
3488 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 9, SEPTEMBER 2008

Optimal Sliding Correlator Channel Sounder Design
Ryan J. Pirkl, Student Member, IEEE, and Gregory D. Durgin, Senior Member, IEEE

Abstract—The sliding correlator technique remains one of the
most versatile and effective methods for sounding the radio
propagation channel in next-generation wireless systems. Despite
their utility, there has never been a comprehensive set of metrics
and rules for the design of a sliding correlator channel sounder.
This paper presents quantitative guidelines for balancing the
many system parameters to achieve optimal levels of temporal
resolution, dynamic range, processing gain, and Doppler reso-
lution. The design procedure presented at the end of the paper
will allow researchers to probe the new radioscapes that result as
wireless systems are pushed to higher carrier frequencies, wider
bandwidths, multiple antennas, and ubiquitous operation.

Index Terms—Swept time-delay, sliding correlator, spread
spectrum, channel sounder design, wireless channel measure-
ments.

I. INTRODUCTION

THE UTILITY and simplicity of the sliding correlator
channel sounder has made it the indespensable tape

measure in the tool belt of radio propagation engineers [1]–[4].
First used by Cox in [5], the sliding correlator technique pro-
vides a cost-effective method for sounding the ever-growing
bandwidths of next-generation wireless channels. Unlike the
network analyzer, which can be a prohibitively expensive
single-box solution, the sliding correlator channel sounder
may be constructed from off-the-shelf components at relatively
little cost while affording the advantage of a physically sepa-
rable transmitter and receiver. Tether-free operation allows for
measurements of indoor, outdoor, and mobile radio channels
but can complicate the extraction of absolute delay and phase
information. However, whereas both network analyzers and
impulse-based channel sounders are susceptible to interferents,
the sliding correlator approach is inherently robust through the
use of direct sequence spread spectrum (DSSS) signals [6].
DSSS also provides improved measurement dynamic range
and low peak-power levels, which allow the channel sounder to
perform non-invasive measurements of interference-sensitive
channels [7]. Additionally, the sliding correlator provides the
distinct advantage of bandwidth compression through temporal
dilation, making it an ideal approach for measuring the huge
bandwidths of the ultra-wideband channel [8], [9]. It should
be noted that the chirp-based channel sounder offers similar
wideband channel characterization with bandwidth compres-
sion [10]. However, the architecture remains considerably less
popular, likely due to its greater system complexity as well
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as the difficulties inherent in implementing floating point gate
arrays and direct frequency synthesizers [11].

Despite its pervasiveness, the details of designing an optimal
sliding correlator channel sounder remain unclear. System de-
sign commonly employs a combination of rule-of-thumb and
guess-and-test methods that rely on erroneous approximations
of the realized system’s dynamic range and necessitate tedious
tweaking to attain expected performance levels [12]. Optimiz-
ing the design process, however, requires accurate quantitative
descriptions of the channel sounder’s capabilities. The first
rigorous mathematical treatment of the sliding correlator was
given by Benvenuto [13]. Talvitie et al. expanded upon this
analysis by qualitatively describing the relationships between
the sliding correlator’s design parameters and its dynamic
range [14]. Martin used numerical simulations to generate
plots of dynamic range versus slide factor for various pseudo-
random noise (PN) lengths and included a systematic design
methodology based on these plots [15].

The work contained herein unifies and expands upon these
prior contributions, offering a complete picture of the sliding
correlator channel sounder’s operation based upon a detailed
analysis of the system’s dynamic range. Through this analysis,
we develop: 1) an optimal slide factor, 2) a realistic expres-
sion for the system’s dynamic range, 3) a systematic design
methodology, and 4) a spectral interpretation of the system’s
time-varying channel measurement. Discussion begins with
a review of pseudo-random noise and its role in wireless
channel sounding. We then introduce the sliding correlator
technique and provide a rigorous analysis of its operation.
Based upon this analysis, we develop a set of design equations
for the sliding correlator channel sounder and present an
optimal design methodology. Finally, we address practical
considerations for design and measurement including how the
system is affected by time-varying channels.

II. PSEUDO-RANDOM NOISE FOR CHANNEL SOUNDING

The time-domain channel sounder requires a predetermined
signal such that the exact transmitted signal is known at the
receiver a priori. The ideal signal statistics would resemble
those of Gaussian white noise, which may be approximated
by pseudo-random noise. The noise-like properties of pseudo-
random noise stem from its corresponding pseudo-random
binary sequence.

