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Abstract

Design of Space-Time Block Codes (STBCs) for Maximum Likkebd (ML) reception has been
predominantly the main focus of researchers. However, thaldtoding complexity of STBCs becomes
prohibitive large as the number of transmit and receiverards increase. Hence it is natural to resort to a
suboptimal reception technique like linear Minimum Meamu&ed Error (MMSE) receiver. Barbarossa
et al and Liu et al have independently derived necessary and sufficient dondifor a full rate linear
STBC to be MMSE optimal, i.e achieve least Symbol Error RSEK). Motivated by this problem,
certain existing high rate STBC constructions from crogz@diuct algebras are identified to be MMSE
optimal. Also, it is shown that a certain class of codes fromlic division algebras which are special
cases of crossed product algebras are MMSE optimal. Hehese tSTBCs achieve least SER when

MMSE reception is employed and are fully diverse when ML pioen is employed.

Index Terms

Crossed product algebra, division algebra, space-times;ddMSE receiver

. INTRODUCTION

Space-Time coding is known to be an efficient coding techmitpu combat fading and/or
exploit the increased capacity gains offered by MultipleunMultiple Output (MIMO) systems.
But the ML decoding complexity of STBCs becomes prohibliiviarge as the number of

transmit and receive antennas increase. The sphere delgelpsr to some extent in reducing
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the complexity but is still far away from practicality forrge number of transmit antennas. In
[1], [2], [3], orthogonal designs, single and double symbtil decodable STBCs have been
proposed to solve this problem. But unfortunately, the aitsuch codes decay with increase
in the number of transmit antennas and they are informatgsyl for more than one receive
antenna. This led to the study of suboptimal receptionegjras such as linear MMSE (Minimum
Mean Square Error) and linear ZF (Zero Forcing) receivelg9y It is then natural to address
the question of how to design STBCs which are optimal for @amMMMSE receiver. This
problem was addressed in [4]-[8].

Definition 1: A n x n linear STBCS in k£ complex variablesry,...,z; given by S =
Zle x;A; is called a unitary trace-orthogonal STBC if the sehof n matricesA;,i =1,...,k

satisfy the following conditions

AAH = %In (1)
Tr(AjA;) = O,Vi#j 2)

If k= n?, it will be referred to as full rate transmission.

It was shown in [4]-[8] that if full rate transmission is cadered, unitary trace-orthogonality is
a necessary and sufficient condition for a linear STBC toea@hminimum bit error rate when
the variables:, . . ., z; take values from a QPSK (Quadrature Phase Shift Keying)tetatson.
Further, it was shown that full rate unitary trace orthod@BBCs achieve MMSE when other
two-dimensional constellations are used. Also, it was shtivat at high SNR, the predominant
metric that decides probability of symbol error is optindzenly by unitary trace orthogonal
STBCs. Henceforth, we thus refer to full rate unitary tracdka@gonal STBCs as MMSE optimal
STBCs. Few constructions of such codes are given in [5]-[Hbjvever, these constructions were
based on matrix manipulations and lacked an algebraic yheehind them.

The contributions of this paper are as follows.

« Provide sufficient conditions as to when STBCs obtained ftefnregular representation
of crossed product algebras are MMSE optimal. Using theffecisat conditions, a new
class of MMSE optimal STBCs is constructed for arbitrary memof transmit antennas.
Since the code constructions are algebraic, the desaripfithe code becomes elegant and

it also simplifies the study of their properties.
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« By restricting to a certain class of cyclic division algebfd3], STBCs which are simul-
taneously MMSE optimal as well as fully diverse for ML redeptare identified. Not all
division algebra based codes [13]-[16] are MMSE optimalpéaticular, it is shown that
the famous Golden code [14] is not MMSE optimal. Few of thestxg code constructions
[5], [7], [11] are also shown to be special cases of certamlesdrom cyclic algebras [12],
[13].

A. Organization of the paper

In SectioriI], a description of our main algebraic tool,,icrossed product algebras is provided
and an explicit construction of STBCs from crossed prodigelaas is given. In Sectidn 1ll,
we identify sufficient conditions as to when STBCs from cembgroduct algebras are MMSE
optimal. Then, we focus on a proper subclass of crossed pradigebras called cyclic algebras
and it is shown that a certain class among them are MMSE optimavell. Few illustrative
examples of code constructions are provided and the degpdatedure for these codes is briefly
discussed. Simulation results comprise Secfioh IV andudisons on future work constitute
Section V.

