication schemes are excluded. Such schemes
have recently been shown to have dramatic capacity improve-
ments [16]. However in our work we focus on the effects of
traffic asymmetries, and for this reason we keep the physical
layer relatively simple.

We also place no particular restriction on the access scheme
used by the nodes. The nodes are free to use, for example,
random access schemes such as Aloha, Code Division Multiple
Access (CDMA), Time Division Multiple Access (TDMA),
or any other access scheme they choose. However, in our
constructive lower bounds, we use simple TDMA schemes that,
as we show, operate very close to the capacity.

B. Asymmetric Networks

Asymmetric networks consist of n source nodesX1,
X2, . . ., Xn, and m(n) = nd destination nodesY1, Y2,
. . ., Ym, placed randomly, and in particular uniformly and
independently, in the unit square{(x, y) : |x|, |y| ≤ 1

2}.
We call d ∈ (0, 1) the destination exponent. Each source
node is creating data traffic with a fixed data rateλ(n) bps,
common for all sources, that must be delivered to one of the
destination nodes. Each source selects its destination randomly,
again uniformly and independently of the others. Both types
of nodes are allowed to transmit, receive, and relay packets.

The fundamental difference of this network from previously
considered networks, such as the one in [3], is not that there
are two types of nodes (sources and destinations), but the fact
that their numbersn andm(n) are different, and so the traffic
pattern is asymmetric: on the average more packets must arrive
at each destination, than there are leaving each source. In fact,
as will become intuitively clear, we could have assumed, just
as well, that there aren destination nodes and onlym(n) =
nd source nodes, and arrived at essentially the same results.
Applications where traffic pattern asymmetries are expected
are, for example, vehicular ad hoc networks in which many
users will be downloading infotainment from a few central
locations, and wireless sensor networks where the sensor nodes
will be exchanging data with a small number of sinks.

We define thecapacity C(n) of the network as the
supremum of all ratesλ(n) that are uniformly achievable by all
sources, multiplied by their numbern. Since the locations of
the nodes, the destination of each data stream, and the fading
coefficients are random, the capacity is a random variable.

Theorem 1: In asymmetric networks the capacityC(n) is
bounded with high probability (w. h. p.), i.e., with probability
approaching unity asn goes to infinity, as follows:

C(n) ≤
[

4αW

log 2

]

nd logn, (2)

C(n) ≥ D ×











√
2

27
n

1
2

(logn)
3
2

if 1
2 < d < 1,

[

1−2d
5

]

nd

logn
if 0 < d < 1

2 ,

(3)

where the constantD is given by

D =

[

3α− 6

3α− 5

]

×
[

WqfM5−
α
2

676Γ log 2

]

.

When d < 1
2 , bottlenecks form around the destinations,

limiting the capacity of the network. Intuitively speaking, in
this case there are so few destinations, that the convergence
of traffic streams to each of them is so intense that the areas
around them must carry many more traffic streams than other
areas in the network. Therefore, each of these traffic streams
must have a very small data rate, and this drives the whole
capacity down.

If, however, 12 < d < 1, no bottlenecks are formed around
the destinations, and the capacity can increase as fast asn

1
2 ,

as in the uniform traffic pattern case of [3]. Intuitively, the
number of destinations is large enough so that, despite the
asymmetry that still exists, the network can find a routing
scheme that avoids congesting the areas around the destina-
tions, and spreads the traffic evenly through the whole network.
As the proof of the theorem will show, in order to achieve an
aggregate throughput ofn

1
2 , an average location in the network

is required to support, on the average,n
1
2 traffic streams. When

1
2 < d < 1, the numbern1−d of streams converging to a
destination, which the location around the destination must
support, is much less than that average load ofn

1
2 streams.

Therefore, the extra workload of locations close to destinations
is insignificant with respect to the average workload.

Although we do not formally prove the upper boundn
1
2 on

the capacity for the cased > 1
2 , it is intuitively clear from the

work in [3] that it holds, and so the lower bound is always
tight up to a poly-logarithmic factor of the formk1(logn)k2 .

An important practical implication of Theorem 1 is that
networks can handle wellsome asymmetry in the traffic
pattern, but designers should avoid anyextremeasymmetry.
In particular, the number of destinationsm(n) should be at
least on the order ofn

1
2 , wheren is the number of sources.

For applications in whichm(n) is a design parameter and it
is useful to minimize it (because, for example, destinations are
more expensive) the network has a ‘sweet-spot’:m(n) should
be aroundn

1
2 . Using more destinations will not improve the

performance significantly, but using fewer will severely reduce
it.

Before moving to the results for the other types of traffic, one
clarification is needed regarding the selection of the number of
destinations asm(n) = nd. The result we provided holds for
any d ∈ A = (0, 1

2 ) ∪ (12 , 1). Therefore, the result allows us
to scan a wide range of variations ofm with respect ton. Al-
though we could have adopted a more general condition, such
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asm ≤ n, we do not do so, because the additional derivations
needed for addressing this more general case would be lengthy,
without the value of the results increasing accordingly. Inother
words, our model is specific enough to keep the derivations in
a manageable level, but general enough to provide intuitionfor
all cases of interest. This discussion applies also to the other
types of networks we study, for which similar assumptions are
made.

C. Multicast Networks

Multicast networks consist ofn wireless nodesX1, X2,
. . ., Xn, placed randomly, and in particular uniformly and
independently, in the area{(x, y) : |x|, |y| ≤ 1

2}. Each node
creates traffic with a common rateλ(n) that is intended for
m(n) = nd other nodes, that are chosen randomly, uniformly
and independently, among the rest. We calld ∈ (0, 1) themul-
ticast exponent. Examples of networks with a multicast traffic
pattern are wireless networks used in military or search-and-
rescue operations where each user might want to communicate
with an arbitrary subset of the other users.

