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MMSE Optimal Algebraic Space-Time Codes

G. Susinder Rajan and B. Sundar Rajan

Abstract

Design of Space-Time Block Codes (STBCs) for Maximum Likelihood (ML) reception has been

predominantly the main focus of researchers. However, the ML decoding complexity of STBCs becomes

prohibitive large as the number of transmit and receive antennas increase. Hence it is natural to resort to a

suboptimal reception technique like linear Minimum Mean Squared Error (MMSE) receiver. Barbarossa

et al and Liu et al have independently derived necessary and sufficient conditions for a full rate linear

STBC to be MMSE optimal, i.e achieve least Symbol Error Rate (SER). Motivated by this problem,

certain existing high rate STBC constructions from crossedproduct algebras are identified to be MMSE

optimal. Also, it is shown that a certain class of codes from cyclic division algebras which are special

cases of crossed product algebras are MMSE optimal. Hence, these STBCs achieve least SER when

MMSE reception is employed and are fully diverse when ML reception is employed.

Index Terms

Crossed product algebra, division algebra, space-time codes, MMSE receiver

I. INTRODUCTION

Space-Time coding is known to be an efficient coding technique to combat fading and/or

exploit the increased capacity gains offered by Multiple Input Multiple Output (MIMO) systems.

But the ML decoding complexity of STBCs becomes prohibitively large as the number of

transmit and receive antennas increase. The sphere decoderhelps to some extent in reducing

This work was supported through grants to B.S. Rajan; partlyby the DRDO-IISc program on Advanced Research in

Mathematical Engineering, and partly by the Council of Scientific & Industrial Research (CSIR, India) Research Grant

(22(0365)/04/EMR-II). Part of the material in this letter has been published in the Proceedings of Thirteenth National

Conference on Communications (NCC 2007) held at IIT Kanpur,January 27-29, 2007. G. Susinder Rajan and B. Sundar

Rajan are with the Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore-560012, India.

Email:{susinder,bsrajan}@ece.iisc.ernet.in.

June 16, 2018 DRAFT

http://arxiv.org/abs/cs/0702008v2


2

the complexity but is still far away from practicality for large number of transmit antennas. In

[1], [2], [3], orthogonal designs, single and double symbolML decodable STBCs have been

proposed to solve this problem. But unfortunately, the rateof such codes decay with increase

in the number of transmit antennas and they are information lossy for more than one receive

antenna. This led to the study of suboptimal reception strategies such as linear MMSE (Minimum

Mean Square Error) and linear ZF (Zero Forcing) receivers [4]-[9]. It is then natural to address

the question of how to design STBCs which are optimal for a linear MMSE receiver. This

problem was addressed in [4]-[8].

Definition 1: A n × n linear STBC S in k complex variablesx1, . . . , xk given by S =
∑k

i=1 xiAi is called a unitary trace-orthogonal STBC if the set ofn×n matricesAi, i = 1, . . . , k

satisfy the following conditions

AiA
H
i =

n

k
In (1)

Tr(AH
i Aj) = 0, ∀ i 6= j (2)

If k = n2, it will be referred to as full rate transmission.

It was shown in [4]-[8] that if full rate transmission is considered, unitary trace-orthogonality is

a necessary and sufficient condition for a linear STBC to achieve minimum bit error rate when

the variablesx1, . . . , xk take values from a QPSK (Quadrature Phase Shift Keying) constellation.

Further, it was shown that full rate unitary trace orthogonal STBCs achieve MMSE when other

two-dimensional constellations are used. Also, it was shown that at high SNR, the predominant

metric that decides probability of symbol error is optimized only by unitary trace orthogonal

STBCs. Henceforth, we thus refer to full rate unitary trace orthogonal STBCs as MMSE optimal

STBCs. Few constructions of such codes are given in [5]-[11]. However, these constructions were

based on matrix manipulations and lacked an algebraic theory behind them.

The contributions of this paper are as follows.

• Provide sufficient conditions as to when STBCs obtained fromleft regular representation

of crossed product algebras are MMSE optimal. Using these sufficient conditions, a new

class of MMSE optimal STBCs is constructed for arbitrary number of transmit antennas.

Since the code constructions are algebraic, the description of the code becomes elegant and

it also simplifies the study of their properties.
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• By restricting to a certain class of cyclic division algebras [13], STBCs which are simul-

taneously MMSE optimal as well as fully diverse for ML reception are identified. Not all

division algebra based codes [13]-[16] are MMSE optimal. Inparticular, it is shown that

the famous Golden code [14] is not MMSE optimal. Few of the existing code constructions

[5], [7], [11] are also shown to be special cases of certain codes from cyclic algebras [12],

[13].