A. Pseudo-Random Binary Sequences

Consider a pseudo-random binary sequence ai where ai ∈
{0, 1}. ai is a finite repeating sequence with a period L such
that ai+L = ai. One method of generating such a sequence
is through a recursive algorithm whereby the nth term in
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the sequence is determined from a linear combination of the
previous N terms.

an =
N∑

i=1

cian−i (1)

In (1), ci ∈ {0, 1} are the feedback coefficients that
determine which of the previous N terms contribute to
the value of the nth term. Note that to determine the
zeroth term in the sequence, one requires knowledge of
{a−N , a1−N , · · · , a−2, a−1}. It is assumed that cN = 1 so
that an−N is required to calculate an. Further, it should be
noted that the operators described in (1) involve Boolean
arithmetic (i.e, the summation uses modulo 2 addition).

Using the feedback coefficients ci, one may describe ai by
a characteristic polynomial f(x) according to

f(x) = 1 −
N∑

i=1

cix
i (2)

Let us define a polynomial G(x) as the reciprocal of f(x).

G(x) =
1

f(x)
(3)

It can be shown that the coefficients of the terms of G(x) are
themselves the terms from the pseudo-random binary sequence
ai. Therefore, G(x) is commonly referred to as the generating
function of ai [16].

G(x) =
∞∑

i=0

aix
i (4)

One important caveat of Equation (4) is that it assumes the
sequence as derived from Equation (1) was seeded such that
{a−N , a1−N , · · · , a−2} = 0 and {a−1} = 1. For any other
seeding such that the N initial terms are not all simultaneously
zero, the resulting pseudo-random binary sequence will be a
phase shifted version of ai in (4).

B. Maximal Sequences

An important class of pseudo-random binary sequences are
maximal sequences, or m-sequences for short. M-sequences
have the longest possible period L for a sequence produced
from the recursive algorithm in (1) that uses the previous N
terms [6]. The period of an m-sequence is given by

L = 2N − 1 (5)

Therefore, the most “efficient” characteristic polynomials
will produce m-sequences, as they lead to the longest non-
repeating sequences from the fewest previous terms. All
discussions of pseudo-random binary sequences henceforth
will imply m-sequences.

C. Linear Feedback Shift Register

The linear feedback shift register (LFSR) is a hardware re-
alization of the recursive algorithm described by Equation (1).
An N -bit shift register holds the previous N terms of the m-
sequence. To determine an, the terms in the ith registers are
weighted according to their respective feedback coefficients ci

and summed modulus 2 using XOR gates. At each clock cycle,

(a)

(b)

Fig. 1. Examples of the two linear feedback shift register architectures: (a)
simple shift register generator (SSRG) and (b) modular shift register generator
(MSRG). The ⊕ denotes modulo 2 addition.

the summation is fed into the input of the shift register and the
(n − N)th term is shifted out. This implementation is know
as the simple shift register generator (SSRG) and is depicted
in Figure 1(a) [6]. Only registers corresponding to ci = 1 are
used as part of the feedback configuration. Thereby, the set
of feedback registers, Fs, for the SSRG architecture may be
determined according to

Fs = {i} for all i > 0 such that ci = 1 (6)

The characteristic polynomial f(x) described in (2) may
be recognized as an exact description of the feedback con-
figuration of the SSRG. For example, if the characteristic
polynomial was f(x) = 1 − x2 − x5, then when i = {2, 5},
ci = 1. Therefore, the set of feedback registers is Fs = {2, 5}.

Figure 1(b) shows an alternative implementation of the
linear feedback shift register called the modular shift reg-
ister generator (MSRG) [6]. Whereas the SSRG feedback
configuration involves multiple register outputs and a single
shift register input, the MSRG feedback configuration involves
a single register output and multiple register inputs. In the
MSRG architecture, the output of the N th register is summed
modulus 2 with the output of the (j − 1)th register and fed
into the jth register. The output of the N th register also feeds
the input of the shift register. Note that for the MSRG, the
characteristic polynomial does not directly describe the feed-
back configuration. The set of feedback registers in the MSRG
architecture, denoted Fm, may be determined according to

Fm = {j, N} (7)

where

j = N − i for all i < N such that ci = 1 (8)

For example, if the characteristic polynomial was f(x) = 1−
x2 − x5, then when i = {2, 5}, ci = 1. Noting that N = 5,
we have j = {3} and Fm = {3, 5}.

The SSRG architecture is generally simpler to implement
but can suffer from long propagation delays through the cas-
cade of XOR gates. The MSRG architecture provides a very
flexible template should one wish to create a reconfigurable
pseudo-random binary sequence generator. Also, the parallel
arrangement of the XOR gates provides shorter propagation
delays along the feedback loop, thereby allowing faster clock
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rates. However, the tradeoff is the added complexity of the
design.