We define thecapacity C(n) of the network as the
supremum of all ratesλ(n) that are uniformly achievable by
all sources in the network, multiplied by their numbern and
the number of destinationsm(n) = nd. Note that the capacity
is again a random variable.

Theorem 2: In multicast networks the capacity is bounded
w. h. p. as follows:

C(n) ≥
[

3α− 6

3α− 5

] [

WqfM5−
α
2

22000Γ log2

]

n
d+1

2

(logn)
3
2

. (4)

The improvement on the capacity over the uniform case is
due to the possibility for the routing of each packet along
a tree that passes through all destinations, as opposed to
sending the same packet individually to each destination, in
an uncoordinated manner. Although we formally present only
a lower bound, we will use intuitive arguments to show that the
routing tree employed by the constructive lower bound is of
the same order of length as the minimum length multicast tree
that the source can employ. For this reason, the lower bound
is tight up to a poly-logarithmic factor.

An interesting side result is that the tight lower bound can be
achieved without employing multicasting on the media access
layer. The intuitive justification of this rather unexpected result
is that any efficient multicast trees will have such a small
number of bifurcations, so that employing multicasting in the
media access layer cannot change the order of the capacity.
Another interesting side result is that the tight lower bound
can be achieved without the source discovering the locationof
the destinations, or the destinations discovering the location of
the source. The only requirement is that each destination be
discovered by a node carrying its packets that is on a distance
at mostn−d

2 away from that destination.

D. Cluster Networks

Cluster networks consist ofn client nodesX1, X2, . . .,
Xn, andm(n) = nd cluster headsY1, Y2, . . ., Ym, placed

randomly, uniformly and independently, in the area{(x, y) :
|x|, |y| ≤ 1

2}. We call d ∈ (0, 1) the cluster head exponent.
Each client wants to establish a bidirectional communication
(with rateλ(n) in each direction) withanyof the cluster heads.
This model approximates well the traffic patterns that exist
in wireless networks that operate using hierarchical clustering
protocols, as for example Bluetooth [17]. Another application
are sensor networks that consist of sensors and fusion centers.

We define thecapacity C(n) of the network as the
supremum of all ratesλ(n) that are uniformly achievable by
all data streams in the network, multiplied by their number2n.
As in the previous cases, the capacity is a random variable.

Theorem 3: In cluster networks the capacity is bounded w.
h. p. as follows:

C(n) ≤
[

4αW

log 2

]

nd logn, (5)

C(n) ≥
[

WqfM5−
α
2

676Γ log 2

] [

3α− 6

3α− 5

]

nd

(log n)2
. (6)

The theorem shows that, ignoring poly-logarithmic factors,
the capacity increases withn roughly asnd. The upper bound
(5) comes from the need of the network to share the area
around the cluster heads. Therefore, the largerd is, the faster
the capacity increases withn.

In the context of networks that use clustering, the theorem
suggests that, to maximize capacity, the size of clusters must
be bounded, and so their number should increase linearly with
n. If network designers are not willing to accept such a large
number of clusters, they should be ready to sacrifice part of
the capacity. The exact tradeoff is very simple, and is captured
by Theorem 3. In the context of networks where the cluster
heads are gateways to the outside world, the theorem suggests
that there is no limit to how many gateways are needed: the
greater the investment of the network provider (i.e., the larger
d is), the larger the capacity is going to be. Again, the tradeoff
is very simple and is captured by Theorem 3.

Finally, as the proof will show, the lower bound on the
capacity can be achieved even if clients do not transmit to each
other, and even in the presence of fading (but in this last case,
provided the client nodes are not restricted to communicate
with the nearest cluster head). In other words, advanced routing
protocols cannot change the capacity by more than a poly-
logarithmic factor, and designers should focus instead on
efficient polling algorithms that are aware of the channel state,
and the efficient handling of bottlenecks around the cluster
heads.

E. Hybrid Networks

Hybrid networks consist ofn wireless nodesX1, X2, . . .,
Xn, andm(n) = nd access pointsY1, Y2, . . ., Ym, placed
randomly, uniformly and independently, in the two-dimensional
area{(x, y) : |x|, |y| ≤ 1

2}. We calld ∈ (0, 1) theaccess point
exponent. We assume that the access points are connected with
each other through a data link of infinite capacity that does
not consume any of the available bandwidthW . There are
n traffic streams and each wireless node is the source of a



6

single stream, and the destination of a single stream. A node
cannot be the source and destination of thesamestream. Apart
from this restriction, all other combinations of sources and
destinations are equally probable. The access points do not
have any communication needs of their own, but are there to
support the wireless nodes.

This network shares important common characteristics with
both pure wireless multihop networks and also pure cellular
networks: On the one hand, it partly consists of a large number
of wireless nodes that communicate over a wireless channel
and can route each other’s traffic, as in wireless multihop
networks. On the other hand, the wireless nodes are supported
by access points that form an independent network with infinite
capacity and do not have any traffic needs of their own; their
role is similar to that of base stations in cellular networks.
The asymptotic capacity of such networks was first studied
in [6], [7], and is of great practical interest, as future generation
cellular systems will be using this hybrid topology.

We define thecapacity C(n) of the network as the
supremum of all ratesλ(n) that are uniformly achievable by
all data streams in the network, multiplied by their numbern.
As in the previous cases, the capacity is a random variable.

Theorem 4: In hybrid networks the capacity is bounded w.
h. p. as follows:

C(n) ≥ 1

2

[

WqfM5−
α
2

676Γ log 2

] [

3α− 6

3α− 5

]

nd

(log n)2
, (7)

C(n) ≥
[

3α− 6

3α− 5

] [

Wqfm5−
α
2

8600Γ log 2

]

n
1
2

(log n)
3
2

. (8)

Although we do not formally prove upper bounds, we
provide an intuitive justification that (7) is tight whend > 1

2 ,
and (8) is tight whend < 1

2 .
The theorem suggests that more thann

1
2 access points are

needed for the infinite-capacity infrastructure to have anyeffect
on the performance of the network. As the proof will reveal,
no access point can expect to receive packets with a bit rate
larger thanlogn. Therefore, whend < 1

2 , there are so few
access point, so that even if they were receiving packets with
that maximum possible rate, they would not be able to compete
with the wireless network formed by the nodes, which can
achieve an aggregate throughput on the order ofn

1
2 .