[I. STBCS FROM CROSSEDPRODUCT ALGEBRAS

In this section, we briefly review the construction of STB@f crossed product algebras as
given in [12]. We refer the readers to [12] for a detailed axpition of crossed product algebras.

Let F' be a field. Then, an associativé-algebraA is called a central simple algebra if the
center ofA is F and A is a simple algebra, i.e4 does not have nontrivial two-sided ideals.
Simple examples of central simple algebras are divisioatatgs and matrix algebras over fields.
It is well known that the dimensiopA : F] of A over its center is always a perfect square,
sayn? [12], [17]. The square root ofA : F] is called the degree ofl. Let K be a strictly
maximal subfield of4, i.e., K C A and K is not contained in any other subfield dfand the
centralizer of K in A is K itself. It is well known that{/ : F] = n, the degree of the algebra.
In addition, let the extensiok’/F' be a Galois extension and leét= {0y = 1,01,09,...0,.1}
be the Galois group oi’/F. Let ¢ be a map from x G to K\{0} called the cocycle which
satisfies the cocycle condition as shown below:

¢(07 77)¢(7_7 7) = ¢(U7—7 7)7(¢(07 T))v VO’, T,Y € G.
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Then, the algebral is called a Crossed Product Algebra if
A= @ Ug, K
0, €G
where, equality and addition are component-wise and whgi@e symbols such that &)(k) =
ustku, and i) u,u, = u.,¢(o,7) for all k € K,o,7 € G. It is clear thatA can be seen as
a right K-space of dimension over K. Also multiplication between two elements df, say

a= 31" gk, anda’ = Y7 OluUJ k,. is given by

where,k;'l = Zaiaj:m ¢(ai,aj)aj(k:gi)k:aj We will denote this crossed product algebtaby
(K, G, ¢). The field K can be seen as andimensionalF’-vector space. LeB = {to,t1,...t,_1}
be a basis ofK’ over F. Then, the left regular representation [12] 4fin EndK(A)El is given
by the mapL : A — Endg(A) which is defined as follows

L (a) = A\, where, A\, (u) = au,Vu € A.

The matrix representatiai/,, of the linear transformatioh, with respect to the basig.,, : o, € G}
is given by [(3) where,fc(,? ceFVO<ij<n—1, ;= aiaj_l, ﬁ}j) = gb(al-aj‘l,aj) and« is
a scaling factor to normalize the average total power of &wodd ton?.

S St B S e (t) BE S faoa(t) e BTV S A o (k)
oo L | TS AT et BT faeat) o AT SIS Ao ()
" Ve : : : . :
Z?:_ol éi)f1ti ﬁy(ll—)l ?:_01 l(ti))lo'l(t) 57(12 12 Ho 202(t) (n 1) Z? 01 #on 10n— l(t)
3)

Thus we have obtained a full rate linear STBC, in variablesfé?, 0<i,j <n-—1from the

crossed product algebra M, can expressed in a linear dispersion falfp = Z Z:L 01 faj irj

where, the matricedl; ; are called the 'weight matrices’ af/,. Then, we have

(40 . 0]
W, - 1 L pi, where Q; = 0 o1(t;) - : @)
ToVa Do 0
0 0 o 1(ty)

'Endk (A) denotes the set of al linear maps fromA to A.
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and the matrixP; can be described as follows. Let us index the rows and colwhig with
the elements of5. Then the(oy,0;)-th entry of P; is equal to¢(o;,0;) if o0, = o, and 0
otherwise.

The matricesP’; and Q; are nothing but the images af,; andt; respectively under the map
L. Note that theP; matrices are known as permutation matrices and are commusagt for

group representation.

. MMSE OPTIMAL STBCs

In this Section, we identify sufficient conditions as to wh8mMBCs from crossed product
algebras are MMSE optimal. Then, we focus on a proper subdhsrossed product algebras
called cyclic algebras and obtain a class of STBCs meetiagdhuired conditions for MMSE
optimality. Finally, the decoding procedure for the codesthis paper is discussed and its
simplicity as compared to ML decoding is highlighted.