D. Analog Representation

Consider an N -bit linear feedback shift register configured
as a simple shift register generator. The feedback registers
Fs are selected such that the resulting pseudo-random binary
sequence ai is an m-sequence of length L = 2N − 1. The
shift register is clocked at a frequency of fc such that, after
every 1/fc seconds, the next term of the m-sequence is
generated. Each term of the m-sequence will be represented
by a rectangular pulse with duration Tc = 1/fc. Let us
assume a biphase output with amplitude ±V0 whereby ai = 0
corresponds to −V0 and ai = 1 corresponds to +V0. This
arrangement produces an analog waveform x(t) that is the
pseudo-random noise (PN) derived from the m-sequence ai.
We may represent x(t) as

x(t) =
∑
i∈Z

V0(2ai − 1)Π(t/Tc − i − 1/2) (9)

where Z is the set of all real integers, Π(ξ) is the rectangular
function given by

Π(ξ) = u(1/2 − |ξ|) (10)

and u(ξ) is the Heaviside step function. Thus, the PN is an
infinite train of rectangular pulses with the value of the ith

pulse determined by the ith term of the m-sequence. It is
common to refer to each pulse as a chip. Similarly, the shift
register clock rate fc is commonly referred to as the chip rate
[17].

E. PN Autocorrelation

The autocorrelation of the PN in Equation (9) is

Cx(τ) = V 2
0

[∑
i∈Z

{
(1 + 1/L)Λ

(
τ − iLTc

Tc

)}
− 1

L

]
(11)

where Λ(ξ) is the triangle function given by

Λ(ξ) = (1 − |ξ|)u(1 − |ξ|) (12)

Equation (11) describes a train of triangular pulses with a base
width of 2Tc, a maximum amplitude of V 2

0 , a period of LTc,
and a DC offset of −V 2

0 /L [13].

F. PN Frequency Spectrum

Using Fourier analysis, the PN spectrum, X̃(f), is found to
be

X̃(f) =
V0

L

∑
k∈Z

sinc

(
k

L

)
δ

(
f − fck

L

)
ej kπ

L ×

L∑
i=1

[
(2ai − 1)e−j k2π

L i
]

(13)

where δ(ξ) is the Dirac delta function and sinc(x) = (sin π ∗
x)/(π ∗ x). Thus, the spectrum of a PN is shown to be a
train of Dirac delta functions at integer multiples of fc/L. The
magnitude of the spectrum is bounded by sinc(k/L). Figure 2
shows the magnitude of the spectrum of a PN derived from
an m-sequence of length L = 31. Note that the majority of
the power is concentrated between fc and −fc.
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Fig. 2. The frequency spectrum of a PN is characterized by a train of Dirac
delta functions under a sinc(f/fc) envelope.

III. SPREAD SPECTRUM CHANNEL SOUNDING

The PN is the noise-like signal that will be transmitted
through the wireless channel. At the receiver, we might detect
the presence of the originally transmitted signal by means
of cross-correlation with the received signal similar to a
correlation receiver. For two signals ξ̃(t) and ζ̃(t), the cross-
correlation Cξ̃ζ̃(τ) is given by

Cξ̃ζ̃(τ) =

∞∫
−∞

ξ̃(t)∗ζ̃(t − τ)dt (14)

where (·)∗ is the complex conjugate of (·).
Let us assume a fixed, static wireless channel, which

we shall model as a tapped-delay line whereby individual
multipath components are delayed and complex-scaled copies
of the transmitted signal [18]. The channel impulse response
(CIR) H̃(τ) may be expressed as the summation of N Dirac
delta functions, each with a complex amplitude α̃i and delay
τi.

H̃(τ) =
N∑

i=1

α̃iδ(τ − τi) (15)

If the PN x(t) were transmitted through the wireless channel
described by H̃(τ), the received signal ỹ(t) will be a train of
delayed and attenuated copies according to

ỹ(t) =
N∑

i=1

α̃ix(t − τi) (16)

We find that the cross-correlation Cxỹ(τ) is then

Cxỹ(τ) =
N∑

i=1

α̃iCx(τ − τi) (17)

where Cx(τ) is the autocorrelation of x(t) described in (11).
Note that (17) is equivalently the tapped-delay line representa-
tion of the wireless channel convolved with the autocorrelation
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of the transmitted signal. Thus, Cxỹ(τ) is equivalently a scaled
copy of the band-limited CIR, H̃BL(τ), as measured using
x(t).

H̃BL(τ) =
1

V 2
0

Cxỹ(τ) (18)

This is the direct result of a spread spectrum channel sounder
such as that used in [19].