If, however, 1
2 < d < 1, there is a simple time division

scheme, that does not depend on multihop wireless transmis-
sion, so that each wireless node can communicate with one of
its neighboring wireless access nodes with ratend−1

(logn)2 , which

is much larger thann
1
2 . Therefore, the wireless nodes should

not depend on each other for routing their traffic, but rather
should make heavy use of the infrastructure.

Note that there is a surprising phase transition: depending
on how many access points there are, they should either be
totally ignored, or used extensively. It is intuitively clear that
the best strategy would be to use the full resources of both
existing networks, however there will be no gain by doing this,
in terms of the exponentwith which the aggregate throughput
increases.

We note that a similar result was first reported in [6], [7].
Our setup, however, is different in a number of critical ways:
Firstly, we require that all wireless nodes are guaranteed the
same throughput. Secondly, the locations on the access points
are random, and finally we assume a more realistic channel
model, that includes a general fading model. Our result is also
straightforward to derive, because its proof is based on parts
of the proofs of the other theorems presented in this work.

III. U SEFUL LEMMAS

The first lemma is closely related to the well-known Coupon
Collector’s Problem [18], however, to the best of our under-
standing, it has not appeared elsewhere in this form.

Lemma 1: Letn balls be placed inl urns, uniformly and
independently of each other. Letbj , j = 1, . . . , l be the number
of balls that end up in thej-th urn. Then for anyǫ > 0 there
is a δ(ǫ) > 0 such thatP [∀j (1 − ǫ)n

l
≤ bj ≤ (1 + ǫ)n

l
] ≥

1− 2l exp[−δ(ǫ)n
l
].

Proof: We make use of Chernoff’s bounds [19]: LetX be
a binomial random variable, with parametersk (the number
of experiments) andp (the probability of success of each
experiment). For anyǫ > 0,

P [X < (1− ǫ)kp] < exp[−kp
ǫ2

2
], (9)

P [X > (1 + ǫ)kp] <
exp[ǫkp]

(1 + ǫ)(1+ǫ)kp
, exp[−kpf(ǫ)], (10)

wheref(ǫ) , (1+ǫ) log(1+ǫ)−ǫ. By calculating the derivative
of f(ǫ) with respect toǫ, we have thatf(ǫ) > 0 for ǫ > 0.

Since each ball is placed in an urn independently of the
others,bj follows the binomial distribution, with number of
experiments equal ton and probability of success equal to
1
l
. (Note, however, that thebj are not independent.) Applying

Chernoff’s bounds, we have:

P [bj < (1− ǫ)
n

l
] < exp[− ǫ2

2

n

l
], (11)

P [bj > (1 + ǫ)
n

l
] < exp[−f(ǫ)

n

l
]. (12)

We note the basic inequalityP [∪k
j=1Ej ] ≤

∑k

j=1 P [Ej ],
typically referred to as theunion bound. Then:

P [∀j (1− ǫ)
n

l
≤ bj ≤ (1 + ǫ)

n

l
]

= 1− P [∀j (1− ǫ)
n

l
≤ bj ≤ (1 + ǫ)

n

l
]c

≥ 1−
l

∑

j=1

{

P [bj < (1− ǫ)
n

l
] + P [bj > (1 + ǫ)

n

l
]
}

≥ 1− l

{

exp[− ǫ2

2

n

l
] + exp[−f(ǫ)

n

l
]

}

≥ 1− 2l exp[−δ(ǫ)
n

l
],

whereδ(ǫ) , min{ ǫ2

2 , f(ǫ)} > 0. The first inequality comes
from the union bound, and the second inequality from (11) and
(12). �

In subsequent sections, we will have to bound the effects
of interfering transmissions in the reception of signals. As the
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fading distribution has an exponentially thin tail, the following
lemma applies:

Lemma 2: Letn nodes communicating over a wireless chan-
nel that satisfies the assumptions set out in Section II. Withhigh
probability, the maximum value of fading coefficients between
all pairs of nodes is bounded as follows:

max
1≤i<j≤n

{fij} ≤ 3

q
logn.

Proof: Let the eventsFij(n) , {fij > 3
q
logn}. Then:

P

[

max
1≤i<j≤n

{fij} ≤ 3

q
logn

]

= 1− P [∪1≤i<j≤nFij(n)]

≥ 1−
∑

1≤i<j≤n

P [Fij(n)] ≥ 1− n(n− 1)

2
n−3 → 1.

The first inequality comes from the union bound. The second
comes from symmetry and applying (1), and holds only for
sufficiently highn. �

Finally, observe that if a sequence of eventsAn occurs w.
h. p., and a second sequence of eventsBn occurs w. h. p.
conditioned on the sequenceAn, thenBn will also occur w.
h. p. without the conditioning:

Lemma 3: Let lim
n→∞

P [An] = 1 and lim
n→∞

P [Bn|An] = 1.

Then lim
n→∞

P [Bn] = 1.

The proof follows immediately by noting thatP [Bn] =
P [Bn|An]P [An] + P [Bn|Ac

n]P [Ac
n]. In practical terms, if we

need to prove that a sequence of events occurs w. h. p., we
are free to condition the discussion on any sequence of events
that occurs also w. h. p. It is also clear that we can iteratively
condition on more than one sequence of events. We will use
this lemma repeatedly, in many cases implicitly.