Theorem 1. The STBCM, constructed as shown inl(3) using the crossed product agebr
A= (K,G,¢)is MMSE optimal if

n—1
and Y o;(t:) (o (t)) = 0, if j# 4" (6)
=0
Proof: We need to show that the weight matrices)Mf satisfy [1) and[(2). Equationl(5)
implies that the matrice®; and; are scaled unitary matrices. The scaling factdrere equals
n. ThereforeI/VZ-ijiﬁ = % which implies [(1) is satisfied.
It can be shown [6] that the condition ihl (2) is equivalenthie tondition that the matri®

as shown in[{7) satisfie®®? = nI2.
¢ = [ vec(Woo) wvee(Wig) ... vec(Wy_19) vec(Wppn—1) ... vec(Wp—1n-1) } (7)

The (k,1)th element of ®®! is given by 30" (007", 0;)0;(ta) (¢ (0voy" 050) oyr(ta)),
which simplifies top(o;0; ,o—j)gb(o—i/o—j,l,aj/)zz 2 0;(ta)(0j:(t,))* Which is equal to zero from
the statement of the theorem. Af= I, then we havg®®), , = S"""! |o;(t,)[> = n. Thus,
dPH = n? which in turn implies[(R) is satisfied. [ ]
Theorenill gives conditions on the basis of a Galois exteraghon the cocycle which result
in MMSE optimal STBCs.
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A. STBCs from Cyclic Algebras

In this subsection, using Theordm 1, we identify an exis@IBC construction [12], [13]
based on cyclic algebras to be MMSE optimal.

An F-central simple algebra is called a cyclic algebradihas a strictly maximal subfield
K which is a cyclic extension of the centér. Clearly, a cyclic algebra is a crossed product
algebra. Letr be a generator of the Galois groap If u,:,7 =0,1,...,n—1is a basis for the
algebraA over K, then we have

%

Uyi = Uy

and ¢(o", %) — 1, ifi+j<n
0, ifi+j>n

where,u” = . Since the cocycle can now be described by just one elemantd similarlyG
can be described by, we denote the crossed product algebfa G, ¢) with (K, o,4). Thus,
with z = u,, we haved = (K,0,6) = @], 'K where,2" = § andkz = zo(k),Vk € K.
Note that if the smallest positive integesuch that)’ is the norm of some element iK'\ {0}
is n, then the cyclic algebral = (K, 0,¢) is a cyclic division algebra [13].

Construction 3.1:Let K/F be a cyclic extension of degree with K = F(t, = t'/),
t,w, € F,

t| = 1. Herew, denotes the:th root of unity ands : t,, — w,t, is the generator
of the Galois group. Leb be a transcendental element ov€r From Theoreni |1, the STBC
arising from the cyclic division algebréi (6)/F(0),0,6) is MMSE optimal since it satisfies

the following identities
t| = 10| = |o'(ta)| =1, i=0,1,...,n— 1
and 770 () (R (8,))" =0, if k # 0.
The MMSE optimal STBCM, is given by M, = Y2173 S0 fPWi;, f” € F where, the

weight matrixW; ; = ¢, P/Q". The matrices” and @ are as shown below:

(8)

0O ... ... 09 1 0 ... 0 0
1 0 ... 00 0 w, - 0
P=lo 1 " i l.Q=|: w2 ] ©)
0 0 0
0 0 10 0 . 0 wr!
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We would like to emphasize here that the codes in [5], [7]] [ddn be obtained as a special
case of the above construction by simply choosing 1. If § = 1 then the algebrad will be
a cyclic algebra but is not guaranteed to be a division algeAlso, we would like to point
out that there are cyclic division algebra based STBC caostms in the literature [14], [15],
[16] which opt to carefully choose the elemeénto be from F* (rather than transcendental as in
Constructior_3]1) for other benefits such as achieving thersiity-multiplexing gain tradeoff.
Some of those codes are now known as perfect STBCs [14]. hpoitant to note that not
all cyclic division algebra based codes satidfy (5) dnd [6)fact there exist perfect STBCs
which are not MMSE optimal. A concrete example of such a cedbeé best knowr2 transmit
antenna STBC for ML reception, i.e., the famous Golden cdtés is illustrated in the following
example.
ala+b0) alc+db)
ia(c+df) a(a+ b)
where,a,b,c,d € Z[j], 0 = 25,0 = 125, o =1+ j(1 —6), a = 1 + j(1 — §). The weight

matrices of the Golden code are given as follows:

Example 3.1:The codewords of the Golden code are givenjgy

1 a 0 1 a0 1 0 « 1 0 af

Viloal V5|l o ad | V5| ja o| V5| jad o
Clearly, the weight matrices of the Golden code are not dcatdtary which is a necessary
condition for MMSE optimality (see (1) of Definition 1). This because the crossed product
algebra associated with the Golden code fails to safisfyH{Bhce the Golden code is not MMSE
optimal.