A. Organization of the paper

In Section II, a description of our main algebraic tool, i.e., crossed product algebras is provided

and an explicit construction of STBCs from crossed product algebras is given. In Section III,

we identify sufficient conditions as to when STBCs from crossed product algebras are MMSE

optimal. Then, we focus on a proper subclass of crossed product algebras called cyclic algebras

and it is shown that a certain class among them are MMSE optimal as well. Few illustrative

examples of code constructions are provided and the decoding procedure for these codes is briefly

discussed. Simulation results comprise Section IV and discussions on future work constitute

Section V.

II. STBCS FROM CROSSEDPRODUCT ALGEBRAS

In this section, we briefly review the construction of STBCs from crossed product algebras as

given in [12]. We refer the readers to [12] for a detailed explanation of crossed product algebras.

Let F be a field. Then, an associativeF -algebraA is called a central simple algebra if the

center ofA is F andA is a simple algebra, i.e.,A does not have nontrivial two-sided ideals.

Simple examples of central simple algebras are division algebras and matrix algebras over fields.

It is well known that the dimension[A : F ] of A over its center is always a perfect square,

say n2 [12], [17]. The square root of[A : F ] is called the degree ofA. Let K be a strictly

maximal subfield ofA, i.e.,K ⊂ A andK is not contained in any other subfield ofA and the

centralizer ofK in A is K itself. It is well known that[K : F ] = n, the degree of the algebra.

In addition, let the extensionK/F be a Galois extension and letG = {σ0 = 1, σ1, σ2, . . . σn−1}
be the Galois group ofK/F . Let φ be a map fromG×G to K\{0} called the cocycle which

satisfies the cocycle condition as shown below:

φ(σ, τγ)φ(τ, γ) = φ(στ, γ)γ(φ(σ, τ)), ∀σ, τ, γ ∈ G.

June 16, 2018 DRAFT
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Then, the algebraA is called a Crossed Product Algebra if

A =
⊕

σi∈G

uσi
K

where, equality and addition are component-wise and whereuσ are symbols such that i)σ(k) =

u−1
σ kuσ and ii) uσuτ = uστφ(σ, τ) for all k ∈ K, σ, τ ∈ G. It is clear thatA can be seen as

a right K-space of dimensionn over K. Also multiplication between two elements ofA, say

a =
∑n−1

i=0 uσi
kσi

anda′ =
∑n−1

j=0 uσj
k

′

σj
is given by

(

n−1
∑

i=0

uσi
kσi

)(

n−1
∑

j=0

uσj
k

′

σj

)

=
n−1
∑

l=0

uσl
k

′′

σl

where,k
′′

σl
=
∑

σiσj=σl
φ(σi, σj)σj(kσi

)k
′

σj
We will denote this crossed product algebraA by

(K,G, φ). The fieldK can be seen as ann-dimensionalF -vector space. LetB = {t0, t1, . . . tn−1}
be a basis ofK over F . Then, the left regular representation [12] ofA in EndK(A)

1 is given

by the mapL : A 7→ EndK(A) which is defined as follows

L (a) = λa where, λa (u) = au, ∀u ∈ A.

The matrix representationMa of the linear transformationλa with respect to the basis{uσi
: σi ∈ G}

is given by (3) where,f (i)
σj ∈ F, ∀ 0 ≤ i, j ≤ n− 1, µi,j = σiσ

−1
j , β(j)

i = φ(σiσ
−1
j , σj) andα is

a scaling factor to normalize the average total power of a codeword ton2.

Ma =
1√
α

















∑n−1
i=0 f

(i)
σ0

ti β
(1)
0

∑n−1
i=0 f

(i)
µ0,1

σ1(ti) β
(2)
0

∑n−1
i=0 f

(i)
µ0,2

σ2(ti) · · · β
(n−1)
0

∑n−1
i=0 f

(i)
µ0,n−1

σn−1(ti)
∑n−1

i=0 f
(i)
σ1

ti β
(1)
1

∑n−1
i=0 f

(i)
µ1,1

σ1(ti) β
(2)
1

∑n−1
i=0 f

(i)
µ1,2

σ2(ti) · · · β
(n−1)
1

∑n−1
i=0 f

(i)
µ1,n−1

σn−1(ti)
...

...
...

. . .
...