IV. A SYMMETRIC NETWORKS

We first develop a constructive proof for the lower bound (3)
of Theorem 1 in the spirit of [3]: we develop a communications
scheme whose aggregate throughput equals the lower bound
w. h. p., and as the capacity is the supremum of the aggregate
throughputs ofall schemes, it will necessarily exceed this lower
bound.

A. Cell Lattice

As shown in Fig. 1, we divide the square region{(x, y) :
|x|, |y| ≤ 1

2} in a regular lattice ofg(n) = n
18 logn

, r2 cells
c1, c2, . . . , cg(n). Each cell can be identified by its coordinates
(v1, v2) in the lattice, where1 ≤ v1, v2 ≤ r; the cell on
the lower left corner has coordinates(1, 1). We call two cells
neighbors if they share a common boundary edge, so that each
cell has at most four neighbors.

Let sj be the number of source nodes in cellcj . Thinking
of cells like urns and source nodes like balls, we see that
Lemma 1 applies. Settingǫ = 1

2 , l = g(n), bj = sj,
δ(ǫ) = min{ ǫ2

2 , (1 + ǫ) log(1 + ǫ) − ǫ} > 1
10 , it follows that

P [∀j 9 logn ≤ sj ≤ 27 logn] ≥ 1− 2n− 8
10

18 logn
, which goes to1

asn → ∞. Therefore, w. h. p.,

∀j, 9 logn ≤ sj ≤ 27 logn. (13)

x

y

r 
ce

lls

r cells

(1,r)

(1,1) (r,1)

(r,r)

cj

Fig. 1. Partition of the square region{(x, y) : |x|, |y| ≤ 1

2
} into a regular

lattice of r2 cells. We definesj as the number of source nodes in cellcj , Mj

as the number ofsourcenodes lying in cells who share the same x-coordinate
with cj (the shaded cell column) andNj as the number ofdestinationnodes
lying in cells who share the same y-coordinate withcj (the shaded cell row).

Note that we could have selected a different value forǫ

within (0, 1); the critical requirement is to show that w. h. p.
sj equalslogn, up to at most a constant factor. Next, letFij(n)
be the event that the source nodeXi cannot find a source node
in one of its neighboring cellscj , such that their mutual fading
coefficient is greater or equal tofM . By the independence
of the fading coefficients, and using (13), it follows that
P [Fij(n)] ≤ (12 )

9 logn. By using the union bound, and noting
that there aren source nodes, each with at most4 neighboring
cells, it follows thatP [∪i,jFij ] ≤ 4n(12 )

9 logn → 0. Therefore,
w. h. p. each source node will be able to find another source
node in each of the neighboring cells, such that their mutual
fading coefficient is equal to or greater thanfM .

Finally, let Gij(n) be the event that a destination nodeYi

and a source nodeXj lying in the same cell will not be able
to find a relaying source nodeXk, also on that cell, such that
the mutual fading coefficientsfYiXk

≥ fM andfXkXj
≥ fM .

By the independence of the fading coefficients, the probability
that a particular source node cannot be used is at most3

4 ,
and the probability that there is no source node that can be
used is at most(34 )

9 logn. Applying the union bound, it follows
that the probabilityP [∪i,jGij(n)] ≤ nd(27 logn)(34 )

9 logn →
0. Therefore, w. h. p. any destination node will be able to
communicate with any source node in its cell, by using another
source node in that cell as a relay, and in both hops the fading
coefficient will be greater or equal to the medianfM .

Let us summarize the results until now: We have divided our
area into n

18 log n
cells and we have shown that the following

properties hold w. h. p.:(i) The numbers of source nodes in
all cells are bounded by (13).(ii) Each source node can find
a source node in any of its neighboring cells so that their
mutual fading coefficient is greater than or equal to the median
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fM . (iii) Each source node can communicate with any of the
destination nodes in its cell through a relaying source nodein
that cell, so that the fading coefficients of both hops are greater
than or equal to the medianfM . From now on, we condition
the discussion on the assumption that these three results hold.
By Lemma 3, if a property such as a capacity bound holds
w. h. p. conditioned on these results, it will also hold w. h. p.
without the conditioning.

B. Routing Protocol

As shown in Fig. 2, packets are routed according to the
following rules:

(i) If a source nodeXj has data packets (possibly not created at
Xj) that must be delivered to a destination nodeYi lying in the
same cell, andfXjYi

< fM , Xj will transmit the data packets
to another source nodeXk lying in the same cell, for which
fXjXk

≥ fM and fXkYi
≥ fM . NodeXk will then transmit

the packet to the destination nodeYi. By the discussion of
Section IV-A, we can assume that such a node exists.
(ii) If the destination nodeYj of a source nodeXi lies in a
different cell fromXi, the packets ofXi are routed through
intermediate cells. In particular, only communication between
source nodes who lie in neighboring cells and whose mutual
fading coefficient is at least equal to the median is allowed.In
addition, the packets are first transmitted along cells whose x-
coordinate is the same as the x-coordinate of the source, until
they arrive at a cell whose y-coordinate is the same as the y-
coordinate of the destination. Then, the packets are transmitted
along cells whose y-coordinate is the same as the y-coordinate
of the destination, until they arrive at a source node lying
in the same cell with the destination. By the discussion of
Section IV-A, we can assume that such relays always exist.
Once the packets arrive at the cell of the destination, they are
delivered to the destination as specified by rule(i).

To evaluate the performance of this scheme, we must calcu-
late the load that the routing protocol creates for each cell. To
this end, let us defineMj as the number of source nodes that
lie in cells whosex-coordinate is the same as thex-coordinate
of cell cj , andNj as the number of destination nodes that lie
in cells whosey-coordinate is the same as they-coordinate of
cell cj . We develop bounds on the values ofMj andNj that
we will use to bound the traffic that each cell must support.

