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Abstract—In this paper, taking the view that a linear parallel
interference canceller (LPIC) can be seen as a linear matrix filter,
we propose new linear matrix filters that can result in improved
bit error performance compared to other LPICs in the literature.
The motivation for the proposed filters arises from the possibility
of avoiding the generation of certain interference and noise terms
in a given stage that would have been present in a conventional
LPIC (CLPIC). In the proposed filters, we achieve such avoidance
of the generation of interference and noise terms in a given stage
by simply making the diagonal elements of a certain matrix in
that stage equal to zero. Hence, the proposed filters do not require
additional complexity compared to the CLPIC, and they can
allow achieving a certain error performance using fewer LPIC
stages. We also extend the proposed matrix filter solutions to a
multicarrier DS-CDMA system, where we consider two types of
receivers. In one receiver (referred to as Type-I receiver), LPIC
is performed on each subcarrier first, followed by multicarrier
combining (MCC). In the other receiver (called Type-II receiver),
MCC is performed first, followed by LPIC. We show that in
both Type-I and Type-II receivers, the proposed matrix filters
outperform other matrix filters. Also, Type-II receiver performs
better than Type-I receiver because of enhanced accuracy of the
interference estimates achieved due to frequency diversity offered
by MCC.

Index Terms—Linear parallel interference cancellation, linear
matrix filters, decorrelating detector, MMSE detector, multicar-
rier DS-CDMA.

I. INTRODUCTION

L INEAR parallel interference cancellers (LPIC) have
the advantages of implementation simplicity, analytical

tractability, and good performance [1]-[12]. The conventional
way to realize LPIC schemes is to use unscaled values of
the previous stage soft outputs of different users for multi-
ple access interference (MAI) estimation. In [3], Guo et al
described and analyzed LPIC schemes for CDMA using a
matrix-algebraic approach. They pointed out that an LPIC
can be viewed as a linear matrix filter applied directly to the
chip matched filter (MF) output vector. While the matrix filter
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corresponding to the conventional LPIC (CLPIC) converges to
the decorrelating (DC) detector, they also proposed a modified
matrix filter which converges to a minimum mean square error
(MMSE) detector. This was done by exploiting the equivalence
of the LPIC to a steepest descent optimization method for
minimizing the mean square error. For this optimization, they
obtained optimum step sizes for different stages that remove
the excess mean square error in K stages (where K is the
number of users), leaving only the minimum MSE in stages
greater than K . The condition for this convergence has been
shown to be that the maximum eigenvalue of the correlation
matrix must be less than two.

Our contribution in this paper is that we propose new
linear matrix filters that can perform better than the matrix
filters studied in [3]. The motivation for the proposed filters
arises from the possibility of avoiding the generation of certain
interference and noise terms in a given stage that would have
been present in the CLPIC. In the proposed filters, we achieve
such avoidance of the generation of interference and noise
terms in a given stage by simply making the diagonal elements
of a certain matrix in that stage equal to zero. Hence the
proposed filters do not require additional complexity compared
to the CLPIC. We show that the proposed matrix filters can
achieve better performance compared to other matrix filters in
the literature. This, in turn, can allow achieving a certain error
performance using fewer LPIC stages. We also propose filters
that use different step sizes for different stages (but the same
step size for all users at a given stage). In addition, we propose
filters that use different weights for different users in different
stages, where we also obtain closed-form expressions for the
optimum weights that maximize the output average SINR in
a given stage.

We further extend the proposed matrix filter solutions to a
multicarrier DS-CDMA system, where multicarrier combining
(MCC) needs to be carried out in addition to the LPIC
operation. Depending on which operation (i.e., MCC or LPIC)
gets done first at the receiver, the resulting performances and
complexities differ. We consider two types of receivers. In
what we call the Type-I receiver, LPIC is performed on each
subcarrier first, followed by MCC [12]. In the Type-II receiver,
MCC is performed first, followed by LPIC. We show that
in both Type-I and Type-II receivers, the proposed matrix
filters outperform other matrix filters. Also, Type-II receiver
outperforms Type-I receiver because of enhanced accuracy of
the MAI estimates achieved due to frequency diversity offered
by MCC.