∑n−1
i=0 f

(i)
σn−1

ti β
(1)
n−1

∑n−1
i=0 f

(i)
µ0,1

σ1(ti) β
(2)
n−1

∑n−1
i=0 f

(i)
µ0,2

σ2(ti) · · · β
(n−1)
n−1

∑n−1
i=0 f

(i)
µ0,n−1

σn−1(ti)

















(3)

Thus we have obtained a full rate linear STBCMa in variablesf (i)
σj , 0 ≤ i, j ≤ n− 1 from the

crossed product algebraA. Ma can expressed in a linear dispersion formMa =
∑n−1

j=0

∑n−1
i=0 f

(i)
σj Wi,j

where, the matricesWi,j are called the ’weight matrices’ ofMa. Then, we have

Wi,j =
1√
α
PjQi, where Qi =

















ti 0 · · · 0

0 σ1(ti)
. . .

...
...

. . . . . . 0

0 · · · 0 σn−1(ti)

















(4)

1
EndK(A) denotes the set of allK linear maps fromA to A.
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and the matrixPj can be described as follows. Let us index the rows and columnsof Pj with

the elements ofG. Then the(σk, σl)-th entry of Pj is equal toφ(σj , σl) if σjσl = σk and 0

otherwise.

The matricesPj andQi are nothing but the images ofuσj
and ti respectively under the map

L. Note that thePj matrices are known as permutation matrices and are commonlyused for

group representation.

III. MMSE OPTIMAL STBCS

In this Section, we identify sufficient conditions as to whenSTBCs from crossed product

algebras are MMSE optimal. Then, we focus on a proper subclass of crossed product algebras

called cyclic algebras and obtain a class of STBCs meeting the required conditions for MMSE

optimality. Finally, the decoding procedure for the codes in this paper is discussed and its

simplicity as compared to ML decoding is highlighted.

Theorem 1: The STBCMa constructed as shown in (3) using the crossed product algebra

A = (K,G, φ) is MMSE optimal if

|σj(ti)| = |ti| = |φ(σi, σj)| = 1, ∀ 0 ≤ i, j ≤ n− 1 (5)

and

n−1
∑

i=0

σj(ti)(σj′(ti))
∗ = 0, if j 6= j′. (6)

Proof: We need to show that the weight matrices ofMa satisfy (1) and (2). Equation (5)

implies that the matricesPj andQi are scaled unitary matrices. The scaling factorα here equals

n. ThereforeWi,jW
H
i,j =

In
n

which implies (1) is satisfied.

It can be shown [6] that the condition in (2) is equivalent to the condition that the matrixΦ

as shown in (7) satisfiesΦΦH = nI2n.

Φ =
[

vec(W0,0) vec(W1,0) . . . vec(Wn−1,0) vec(W0,n−1) . . . vec(Wn−1,n−1)
]

(7)

The (k, l)th element ofΦΦH is given by
∑n−1

a=0 φ(σiσ
−1
j , σj)σj(ta)

(

φ
(

σi′σ
−1
j′ , σj′

)

σj′(ta)
)∗

,

which simplifies toφ(σiσ
−1
j , σj)φ

(

σi′σ
−1
j′ , σj′

)
∑n−1

a=0 σj(ta)(σj′(ta))
∗ which is equal to zero from

the statement of the theorem. Ifk = l, then we have(ΦΦH)k,k =
∑n−1

a=0 |σj(ta)|2 = n. Thus,

ΦΦH = nI2n which in turn implies (2) is satisfied.

Theorem 1 gives conditions on the basis of a Galois extensionand on the cocycle which result

in MMSE optimal STBCs.

June 16, 2018 DRAFT
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A. STBCs from Cyclic Algebras

In this subsection, using Theorem 1, we identify an existingSTBC construction [12], [13]

based on cyclic algebras to be MMSE optimal.

An F -central simple algebra is called a cyclic algebra, ifA has a strictly maximal subfield

K which is a cyclic extension of the centerF . Clearly, a cyclic algebra is a crossed product

algebra. Letσ be a generator of the Galois groupG. If uσi , i = 0, 1, . . . , n− 1 is a basis for the

algebraA overK, then we have

uσi = ui
σ

and φ(σi, σj) =







1, if i+ j < n

δ, if i+ j ≥ n

where,un
σ = δ. Since the cocycle can now be described by just one elementδ and similarlyG

can be described byσ, we denote the crossed product algebra(K,G, φ) with (K, σ, δ). Thus,

with z = uσ, we haveA = (K, σ, δ) =
⊕n−1

i=0 ziK where,zn = δ and kz = zσ(k), ∀k ∈ K.