To bound the value ofMj , we note that there are
√

n
18 logn

cells with the samex-coordinate with cellcj , each with at most
27 logn source nodes. Therefore:

∀j, Mj ≤
√

n

18 logn
(27 logn) =

9√
2

√

n logn. (14)

Next, we boundNj for the cased > 1
2 . Applying Lemma 1

with ǫ = 1
2 where the balls are the destination nodes and the

urns are the rows:

P [∀j 3√
2
nd− 1

2

√

logn ≤ Nj ≤
9√
2
nd− 1

2

√

logn]

≥ 1− 2

√

n

18 logn
exp[−δ(

1

2
)3
√
2nd− 1

2

√

log n] → 1.

y

x

S

S S

D

D

D

r cells

2

1 3

2

3

1

Fig. 2. Examples of routes used in asymmetric networks.

By Lemma 3, we are allowed to assume that:

d >
1

2
⇒ ∀j, Nj ≤

9√
2
nd− 1

2

√

logn. (15)

Finally, we uniformly bound theNj for the cased < 1
2 .

For this we use (10), noting thatNj follows the binomial
distribution with p = ( n

18 logn
)−

1
2 and k = nd. Setting ǫ to

satisfy(1+ ǫ)kp = x, wherex will be specified later, we have
that:

P [Nj > x] < exp[x− kp](
kp

x
)x

<
exp[x]

xx

(

3
√
2nd− 1

2

√

logn
)x

.

Applying the union bound, we have thatP [∃j : Nj > x] ≤
exp[x]
xx

(

3
√
2nd− 1

2

√
log n

)x √
n

18 logn
, which goes to0 if we

choosex > 1
1−2d , for examplex = 2

1−2d . Applying Lemma
3, we can assume that:

d <
1

2
⇒ ∀j, Nj ≤

2

1− 2d
. (16)

Lemma 4: Letrj be the number of routes arriving, and
possibly terminating, at cellcj . Then w. h. p.:

∀ j, rj ≤ rmax(n) ,

{

27√
2
(n logn)

1
2 if 1

2 < d < 1,
5

1−2dn
1−d if 0 < d < 1

2 .

Proof: Let rj1 be the number of routes that crosscj while
on their vertical leg (see Fig. 2). The sources of those routes
share a commonx-coordinate withcj . Also, let rj2 be the
number of routes that crosscj while on their horizontal leg. The
destination nodes of these routes share a commony-coordinate
with cj . Each route crossingcj will belong to one or both of the
two types of routes, so necessarilyrj ≤ rj1 + rj2. Therefore,
it suffices to bound bothrj1 andrj2 uniformly for all cellscj .
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As each source node is the source of a single stream,
rj1 ≤ Mj . To boundrj2, we note that, by a straightforward ap-
plication of Lemma 1, at most2n1−d routes can be terminating
at each destination, w. h. p. Thereforerj2 ≤ 2n1−dNj w. h. p.
Combining these inequalities we have thatrj ≤ Mj+2n1−dNj

w. h. p., for all cellscj . The result follows by using (14), (15),
and (16), also noting that whend < 1

2 ,
√
n logn

n1−d → 0. �

Since there aren routes, each requiring a number of hops
on the order of( n

logn
)

1
2 , and the total number of hops must

be shared by n
18 logn

cells, on the average each cell will be

required to relay a number of routes on the order of(n logn)
1
2 .

Therefore, Lemma 4 implies that whend > 1
2 , no cell will

have to carry much more that its ‘fair share’ of the traffic. If,
however,d < 1

2 , then there are so few destinations, that a few
‘unlucky’ cells (those on the same column with a destination)
will be required to serve aroundn1−d routes, which is much
more than their ‘fair share’ of traffic. In those cells, bottlenecks
will form.

C. Time Division

Until now, we have specified a routing protocol, based on
cells, provided guarantees that communication will be between
nodes that are not in deep fades, and proved bounds on the
amount of traffic that each cell will need to support. However,
we have not specified a medium access protocol. Such a
medium access protocol is needed so that each cell knows when
to transmit, and also there are guarantees about the minimum
amount of traffic that each cell can support. In this section,
we develop such a medium access protocol, based on time
division.

We divide theg(n) = r2 cells into nine regular sub-lattices,
such that any two cells belonging in the same sub-lattice are
separated by at least two cells belonging to different sub-
lattices. This property will be used to bound the amount of
interference experienced by receivers. In Fig. 3 we have shaded
the cells belonging to one of the9 sub-lattices.

We divide time into frames, and each frame into nine slots,
each slot corresponding to a sub-lattice. At any time during
that slot, only one node from each cell of the corresponding
sub-lattice is allowed toreceive(but many nodes in that cell
may receive consecutively in the same slot). Because of the
way we constructed the routing protocol, the transmitter of
that transmission will have to lie in the same cell, or in one
of the four neighboring cells. All transmissions are with the
maximum powerP0.

Lemma 5: The SINRγj at any source or destination node
Zj that is receiving is bounded w. h. p. by

γj > γmin(n) , 5−
α
2

[

3α− 6

3α− 5

] [

qfM

25

]

1

logn
. (17)

Proof: We first bound the interferenceIj . For this, we first
note that by Lemma 2, w. h. p. no fading coefficient is greater
than 3

q
logn. Next, letx0 = 1

r
be the length of the sides of the

cells, and letck be the cell in which the receiving node lies.
Working as in [20], we note that the rest of the cells in the
same sub-lattice are located along the perimeters of concentric

x

y

r 
ce

lls

r cells

(1,r)

(1,1) (r,1)

(r,r)

ck

Fig. 3. One of the9 sub-lattices of cells appears shaded. Only nodes in
that sub-lattice are allowed toreceivein the corresponding slot, and only from
nodes in the same or neighboring cells. The neighbors of cellck are lightly
shaded. The cells belonging to the same sub-lattice as cellck may be placed
in at most⌊ r−1

3
⌋ concentric squares of increasing size, centered atck. The

first two such squares are denoted by dashed lines.