A. Practical Considerations

The cross-correlation described in Equation (17) is typically
implemented in software. The received signal ỹ(t) would be
sampled by an analog-to-digital converter (ADC), and the
data would either be processed by an FPGA or stored on a
computer for post-processing. To properly digitize the received
signal, the ADC’s sampling rate must be equal to or greater
than twice the baseband bandwidth. For narrow-band measure-
ments, this issue is rather trivial. However, as the measurement
bandwidth increases, so too does the cost of the required
high-speed ADC. Thus, to ease the hardware requirements for
measuring wideband wireless channels, researchers have used
the sliding correlator technique described in [5] to time-dilate
the channel impulse response.

IV. SLIDING CORRELATOR

The purpose of the sliding correlator is to produce a time-
dilated PN autocorrelation, which will lead to a time-dilated
cross-correlation according to (17). Whereas the true auto-
correlation uses two identical signals, the sliding correlator’s
autocorrelation involves two similar signals, whereby one sig-
nal is clocked at a slightly slower rate compared to the other.
Multiplying these two similar signals together and carefully
filtering their product will yield a very close approximation to
a time-dilated autocorrelation.

A. Multiplying the PNs

Consider two PNs x(t) and x′(t) with chip rates fc and f ′
c

respectively. The PNs are derived from the same m-sequence
of length L and have identical amplitudes such that V0 = V ′

0 .
Now, consider the waveform p(τ), which we shall call the
sliding correlator product of the two PNs.

p(τ) = x(τ)x′(τ) (19)

Multiplication in the time domain is equivalently convolution
in the frequency domain. Defining P̃ (f), X̃(f), and X̃ ′(f)
as the Fourier transform pairs of p(τ), x(τ), and x′(τ),
respectively, Equation (19) is equivalently

P̃ (f) = X̃(f) ⊗ X̃ ′(f) (20)

For the PN spectrum described in (13), the convolution of two
PN spectrums with chip rates fc and f ′

c is

P̃ (f) =(
V0

L

)2 ∑
k,k′∈Z

{
δ

(
f − fck + f ′

ck
′

L

)
×

sinc

(
k

L

)
sinc

(
k′

L

)
e−j π

L (k+k′) ×
L∑

i=1

L∑
i′=1

[
(2ai − 1) (2ai′ − 1) e−j π

L (ki+k′i′)
]}

(21)

Close inspection of (21) reveals that when k′ = −k,
P̃ (f) collapses into the spectrum corresponding to a train of
triangle-shaped pulses, which we will here denote as Q̃c(f).

Q̃c(f) =(
V0

L

)2 ∑
k∈Z

{
δ

(
f − k

fc − f ′
c

L

)
sinc2

(
k

L

)
×

L∑
i=1

L∑
i′=1

[
(2ai − 1) (2ai′ − 1) e−j π

L
k(i−i′)

]}
(22)

Equation (22) is the spectrum of the time-dilated autocorre-
lation [13]. The remaining terms in the double summation of
(21) represent the distortion to the time-dilated autocorrelation
due to the sliding correlation. The frequency-domain distortion
is here denoted as Q̃d(f).

Q̃d(f) =(
V0

L

)2 ∑
k,k′∈Z

k′ �=−k

{
δ

(
f − fck + f ′

ck
′

L

)
×

sinc

(
k

L

)
sinc

(
k′

L

)
e−j π

L(k+k′) ×
L∑

i=1

L∑
i′=1

[
(2ai − 1) (2ai′ − 1) e−j π

L(ki+k′i′)
]}

(23)

Let qc(τ) and qd(τ) represent the inverse Fourier transform for
Q̃c(f) and Q̃d(f) respectively. The sliding correlator product,
p(τ), may then be expressed as the superposition of the
autocorrelation signal qc(τ) and the distortion signal, qd(τ)
as discussed in [13].

p(τ) = qc(τ) + qd(τ) (24)

Figure 3(a) compares the spectrum for the time-dilated auto-
correlation spectrum Q̃c(f) with its accompanying distortion
spectrum Q̃d(f) for the case of L = 31 and f ′

c = 0.99fc.
Figure 3(b) compares the corresponding time-domain signals
qc(τ) and qd(τ) for the same scenario. The time-dilated
autocorrelation can be clearly seen in Figure 3(b). However,
it is also apparent that the magnitude of the distortion signal
qd(τ) is comparable to that of the time-dilated autocorrelation
signal qc(τ). Therefore, it is important that one remove this
distortion to produce a “clean” time-dilated autocorrelation.

B. Slide Factor

It is convenient to define the slide factor, γ, as the ratio of
fc to the difference between fc and f ′

c [5].