The rest of the paper is organized as follows. In Sec. II,
we present the system model. In Sec. III, we present the
proposed matrix filters for single carrier DS-CDMA, along
with their bit error performance results. Section IV presents
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the proposed filters and their performance in multicarrier DS-
CDMA. Conclusions are presented in Sec. V.

II. SYSTEM MODEL

We consider a K-user synchronous multicarrier DS-CDMA
system with M subcarriers. Let bk ∈ {+1,−1} denote the
binary data symbol of the kth user, which is sent in parallel
on M subcarriers [13]. Let P denote the number of chips-
per-bit in the signature waveforms. It is assumed that the
channel is frequency non-selective on each subcarrier and the
fading is slow (assumed constant over one bit interval) and
independent from one subcarrier to the other. We assume that
the subcarriers are separated sufficiently apart so that inter-
carrier interference is negligible.

Let y(1),(i) =
[
y
(1),(i)
1 y

(1),(i)
2 · · · y

(1),(i)
K

]T

denote the K-

length received signal vector1 at the MF output2 on the ith
subcarrier; i.e., y

(1),(i)
k is the MF output (i.e., 1st stage output)

of the kth user on the ith subcarrier, given by

y
(1),(i)
k = Akbkh

(i)
k︸ ︷︷ ︸

desired signal

+
K∑

j=1,j �=k

ρ
(i)
kj Ajbjh

(i)
j︸ ︷︷ ︸

MAI

+ n
(i)
k︸︷︷︸

noise

. (1)

The MF output vector y(1),(i) can be written in the form

y(1),(i) = R(i)H(i)b + n(i), (2)

where H(i) represents the K×K channel matrix, given by

H(i) = diag
{
h

(i)
1 , h

(i)
2 , · · · , h(i)

K

}
, (3)

and the channel coefficients h
(i)
k , i = 1, 2, · · · , M , are assumed

to be i.i.d. complex Gaussian r.v’s with zero mean and

E
[(

Re{h(i)
k }

)2]
= E

[(
Im{h(i)

k }
)2]

= 0.5. The matrix

R(i) is the K × K cross-correlation matrix on the ith sub-
carrier, given by

R(i) =

⎡⎢⎢⎢⎢⎣
1 ρ

(i)
12 · · · ρ

(i)
1K

ρ
(i)
21 1 · · · ρ

(i)
2K

...
...

. . .
...

ρ
(i)
K1 ρ

(i)
K2 · · · 1

⎤⎥⎥⎥⎥⎦ , (4)

where ρ
(i)
lj = ρ

(i)
jl is the normalized cross-correlation co-

efficient between the signature waveforms of the lth and
jth users on the ith subcarrier. The K-length data vector
b is given by b =

[
A1b1 A2b2 · · · AKbK

]T
, where

Ak denotes the transmit amplitude of the kth user. The K-
length noise vector n(i) on the ith subcarrier is given by
n(i) =

[
n

(i)
1 n

(i)
2 · · · n

(i)
K

]T
, which is assumed to be

complex Gaussian with zero mean with E[n(i)
k

(
n

(i)
j

)∗] = σ2

when j = k and E[n(i)
k

(
n

(i)
j

)∗] = σ2ρ
(i)
kj when j �= k.

1Vectors are denoted by boldface lowercase letters, and matrices are
denoted by boldface uppercase letters. [.]T and [.]H denote transpose and
conjugate transpose operations, respectively. Re{α} and Im{α} denote the
real and imaginary parts of α.

2We take the MF output (i.e., the despread output) as the 1st stage output in
the multistage LPIC receivers. So, the (m),(i) in the superscript of y denotes
the stage index m and subcarrier index i.

III. PROPOSED LINEAR MATRIX FILTERS

In this section, we propose improved LPICs for single
carrier DS-CDMA (i.e., M = 1 in the system model presented
in Sec. II). So, for notational simplicity, we drop the subcarrier
index (i) in this section. In Sec. IV, we will consider M > 1.
We assume that all the channel coefficients are perfectly
known at the receiver. Dropping the subcarrier index in (1),
the MF output of the desired user k, y

(1)
k , can be written as

y
(1)
k = xk︸︷︷︸

desired signal

+
K∑

j=1,j �=k

xjρkj︸ ︷︷ ︸
MAI

+ nk︸︷︷︸
noise

, (5)

where xl
�
= Alblhl, l = 1, 2, · · · , K .