squares, whose center is cellck. Irrespective of the coordinates
of ck, all the cells of its sub-lattice are located along the
perimeters of at most⌊ r−1

3 ⌋ squares. There are at most8i
interferers corresponding to thei-th square, whose distances
from the receiver will be at leastx0(3i−2). Consequently, the
interference at the receiver is upper bounded by

Ij ≤
[

3

q
logn

] ⌊ r−1

3
⌋

∑

i=1

8iKP0

[x0(3i− 2)]α

≤
[

3

q
logn

]

8KP0

xα
0

[1 +
r

∑

i=2

(3i− 2)1−α]

<

[

3

q
logn

]

8KP0

xα
0

[1 +

∫ r

0

(3x+ 1)1−α dx]

≤
[

3

q
logn

]

8KP0

xα
0

[

3α− 5

3α− 6

]

. (18)

We also need a lower bound on the power of the useful
signal. Clearly, since the maximum possible distance that the
useful signal will need to travel, under the routing assumptions,
is

√
5x0, and the fading coefficient between the transmitter

and the receiver is at least equal tofM , w. h. p. we have
that Sj ≥ KP0fM (

√
5x0)

−α. Combining this with (18), and
noting that the thermal noise remains bounded, and therefore
becomes negligible asn → ∞, we arrive at (17). �

We now assume that all transmitters transmit with rate
fR(γmin(n)). By Lemma 5, w. h. p. all transmissions will be
successful.

D. Lower Bound

The nodes of each cell are allowed to receive during
only 1 out of 9 slots, and with rate equal tofR(γmin(n)).
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The number of routes that will be crossing each cellcj is
upper bounded byrmax(n), determined by Lemma 4. Most
of these routes will require one reception, however a few of
these, in particular those whose destination lies in cellcj,
may require three receptions. Therefore, each route, and its
associated source node, is guaranteed a rate of communication
λ(n) = fR(γmin) [3× 9× rmax(n)]

−1. Multiplying by n, and
substituting forrmax(n) and γmin(n) from Lemmas 4 and 5
respectively, we see that our scheme achieves an aggregate
throughput equal to the lower bound (3). Since the capacity
is the supremum of the aggregate throughputs ofall possible
schemes, it will necessarily be greater than the aggregate
throughput of our scheme, and the result follows.

E. Proof of Upper Bound

Let dmin be the minimum of all distances between allmn

source-destination pairs, and letHij(x) be the event{|Xi −
Yj | ≤ x}. Then:

P [dmin ≤ x] = P [∪i,jHij(x)] ≤
n
∑

i=1

m
∑

j=1

P [Hij(x)]

= nmP [H11(x)] ≤ nmπx2. (19)

The first inequality comes from the union bound. The second
equality comes from using symmetry. The last inequality comes
from noting that the nodes are placed in a square with surface
area equal to1, and that nodesX1 and Y1 will be within
distancex of each other ifY1 is placed on the intersection of
the square with a disk of radiusx, centered at nodeX1.

The capacity is less than the aggregate throughputT (n)
that would have been achieved if all destination nodes were
receiving (i) all the time, (ii) from sources at the minimum
distancedmin and with fading coefficient equal to the upper
bound of Lemma 2,(iii) using the whole bandwidth, and(iv)
without experiencing interference from competing transmis-
sions. Therefore, we can boundT (n) as follows:

T (n) ≤ mW log2(1 +
1

Γ

KP0d
−α
min

3
q
logn

η
)

≤ mW log2(1 +
3KP0

ηqΓ
n3α logn) ≤

[

4αW

log 2

]

nd logn.

The second inequality holds w. h. p., and comes by applying
(19) with x = n−3. The last holds for sufficiently large values
of n, and comes using simple properties of the logarithm
function. SinceC(n) ≤ T (n), the bound follows.

V. M ULTICAST NETWORKS

In order to better motivate the proof of the lower bound
of Theorem 2, we first present a heuristic upper bound2: to
minimize the number of transmissions needed for a packet to
reach all its destinations, it is clear that the packet must be
routed along amulticast tree which passes through all the

2We note that a similar bound, based on a different heuristic argument,
appeared in the independent work in [11].

destinations and has as small a length as possible. Let us finda
lower bound on the length ofany tree that connects all destina-
tions. For this, let us divide the whole region inq(n) = nd

18 logn

regular cells, each with side length equal toq(n)−
1
2 . Working

as Section IV, it follows that there will be a destination in each
of them, so a tree connecting all of them will have a length on
the order ofq(n)× q(n)−

1
2 = q(n)

1
2 ≃ n

d
2 , ignoring logarith-

mic factors. Assuming transmissions across distances which
are as small as possible, i.e., on the order ofn− 1

2 , it follows
that each packet will need roughlyn

d+1

2 transmissions to be
delivered to allnd destinations. As the number of simultaneous
transmissions (across distances on the order ofn− 1

2 ) over the
whole network is on the order ofn (using, for example the
time division scheme of the previous section), it follows that
the maximum possible aggregate rate of packet deliveries at
destinations is on the order ofn×nd × [n

d+1

2 ]−1 = n
d+1

2 . Up
to the exponent ofn, this upper bound equals the lower bound
we now derive.

Moving to the constructive proof of the lower bound, ideally,
we would like to construct a scheme that uses a multicast tree
that is as short as possible, for example a Steiner tree on a
properly defined graph. However, we also need a tree that is
amenable to analysis. The tree we now specify represents a
good compromise between these goals.

First, we divide the square region{(x, y) : |x|, |y| ≤ 1
2}

into g(n) = n
18 log n

cells. The properties(i)-(iii) of Section
IV-A continue to hold, where now property(iii) applies to the
communication of two wireless nodes in the same cell. As
shown in Fig. 4, the tree we use consists of three legs:

First leg: The packet is propagated along a straight line to
all cells which have the samey-coordinate as the cell of the
source.
Second leg:Starting from the cell of the source, everyh(n) ,
n

1−d
2

3
√
log n

cells along the first leg, the packet also propagates

along the vertical direction. Therefore, there aren
d
2√
2

vertical

legs per tree, separated by a distance ofn−d
2 .