γ =
fc

fc − f ′
c

(25)

The slide factor may be perceived as the temporal dilation
factor for the sliding correlator’s time-dilated autocorrelation.
Therefore, qc(τ) may be equivalently expressed as

qc(τ) = Cx

(
τ

γ

)
(26)
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Fig. 3. A comparison of the sliding correlator’s autocorrelation and distortion
signals for L = 31 and f ′

c = 0.99fc: (a) frequency domain and (b) time
domain.

C. Filtering the Product

The simplest means of removing the unwanted distortion
introduced by qd(τ) is by low-pass filtering the sliding corre-
lator product p(τ). The time-dilated autocorrelation’s spectrum
Q̃c(f) is centered at DC and has a sinc2(fγ/fc) envelope.
Thus, the majority of its power resides within the main lobe
as bounded by f ∈ (−|fc/γ|, |fc/γ|). Let us assume an ideal
rectangular low-pass filter, h̃(f) with impulse response, H(τ),
such that

h̃(f) = u(f + |fc/γ|) − u(f − |fc/γ|) (27)

By filtering p(τ) with H(τ), a significant portion of the un-
wanted distortion will be removed while passing the majority
of the time-dilated autocorrelation. However, filtering is only
part of the solution for removing qd(τ). The optimal approach
requires the concerted selection of γ and L so that the majority
of the distortion signal’s power will be blocked by the low-
pass filter.
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{31, 63, 127, 511, 1023, 2047, 4095}.

D. Optimization

To produce a “clean” time-dilated autocorrelation, we must
minimize the amplitude of the distortion signal qd(τ). Here it
is useful to define the measurement dynamic range DR of a
sliding correlator in dB as

DR = 20 log10

(
max(|Lqc(τ) ⊗ H(τ)|)

max(|Lqd(τ) ⊗ H(τ) − V 2
0 |)

)
(dB) (28)

For the ideal case of no distortion, we might remove the low-
pass filter by setting H(τ) to δ(τ). The dynamic range would
then be DR,ideal as defined in Equation (29).

DR,ideal = 20 log10(L) (dB) (29)

Equation (29) is the typical result for a DSSS system using
a true correlation receiver [6]. The distortion signal produced
by the sliding correlator leads to a reduction in the dynamic
range. Mathematically describing this degradation in dynamic
range is difficult due to the nonlinear max(·) operation on
the complicated distortion signal described by (23). However,
simulations based on Equation (28) indicate interesting trends
for DR with increasing slide factors. Figure 4 compares
the dynamic range of PNs of various lengths for a range
of γ/L values. For the simulation, the PN spectrums X̃(f)
and X̃ ′(f) were restricted to the range f ∈ [−3fc, 3fc]
and f ∈ [−3f ′

c, 3f ′
c], respectively to minimize both memory

requirements and processing time. The dynamic range DR was
calculated using (28).

For a given PN of length L, Figure 4 indicates an increase
in DR for increasing γ/L with local maxima occuring near
integer multiples of γ/L. γ/L = 2 seems to be a particularly
critical point for the dynamic range. For small L, increasing
the slide factor beyond 2L provides only a small improvement
in the dynamic range. However, for large L, the increase
in dynamic range becomes more substantial for increased γ
values.
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This is made more evident by Figure 5, which plots dynamic
range as a function of L for select γ/L values. The uppermost
trace is DR,ideal as given by (29). For all PN lengths, there
is a marked improvement in dynamic range when γ/L is
increased from 1 to 2. For small L, this appears to bring the
dynamic range fairly close to DR,ideal. However, for large
L, the dynamic range will fall well below ideal. Specifically,
when L ≤ 63, using the γ/L = 2 rule-of-thumb will yield
a dynamic range that is approximately 0.8DR,ideal. However,
for L > 63 and γ/L = 2, DR,ideal becomes an increasingly
poor approximation for the sliding correlator’s dynamic range.
When L = 4095 and γ/L = 2, the DR,ideal approximation
errs by over 27%.

Using the simulations results, an empirical formula was
derived for γmin, which is the minimum slide factor that
provides a dynamic range within 20% of the ideal. Figure 6
plots the slide factor associated with a particular PN length
that produces a dynamic range DR = 0.8DR,ideal. Linear
regression analysis on the log-log plot leads to the following
empirical equation for γmin.

γmin = 1.41L1.09 (30)

For any γ ≥ γmin, the dynamic range of the sliding correlator
will be in the range 0.8DR,ideal ≤ DR < DR,ideal (dB).
Thus, we may safely approximate the dynamic range as being
equal to the lower bound of 0.8DR,ideal.

DR ≈ 16 log10(L) (dB) for γ ≥ γmin (31)

E. Time-Dilated Autocorrelation Approximation

Before filtering, the sliding correlator product p(τ) is the
superposition of two signals: qc(τ) and qd(τ). Let us set γ to
γmin and filter p(τ) with the ideal rectangular low-pass filter
H(τ) described earlier. The result will be the sliding correla-
tor’s approximation to the time-dilated PN autocorrelation.