Example 3.2:This example illustrates our construction procedurerfor 2. Let F' = Q(j, t),

wheret is transcendental ovép(j). ThenK = F(t, = +/t) is a cyclic extension of” of degree
2. The generator of the Galois group is given dy: t, — —t,. Let 6 be any transcendental
element overk’. Then(K (0)/F(9), o,6) is a cyclic division algebra. For example, we can choose
t =¢/ andd = ¢/V5. Then, we havell, = - 1"+ 1t 8(A” = i)

V2 (0) (1) 0) _ (@)
fi7 + it 0 fo 't
Example 3.3:This is an example of a MMSE optimal code which is not obtai@diom a

cyclic division algebra. Let» = 4 and F' = Q(j, z,y) wherez and y are two transcendental
numbers independent ovéd(j). We choose these transcendental numbers to lie on the unit
circle. ThenK = F(\/x,,/y) is a Galois extension of" with the Galois group’ = (o,,0,),
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whereo, : /v — —/z ando, : \/y — —,/y. The cocyles is defined as follows:

P(04,0.) = ¢(0.0y,0,) = 01, P(oy,0,) = p(0,04,0,) = da,
(04, 04) =1 and ¢(0,0y,0,0,) = §102.
Then, the algebréki (6,,d2), G, @) = K(61,02) Dug, K (62, 02) D s, K (01, 02) DU, e, K (01, 62)
is a crossed product algebra whefg,0, are independent transcendental numbers éveAlso,
we choose to pick;, andd, to lie on the unit circle. The matrix representation of thiessed

product algebra will give rise to an MMSE optimal STBC and laslewords of the form
ko,o 52%(]{50,1) 5105(;(]{51,0) 5152%%(]{51,1

)
kO,l Uy(k0,0> 51%(/{?1,1) 51%0;,(]{?1,0)
k1,0 52%(]{51,1) Ux(kO,O) 52%%(]{?0,1)

)

L k1,1 Uy(kl,O) U:c(kO,l) U:cUy(k‘o,o

N .
kg =10+ Oy + 12 g+ 18 g and £ € Q) C F.

ﬁ where each; ;,0 < i,j5 < 1 is given by

B. Decoding procedure

In this subsection, the decoding procedure for the codesisnpaper is briefly explained and
its receiver simplicity compared to ML reception is higliigd.

Let the encoded matrif = 327" S=r" " £171; ;. Let the number of receive antennasihe
We assume that: > n in the sequel otherwise there will be an error floor [10] whigredr
MMSE reception is employed. The received matrixcan be expressed &= H X + N, where
H is the channel matrix of sizev x n and N is them x n matrix representing the additive
noise at the receiver whose entries are i€4/(0,1). Then, the linear MMSE receiver can be

implemented in its simplest form assgmbol-by-symbol decod§tO], as described below:
£ =tr(WhY) (10)

with J = (HPH + %In)‘lHH where, p is the Signal to Noise ratio (SNR) or equivalently in
this case it is the average energy of the complex constailatsed. Computation qf](’) is then
followed by hard decision, i.e., it is decoded to the neapesit (in the sense of Euclidean
distance) in the constellation. Note that the decoding dexily is linear in the size of the

signal set which is far less compared to the complexity oesplidecoding.
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V. SIMULATION RESULTS

In this section, we compare the error performance of the ggegp codes with that of the
previously known MMSE optimal STBC in [5] under linear MMSEception. In [10], it has
been shown that a diversity order of — n + 1 is achieved by MMSE optimal STBCs when a
linear MMSE or linear Zero forcing receiver is employed. @a bther hand, it is well known that
under ML decoding a diversity order afn is possible if the STBC is fully diverse. The codes
constructed in this letter have this property as well. Eighbws the bit error rate performance
of the MMSE optimal STBC given in Example 8.2 with QPSK cofiat®n and the previously
known MMSE optimal STBC in [5] under linear MMSE decoding fwihe number of receive
antennas being equal tb For linear MMSE decoding, the symbol-by-symbol decode(iB)
was utilized. Observe from Figl 1 that the performance ofggtaposed code is almost same as
that of the previously known MMSE optimal STBC in [5]. It is partant to note that the error
probability under linear MMSE reception as shown in Kif. Ihe optimal [4]-[8] among all

STBCs with full rate transmission.

V. DISCUSSION

The algebraic framework of crossed product algebras i @eéneral in nature. For instance,
MMSE optimal STBCs can also be constructed from tensor prisdof division algebras and
Brauer division algebras. We refer the readers to [12] foraraetails on these constructions.
It will also be interesting to study the design of optimal SJBfor linear ZF receivers. Some

initial work in this direction has been reported in [9].
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Fig. 1. Error performance comparison of the proposed MMStirag STBC with that of [5] in a2 x 4 MIMO system with

a linear MMSE receiver
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