Third leg: Each destination receives the packet from the cell
that received the packet in the second leg which is closest.

As with the routing protocol of Section IV-B, communication
is between nodes those mutual fading coefficient is no smaller
than the medianfM . Also, if a packet reaches a node in the
cell of the destination other than the destination, it will reach
the destination by two more hops, through a relay node, such
that both mutual fading coefficients are at least equal to the
median.

The aim of the first two legs is to spread the packet uniformly
through the whole region, and the number of vertical sections
strikes the optimal balance between having a small number
of total hops and a thick coverage. Ignoring poly-logarithmic
factors and the fact that packets do not follow exactly straight
lines, we note that the length of the tree is1+ n

d
2 × 1+nd ×

n−d
2 ≃ n

d
2 . Therefore, this tree has the potential to achieve our

heuristic upper bound, at least up to a poly-logarithmic factor.
Next, we develop an upper bound on the traffic supported

by each cell. For this, letrj be the number of routes that cell
cj must support, and letrj1, rj2, andrj3 be the total number
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Fig. 4. An example of a multicast tree created according to the rules of
Section V. The three legs of the tree are denoted by the numbers 1, 2, 3. The
source is denoted by a full circle and the destinations by crosses. Relaying
nodes are not shown.

of routes passing throughcj in their first, second, and third leg
respectively. Clearly,rj ≤ rj1 + rj2 + rj3.

To boundrj1, we apply Lemma 1 as in the case of the bound
(14) and conclude that, for allj, rj1 ≤ 9√

2

√
n logn. To bound

rj2, we note that each of then nodes will contribute torj2
with one route with probabilityh(n)−1, and so by a simple
application of the Chernoff and union bounds, w. h. p., for all
j, rj2 ≤ 3

2h(n)
−1n = 9

2n
1+d
2

√
logn. To boundrj3, we note

that a cellcj will only have to servesomeof the third legs of
routes with destinations that lie in eithercj , or in one of the
h(n) cells on its left, or in one of theh(n) cells on its right.
Therefore,rj3 is at most equal to the number of destinations
in 2h(n) + 1 cells. By Lemma 1, w. h. p. there are at most
27 logn nodes in each of these cells, for a total of at most
[2h(n) + 1]27 logn nodes. The probability that one of these
nodes is chosen when a node chooses his next destination is
[2h(n) + 1]27(logn)n−1. Applying the Chernoff bound (10)
with number of experimentsn1+d and probability of success
[2h(n)+1]27(logn)n−1, it follows thatrj3 ≤ 27n

1+d
2

√
logn,

with probability going to1 exponentially fast. By a simple
application of the union bound, it follows that w. h. p. the
inequality will hold for all j. Combining the bounds forrj1,
rj2, rj3, it follows that w. h. p., and for allj,

rj ≤ rj1 + rj2 + rj3 ≤ 9√
2

√

n logn+
9

2
n

1+d
2

√

logn

+ 27n
1+d
2

√

logn ≤ rmax(n) , 32n
1+d
2 (logn)

1
2 . (20)

Next, we specify that the nodes use the time division sched-
ule of Section IV-C, under which each receiver is guaranteed,
w. h. p., an SINR equal to the boundγmin(n) given by
(17). Also, every transmitter transmits with ratefR(γmin(n)).
The number of routes crossing each cell is at mostrmax(n),

given by (20). Most of these involve just one hop, how-
ever those few whose destination lies in cellcj will require
three transmissions. Therefore, each route is guaranteed arate
of communicationλ(n) = fR(γmin(n)) [3× 9× rmax(n)]

−1.
Multiplying with n, for the number of nodes, andnd, for the
number of destinations of each node, we arrive that the lower
bound (4).

VI. CLUSTER NETWORKS

Regarding the upper bound (5) of Theorem 3, we simply note
that we can prove it by applying the technique used for proving
the upper bound (2): we must simply consider upper bounds
on the aggregate throughput received at thecluster heads, as
opposed to thedestination nodes.

We next present a constructive proof of the lower bound (6).
We divide the square region{(x, y) : |x|, |y| ≤ 1

2} in a regular
lattice of q(n) = nd

18 logn
, r2 cells, as shown in Fig. 1. Let

sj and dj be the numbers of client nodes and cluster heads
respectively in cellcj . By Lemma 1, it follows that w. h. p.

∀j, 9n1−d logn ≤ sj ≤ 27n1−d logn, (21)

∀j, 9 logn ≤ dj ≤ 27 logn. (22)

The probability that a client will not be able to find a cluster
head in its own cell such that their mutual fading coefficient
is greater than the medianfM is, using the independence of
different fading coefficients, at most(12 )

9 logn. Using the union
bound, it follows that the probability thatany of the clients
will not be able to find such a cluster head is smaller than
n(12 )

9 logn, which converges to0 asn → ∞. Therefore, w. h.
p. all clients will have a fading coefficient to one of the cluster
heads that is at least equal tofM .

In addition, we impose on the nodes the time division
scheme of Section IV-C: time is divided in frames, and each
frame in 9 slots. At any time during a slot, only a single
node (either a cluster head or a client node) from each cell
of the corresponding sub-lattice is allowed to transmit, and
with maximum power. Since the receiver necessarily lies in
the same cell, the lower bound on the SINR of Lemma 5
continues to hold. Therefore, if the transmitter transmitswith
ratefR(γmin(n)), whereγmin(n) is given by (17), w. h. p. all
transmissions will be successful.