Note that if the smallest positive integert such thatδt is the norm of some element inK\ {0}
is n, then the cyclic algebraA = (K, σ, δ) is a cyclic division algebra [13].

Construction 3.1:Let K/F be a cyclic extension of degreen with K = F (tn = t1/n),

t, ωn ∈ F , |t| = 1. Hereωn denotes thenth root of unity andσ : tn 7→ ωntn is the generator

of the Galois group. Letδ be a transcendental element overK. From Theorem 1, the STBC

arising from the cyclic division algebra(K(δ)/F (δ), σ, δ) is MMSE optimal since it satisfies

the following identities

|t| = |δ| = |σi(tn)| = 1, i = 0, 1, . . . , n− 1

and
∑n−1

i=0 (tn)
i(σk(tin))

∗ = 0, if k 6= 0.
(8)

The MMSE optimal STBCMa is given byMa =
∑n−1

j=0

∑n−1
i=0 f

(i)
j Wi,j, f

(i)
j ∈ F where, the

weight matrixWi,j = tinP
jQi. The matricesP andQ are as shown below:

P =





















0 . . . . . . 0 δ

1 0 . . . 0 0

0 1
. . .

...
...

...
. . . . . . 0

...

0 . . . 0 1 0





















, Q =























1 0 . . . 0 0

0 ωn
. . . 0

...
...

. . . ω2
n

. . .
...

... 0
. . . . . . 0

0 . . . . . . 0 ωn−1
n























. (9)

June 16, 2018 DRAFT
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We would like to emphasize here that the codes in [5], [7], [11] can be obtained as a special

case of the above construction by simply choosingδ = 1. If δ = 1 then the algebraA will be

a cyclic algebra but is not guaranteed to be a division algebra. Also, we would like to point

out that there are cyclic division algebra based STBC constructions in the literature [14], [15],

[16] which opt to carefully choose the elementδ to be fromF ∗ (rather than transcendental as in

Construction 3.1) for other benefits such as achieving the diversity-multiplexing gain tradeoff.

Some of those codes are now known as perfect STBCs [14]. It is important to note that not

all cyclic division algebra based codes satisfy (5) and (6).In fact there exist perfect STBCs

which are not MMSE optimal. A concrete example of such a code is the best known2 transmit

antenna STBC for ML reception, i.e., the famous Golden code.This is illustrated in the following

example.

Example 3.1:The codewords of the Golden code are given by1√
5





α(a+ bθ) α(c+ dθ)

iᾱ(c+ dθ̄) ᾱ(a+ bθ̄)





where,a, b, c, d ∈ Z[j], θ = 1+
√
5

2
, θ̄ = 1−

√
5

2
, α = 1 + j(1 − θ), ᾱ = 1 + j(1 − θ̄). The weight

matrices of the Golden code are given as follows:

1√
5





α 0

0 ᾱ



 ,
1√
5





αθ 0

0 ᾱθ̄



 ,
1√
5





0 α

jᾱ 0



 ,
1√
5





0 αθ

jᾱθ̄ 0



 .

Clearly, the weight matrices of the Golden code are not scaled unitary which is a necessary

condition for MMSE optimality (see (1) of Definition 1). Thisis because the crossed product

algebra associated with the Golden code fails to satisfy (5). Hence the Golden code is not MMSE

optimal.

Example 3.2:This example illustrates our construction procedure forn = 2. Let F = Q(j, t),

wheret is transcendental overQ(j). ThenK = F (t2 =
√
t) is a cyclic extension ofF of degree

2. The generator of the Galois group is given byσ : t2 7→ −t2. Let δ be any transcendental

element overK. Then(K(δ)/F (δ), σ, δ) is a cyclic division algebra. For example, we can choose

t = ej andδ = ej
√
5. Then, we haveMa =

1√
2





f
(0)
0 + f

(1)
0 t2 δ(f

(0)
1 − f

(1)
1 t2)

f
(0)
1 + f

(1)
1 t2 f

(0)
0 − f

(1)
0 t2



.