Cx,sc(τ) = p(τ) ⊗ H(τ) (32)

Substituting (24) and distributing the convolution operator, we
find

Cx,sc(τ) = qc(τ) ⊗ H(τ) + qd(τ) ⊗ H(τ) (33)

Recall that H(τ) was constructed to pass the main lobe of
Q̃c(f). Thus, we shall make the following approximation:

qc(τ) ⊗ H(τ) ≈ qc(τ) (34)

Additionally, we selected γ in concert with L to minimize the
distortion signal and maximize the dynamic range. Thus, we
shall make one additional approximation.

qd(τ) ⊗ H(τ) ≈ 0 (35)

Using these approximations as well as the relationship
defined in (26), we find that (32) simplifies to

Cx,sc(τ) ≈ Cx

(
τ

γ

)
(36)

Figure 7 examines the approximation made in (36). Except-
ing for a 10% decrease in peak amplitude, the traces are nearly
identical, indicating that the approximation is valid. Therefore,
with careful selection of γ relative to L, the output of a sliding
correlator will approximate a time-dilated PN autocorrelation.

V. SLIDING CORRELATOR CHANNEL SOUNDING

Let us now consider the CIR of a fixed static wireless
channel as measured by a sliding correlator channel sounder.
We will assume the actual CIR, H̃(τ), fits the tapped-delay
line model described by Equation (15). Our transmitted signal
x(t) is a PN of length L with a chip rate fc as described in
(9). At the receiver, the received signal ỹ(t) is processed via
sliding correlation; that is, it is multiplied by x′(t), which is
a PN derived from the same m-sequence as x(t) but with
a chip rate f ′

c where f ′
c < fc. Let us choose fc and f ′

c

such that γ = γmin and filter the output of the sliding
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Fig. 7. A comparison of the sliding correlator output, Cx,sc(τ), versus a
time-dilated version of the PN autocorrelation given by Cx(τ/γ).

correlator with the ideal low-pass filter H(τ) described by
h̃(f) in (27). Analagous to the sliding correlator’s time-dilated
autocorrelation described in (36), the filtered output of a
sliding correlator channel sounder will approximate a time-
dilated cross-correlation, denoted Cxỹ,sc(τ).

Cxỹ,sc(τ) ≈ Cxỹ

(
τ

γ

)
(37)

Equation (37) implies that Cxỹ,sc(τ) is the same band-limited
CIR as described by Cxỹ(τ), albeit time-dilated. This is
a powerful statement, so let us examine it more carefully.
Substituting (17) for Cxỹ(τ), we have

Cxỹ,sc(τ) ≈
N∑

i=1

α̃iCx

(
τ

γ
− τi

)
(38)

Rearranging terms and making use of (36) yields

Cxỹ,sc(τ) =
N∑

i=1

α̃iCx,sc(τ − γτi) (39)

Note that although (37) was an approximation, (39) is exact.
Substituting (32) for Cx,sc(τ), we arrive at an exact equation
for Cxỹ,sc(τ).

Cxỹ,sc(τ) =
N∑

i=1

α̃i [p(τ − γτi) ⊗ H(τ)] (40)

Figure 8 compares Cxỹ,sc(τ) as approximated in Equation (37)
with the exact formulation described by Equation (40). The
nearly identical shape of the traces leads us to conclude
that the approximation for Cxỹ,sc(τ) made in (37) is valid.
Therefore, by reversing the time-dilation and scaling the
signal, we may “undo” the effects of the sliding correlator
and obtain a close approximation to the H̃BL(τ) described in
Equation (18).

H̃BL(τ) ≈ 1
V 2

0

Cxỹ,sc(γτ) (41)

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
or

re
la

ti
on

M
ag

ni
tu

de

Delay, τ/γ (ns)
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Fig. 8. A comparison of the sliding correlator channel sounder’s output,
Cxỹ,sc(τ), versus a time-dilated version of the wireless channel cross-
correlation given by Cxỹ(τ/γ) for an arbitrary H̃(τ).

TABLE I
SLIDING CORRELATOR CHANNEL SOUNDER DESIGN EQUATIONS

Capability Equation Dependencies

Doppler Resolution fD,max =
fc

2γL
fc, γ, L

Processing Gain Gp = 10 log10(γ) (dB) γ

Dynamic Range DR ≈ 16 log10(L) (dB) γ ≥ 1.41L1.09, L

Temporal

Resolution
Tres =

1

fc
fc

Maximum

Multipath Delay
τmax =

L

fc
fc, L

Maximum

Path Length
dmax = c

L

fc
fc, L

Equation (41) is therefore the approximation to the band-
limited CIR that one would obtain if measuring the wireless
channel using a sliding correlator channel sounder.