By (21), there are less than27n1−d logn client nodes in each
slot. We divide each slot in2× [27n1−d logn] time intervals,
each of which is devoted to the transmission of a packet either
from or to a client node. Each stream of data is guaranteed
a rate of communication equal toλ(n) = fR(γmin(n))[2 ×
27n1−d logn]−1. Multiplying by 2n for the total number of
streams, and substituting forγmin(n) from Lemma 5, we arrive
at the lower bound (6).

VII. H YBRID NETWORKS

Because of the similarities between cluster and hybrid net-
works, the wireless nodes can use for their communication
the scheme that was used in Section VI for proving the lower
bound (6). In particular, wireless nodes do not transmit to each
other, but rather transmit directly to an access point nearby.
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The packet is then transmitted through the infinite capacity
network to an access point close to its destination, and is then
transmitted one more time through the use of the wireless
interface to the destination. All the analysis of Section VIgoes
through, if we substitute client nodes with wireless nodes and
cluster heads with access points. The only difference is that,
because each packet must be transmitted twice, the aggregate
throughput is half the throughput achieved in cluster networks.
The bound (7) follows.

To derive (8), we consider the opposite extreme. In par-
ticular, we note that then wireless nodes are free to ignore
the infrastructure of the access points, and establish a commu-
nication scheme using only themselves. This uniform traffic
case was the subject of [3], and later [14]. For reasons of
completeness, in the Appendix we define such a network and
prove that indeed it can achieve an aggregate throughput equal
to the lower bound of (8).

Regarding upper bounds on the capacity, although we pro-
vide no formal proof, it is intuitively clear that, in the case
d > 1

2 , the bound (7) is tight, up to a poly-logarithmic
factor. Indeed, the aggregate throughput of packets using the
infrastructure, even for part of their transport, cannot exceed
the upper bound (5), and the aggregate throughput of packets
not using the infrastructure is much less, on the order ofn

1
2 ,

by [3]. By a similar argument, the bound (8) is tight, up to a
poly-logarithmic factor, whend < 1

2 .

VIII. C ONCLUSIONS

We study wireless networks with four different traffic pat-
tern: asymmetric, multicast, cluster, and hybrid. The common
aspect of these traffic patterns is their non-uniformity: ineach
of them some nodes are required to either send or collect much
more traffic than other nodes This lack of uniformity places
a strain on the network, through the formation of bottlenecks
that have the potential to reduce the capacity. We present lower
and upper bounds on the capacity that hold with probability
going to unity as the number of nodes in the network goes to
infinity. In the interest of brevity, we also present a numberof
conceptually straightforward upper bounds with only intuitive
justification. Our work quantifies the inherent capabilities of
wireless networks to handle various types of traffic pattern
non-uniformities, and provides useful guidelines to protocol
designers, for creating protocols that perform close to the
capacity, without being overly complicated.

Recently, a number of tight capacity bounds have appeared
that are based on stochastic geometry tools, and in particular
tools from percolation theory [21]. An open question is whether
it is possible to sharpen or extend the results presented here
using such tools. Combining traffic non-uniformities with re-
sults from stochastic geometry is a promising but challenging
task and so is the subject of future work.

APPENDIX

Here we present, for reasons of completeness, a proof of a
lower bound of the capacity under uniform traffic similar to that
of [3] mentioned in the Introduction. Our setting is similar, but
not identical to the setting of [3], and notably assumes fading.

The proof is based on intermediate results of theorems that
appeared in the main text. As a result, it is very short.

Let auniform network consist ofn identicalwireless nodes
X1, X2,. . ., Xn, placed randomly, uniformly and indepen-
dently in the unit square{(x, y) : |x|, |y| ≤ 1

2}. There are
n traffic streams and each wireless node is the source of a
single stream, and the destination of a single stream. A node
cannot be the source and destination of thesamestream. Apart
from this restriction, all other combinations of sources and
destinations are equally probable. All streams have the same
data rateλ(n) bps.

We define thecapacity C(n) of the network as the
supremum of all ratesλ(n) that are uniformly achievable by all
nodes, multiplied by their numbern. The following theorem
holds:

Theorem 5: In uniform networks the capacityC(n) is
bounded w. h. p. as follows:

C(n) ≥
[

3α− 6

3α− 5

] [

Wqfm5−
α
2

8600Γ log 2

]

n
1
2

(log n)
3
2

. (23)

Proof: Let us divide the square region into a lattice ofg(n) =
n

18 log n
cells, as in Section IV-A. The results(i), (ii) , (iii) of

that section continue to hold, with the understanding that the
result(iii) applies to the communication of two wireless nodes
using a third wireless node as relay.

Furthermore, let us use the routing protocol of Section IV-B,
where now the destination node is actually another wireless
node. To bound the number of traffic streams that each cell
must support, letMj be the number of nodes with the samex-
coordinate with cellj, andNj be the number of nodes with the
samey-coordinate with cellcj . Working as in Section IV-B,
we readily have that, w. h. p., for allj, Mj ≤ 9√

2

√
n logn,

and by symmetry we also haveNj ≤ 9√
2

√
n logn. Each node

is the source and the destination of a single traffic stream,
and therefore the number of routes supported by each cell is
bounded w. h. p. as follows:

∀j, rj ≤ Mj +Nj ≤ rmax(n) , 9
√
2
√

n logn.

If nodes use the time division scheme of Section IV-C, then
the bound (17) on the SINR of each reception holds. Most of
the routes going through a cellcj will require one reception,
however a few of these, in particular those whose destination
lies in cell cj , may require three receptions.

Putting everything together, we have that each route, and
its associated node, is guaranteed a rate of communication
λ(n) = fR(γmin(n)) [3× 9× rmax(n)]

−1. Multiplying by n,
and substituting forrmax(n) and γmin(n), we see that our
scheme achieves an aggregate throughput equal to the lower
bound (23). Since the capacity is the supremum of the aggre-
gate throughputs ofall possible schemes, it will necessarily be
greater than the aggregate throughput of our scheme, and the
result follows. �
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