Example 3.3:This is an example of a MMSE optimal code which is not obtainable from a

cyclic division algebra. Letn = 4 andF = Q(j, x, y) wherex and y are two transcendental

numbers independent overQ(j). We choose these transcendental numbers to lie on the unit

circle. ThenK = F (
√
x,

√
y) is a Galois extension ofF with the Galois groupG = 〈σx, σy〉,

June 16, 2018 DRAFT
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whereσx :
√
x 7→ −√

x andσy :
√
y 7→ −√

y. The cocyleφ is defined as follows:

φ(σx, σx) = φ(σxσy, σx) = δ1, φ(σy, σy) = φ(σxσy, σy) = δ2,

φ(σx, σy) = 1 and φ(σxσy, σxσy) = δ1δ2.

Then, the algebra(K(δ1, δ2), G, φ) = K(δ1, δ2)⊕uσx
K(δ2, δ2)⊕ uσy

K(δ1, δ2)⊕uσx
uσy

K(δ1, δ2)

is a crossed product algebra where,δ1, δ2 are independent transcendental numbers overK. Also,

we choose to pickδ1 and δ2 to lie on the unit circle. The matrix representation of this crossed

product algebra will give rise to an MMSE optimal STBC and hascodewords of the form

1√
α















k0,0 δ2σy(k0,1) δ1σx(k1,0) δ1δ2σxσy(k1,1)

k0,1 σy(k0,0) δ1σx(k1,1) δ1σxσy(k1,0)

k1,0 δ2σy(k1,1) σx(k0,0) δ2σxσy(k0,1)

k1,1 σy(k1,0) σx(k0,1) σxσy(k0,0)















where eachki,j, 0 ≤ i, j ≤ 1 is given by

ki,j = f
(0)
i,j + f

(1)
i,j

√
x+ f

(2)
i,j

√
y + f

(3)
i,j

√
xy andf (l)

i,j ∈ Q(j) ⊂ F .

B. Decoding procedure

In this subsection, the decoding procedure for the codes in this paper is briefly explained and

its receiver simplicity compared to ML reception is highlighted.

Let the encoded matrixX =
∑n−1

j=0

∑n−1
i=0 f

(i)
j Wi,j. Let the number of receive antennas bem.

We assume thatm ≥ n in the sequel otherwise there will be an error floor [10] when linear

MMSE reception is employed. The received matrixY can be expressed asY = HX+N , where

H is the channel matrix of sizem × n andN is them × n matrix representing the additive

noise at the receiver whose entries are i.i.d.CN (0, 1). Then, the linear MMSE receiver can be

implemented in its simplest form as asymbol-by-symbol decoder[10], as described below:

f̂
(i)
j = tr(WH

i,jJY ) (10)

with J = (HHH + 1
ρ
In)

−1HH where,ρ is the Signal to Noise ratio (SNR) or equivalently in

this case it is the average energy of the complex constellation used. Computation of̂f (i)
j is then

followed by hard decision, i.e., it is decoded to the nearestpoint (in the sense of Euclidean

distance) in the constellation. Note that the decoding complexity is linear in the size of the

signal set which is far less compared to the complexity of sphere decoding.

June 16, 2018 DRAFT
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IV. SIMULATION RESULTS

In this section, we compare the error performance of the proposed codes with that of the

previously known MMSE optimal STBC in [5] under linear MMSE reception. In [10], it has

been shown that a diversity order ofm− n + 1 is achieved by MMSE optimal STBCs when a

linear MMSE or linear Zero forcing receiver is employed. On the other hand, it is well known that

under ML decoding a diversity order ofmn is possible if the STBC is fully diverse. The codes

constructed in this letter have this property as well. Fig. 1shows the bit error rate performance

of the MMSE optimal STBC given in Example 3.2 with QPSK constellation and the previously

known MMSE optimal STBC in [5] under linear MMSE decoding with the number of receive

antennas being equal to4. For linear MMSE decoding, the symbol-by-symbol decoder in(10)

was utilized. Observe from Fig. 1 that the performance of theproposed code is almost same as

that of the previously known MMSE optimal STBC in [5]. It is important to note that the error

probability under linear MMSE reception as shown in Fig. 1 isthe optimal [4]-[8] among all

STBCs with full rate transmission.

V. D ISCUSSION

The algebraic framework of crossed product algebras is quite general in nature. For instance,

MMSE optimal STBCs can also be constructed from tensor products of division algebras and

Brauer division algebras. We refer the readers to [12] for more details on these constructions.

It will also be interesting to study the design of optimal STBCs for linear ZF receivers. Some

initial work in this direction has been reported in [9].
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Fig. 1. Error performance comparison of the proposed MMSE optimal STBC with that of [5] in a2× 4 MIMO system with

a linear MMSE receiver
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