VI. CHANNEL SOUNDER CAPABILITIES

The fidelity of the band-limited CIR produced by the
sliding correlator channel sounder is dependent on the system
capabilities, which are themselves dependent on just three
system parameters: the transmitter PN chip rate fc, the PN
length L, and the slide factor γ. Table I summarizes the
channel sounder’s capabilities and the parameters that affect
them.

A. Doppler Resolution

The Doppler resolution is the largest Doppler frequency that
can be measured unambiguously with the sliding correlator
channel sounder. The channel sounder records a measurement
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of the CIR once every γL/fc seconds. Therefore, the channel
sounder’s Doppler resolution is given by

fD,max =
fc

2γL
(42)

B. Processing Gain

The processing gain is defined as the ratio of the SNR after
a process to the SNR before the process [6]. Thus, in dB,
processing gain, Gp, is

Gp = 10 log10

(
SNRout

SNRin

)
(dB) (43)

Processing gain acts to spread the power spectrum of unwanted
noise and interferents. Consider a DC offset that is the
complex-baseband equivalent of a continuous wave interferent
at the system’s RF carrier. Multiplication with the receiver
PN, x′(t), will spread the interferent’s power spectral density
across a complex-baseband bandwidth of approximately f ′

c.
Filtering with the ideal low-pass filter will block the inter-
ferent’s spread spectrum at frequencies above fc − f ′

c such
that only 100×(fc − f ′

c)/f ′
c% of the interferent’s power will

remain. Assuming f ′
c ≈ fc, the interferent’s power will be

reduced by a factor of γ. Thus, the linear processing gain for
a sliding correlator system is simply γ, which in dB is

Gp = 10 log10(γ) (dB) (44)

Note that (44) differs from a direct sequence spread spectrum
system’s processing gain, which may be approximated by
10 log10(L) [6]. This is due to the sliding correlator operation.

C. Dynamic Range

The dynamic range of a sliding correlator was discussed
in detail in Section IV-D. In summary, by establishing an
empirical formula for the minimum slide factor, γmin, we were
able to approximate the dynamic range according to the lower
bound presented in Eq. (31).

D. Temporal Resolution

The temporal resolution defines how precisely one may
resolve the relative delay of a given multipath component. For
a sliding correlator channel sounder, the temporal resolution
Tres is estimated as

Tres =
1
fc

(45)

E. Maximum Resolvable Multipath Delay

The periodicity of the transmitted PN places an upper bound
on the maximum resolvable multipath delay, denoted τmax.

τmax =
L

fc
(46)

Multiplying τmax by the free space propagation velocity, c,
yields the maximum resolvable path length dmax.

dmax = c
L

fc
(47)

Fig. 9. Flowchart describing the design methodology for a sliding correlator
channel sounder.

VII. DESIGN METHODOLOGY

Re-examining Table I, we note that only fD,max is ad-
versely affected by increasing γ. This indicates that measuring
a time-varying wireless channel requires special consideration
to balance the tradeoffs in system performance for the specific
scenario. However, for static channels, a logical design process
follows from the equations in Table I. Figure 9 diagrams
this design process. To specify fc, recall that the chip rate
is approximately equal to the baseband bandwidth of the
transmitted signal.
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Fig. 10. A simplified diagram of the sliding correlator channel sounder. Poor
LO-RF isolation allows a portion of the LO power to leak through to the RF
port. This acts as a narrowband interferent at the receiver.

VIII. PRACTICAL DESIGN CONSIDERATIONS

In Figure 9, the final decision block concerning the re-
alizability of fc − f ′

c represents one of several practical
considerations for system design. Depending on the quality
factor of the reference oscillators and the specific choice
of fc and f ′

c, minor phase variations between transmitter
and receiver can cause major fluctuations in fc − f ′

c. This
causes deviations in the slide factor that degrade the system’s
performance. Phase instability poses additional challenges for
those seeking absolute delay and phase measurements. The
preferred solution for achieving phase stability in channel
measurements is to use rubidium or cesium-based atomic
master oscillators, which offer extremely high phase stability
but can be prohibitively expensive [17]. A more economical
solution is to phase-lock the reference oscillators via a cable,
but this hampers the mobility and utility of the system.

The channel sounder’s performance will also be affected
by the limitations and non-idealities of hardware. Amplifier
bandwidth, noise figure, 1 dB compression point, mixer port
isolation, and conversion losses will all degrade the theoretical
system performance. Of the aforementioned design specifi-
cations, the most critical for the sliding correlator channel
sounder is high mixer LO-RF isolation. Poor isolation allows a
portion of the LO power to leak into the RF port of the mixer,
as depicted in Figure 10. This acts as narrowband interference
at the carrier frequency that essentially raises the receiver
noise floor and degrades the dynamic range. The effects of
LO leakage may be mitigated by increasing the slide factor
to increase Gp, but this will adversely affect other aspects of
the system as evidenced by Table I.

IX. IMPLICATIONS OF TIME-VARYING CHANNELS

For time-varying channel measurements, it is important to
recognize that the sliding correlator’s time-dilated impulse
response is not equivalent to a time-dilated copy of the
channel’s actual impulse response. To clarify this point, it
is helpful to consider Figure 11, which presents the signal’s
spectrum at various stages within the sliding correlator channel
sounder for both static and time-varying channels. As both
Fig. 11 and Eq. (13) indicate, the transmitted signal’s spectrum
is composed of discrete spectral tones interspaced by fc/L.
Propagation through the wireless channel serves to modulate
each of these spectral tones according to that frequency’s
Doppler spectrum. The sliding correlator then convolves the
received spectrum with the receiver’s PN spectrum to generate
the time-dilated CIR. Fundamentally, the temporal dilation
and thereby, the bandwidth compression of the sliding cor-
relator arises because this convolution applies a frequency
shift to each of the modulated tones that reduces the spacing

Fig. 11. The signal spectra at various points within the sliding correlator
channel sounder indicate that only static channels permit recovery of the chan-
nel’s true impulse response by temporally rescaling the sliding correlator’s
time-dilated CIR. Attempting to recover a time-varying channel’s impulse
response by similarly rescaling the time-dilated CIR will artificially broaden
the observed Doppler spectra.

between tones’ centers from fc/L to (fc − f ′
c)/L. For the

case of a static channel, we note that the channel’s Doppler
spectra are impulses centered at zero. Thereby, the received
spectrum is discrete, and the sliding correlator’s shifting of
tones is equivalent to rescaling the spectrum. Thus, the static
channel’s impulse response may be recovered by temporally
rescaling the sliding correlator’s time-dilated CIR, as was
shown in Eq. (41). For time-varying channels, however, the
sliding correlator’s frequency shifting cannot be interpreted
as a frequency scaling because the transmitted tones have
been spectrally broadened. As Fig. 11 indicates, temporally
rescaling the sliding correlator’s time-dilated CIR in attempts
to recover the time-varying channel’s true impulse reponse
will artifically broaden the observed Doppler spectra. Instead,
to accurately recover the time-varying channel’s true impulse
response, each of the modulated tones must be frequency
shifted so as to restore the fc/L spacing between the tones’
centers and thereby, undo the sliding correlator’s bandwidth
compression.

Despite this additional overhead, we observe from Fig. 11
that provided the spectra of the modulated tones do not overlap
in the time-dilated CIR’s spectrum, the sliding correlator
channel sounder unambiguously captures the channel’s delay-
Doppler characteristics. Note that this restriction is equivalent
to requiring that the channel’s maximum Doppler frequency
be less than the system’s Doppler resolution as given by
Eq. (42) so as to prevent aliasing. It should be further noted
that the additional post-processing needed to recover a time-
varying channel’s impulse response may be avoided in many
measurement scenarios. For example, if one is interested in
the underlying static component of a time-varying channel,
provided that the time-varying component is an ergodic zero-
mean process, the underlying static channel’s impulse response
may be found by appropriately time-averaging consecutive
time-dilated CIRs and rescaling the result. If the time-varying
channel is quasi-static such that its temporal coherence is
significantly greater than the measurement period, the time-
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dilated CIR may be treated analogously to the static chan-
nel case, because the impact of Doppler broadening due to
temporal rescaling will be negligible. Finally, for those solely
interested in a time-varying channel’s Doppler characteristics,
integrating consecutive periods of the time-dilated CIR will
directly yield the time-varying channel provided that the
channel is ergodic with respect to frequency [20].

X. CONCLUSION

The sliding correlator channel sounder will continue its in-
valuable role in the investigation of current and future wireless
channels. The versatility of the architecture makes it a cost-
effective solution for any number of channel measurent sce-
narios characterized by large bandwidths, mobile transceivers,
or even multiple antennas. The design methodology in Sec-
tion VII describes a systematic approach to channel sounder
design based upon a rigorous analysis of the sliding correlator.
The derivation of a new minimum slide factor coupled with
a modified expression for dynamic range provide realistic
descriptions of the system’s capabilities and enable researchers
to design optimal sliding correlator channel sounders for high-
fidelity measurements of next-generation wireless channels.
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