A. Conventional Matrix Filter, G(m)

In conventional LPIC (CLPIC), an estimate of the MAI
for the desired user in the current stage is obtained using
all the other users’ soft outputs from the previous stage for
cancellation in the current stage. The mth stage output of the
desired user k, y

(m)
k , in CLPIC is [9]

y
(m)
k = y

(1)
k −

K∑
j=1, j �=k

ρjky
(m−1)
j︸ ︷︷ ︸

MAI estimate

. (6)

The kth user’s bit decision after MAI cancellation in the mth
stage, b̂

(m)
k , is obtained as

b̂
(m)
k = sgn

(
Re

(
h∗

ky
(m)
k

))
. (7)

The CLPIC output in (6) can be written in matrix algebraic
form as [3]

y(m) =
(
I + (I − R) + · · · + (I − R)m−1

)
y(1)

=
m∑

j=1

(I − R)j−1

︸ ︷︷ ︸
G(m)

y(1). (8)

The G(m) filter in (8) can be viewed as an equivalent one-shot
linear matrix filter for the mth stage of the CLPIC.

B. Proposed Matrix Filter, Gp
(m)

In this subsection, we propose a new linear matrix filter,
which we denote as Gp

(m), that can perform better than the
matrix filter G(m) in (8). The motivation for the new matrix
filter can be explained as follows.

What does the matrix filter G(m) do: It is noted that the
behavior of the G(m) filter in (8) (i.e., CLPIC) at a given
stage m ≥ 2 is characterized by a) interference removal,
b) generation of new interference terms, c) desired signal
loss/gain, d) desired signal recovery/removal, and e) noise
enhancement. For example, the cancellation operation in the
2nd stage (i.e., m = 2) results in i) interference removal, ii)
generation of new interference terms, iii) desired signal loss,
and iv) noise enhancement. This can be seen by observing
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the 2nd stage output expression for the desired user k, which
can be written, using (6) and (5), as

y
(2)
k = y

(1)
k −

K∑
j=1, j �=k

ρjky
(1)
j

=

(
xk +

K∑
i=1,i�=k

ρkixi + nk

)

−
K∑

j=1,j �=k

ρjk

(
xj +

K∑
l = 1, l �= j︸ ︷︷ ︸
l can be k here

ρjlxl + nj

)

= xk − xk

K∑
j=1,j �=k

ρ2
jk︸ ︷︷ ︸

desired signal loss

−
K∑

j=1,j �=k

ρjk

K∑
l=1,l �=j,k

ρjlxl︸ ︷︷ ︸
new interference terms

+ nk −
K∑

j=1,j �=k

ρjknj︸ ︷︷ ︸
additional noise terms

. (9)

Comparing the expression at the MF output, y
(1)
k , in (5) and

the expression for the 2nd stage output, y
(2)
k , in (9), it can be

seen that the cancellation operation in the 2nd stage results in
the following at the 2nd stage output.

• The interference terms,
∑

j �=k ρjkxj , that were present
in the MF output in (5) are removed. In the pro-
cess, i) new interference terms proportional to ρ2, i.e.,∑

j �=k ρjk

∑
l �=j,k ρjlxl in (9), get generated, ii) a frac-

tion
∑

j �=k ρ2
jk of the desired signal component gets lost,

and iii) additional noise terms proportional to ρ, i.e.,∑
j �=k ρjknj in (9), get introduced.

In Appendix A, we present the expression for the 3rd stage
output in an expanded form. From (44) in Appendix A, we
can make the following observations which result from the
cancellation operation in the 3rd stage.

• The desired signal loss that occurred in the 2nd stage is
recovered (see the two A terms cancelling each other in
(44)). In the process, new interference terms proportional
to ρ3 (see the BI term in (44)) as well as additional noise
terms proportional to ρ2 (see the BN term in (44)) get
generated.

• Interference terms generated in the 2nd stage are removed
(see the two C terms cancelling each other in (44)). In
the process, i) further desired signal loss/gain3 propor-
tional to ρ3 occurs (see the D term in (44)), and ii) new
interference terms proportional to ρ3 (see the EI term
in (44)) as well as additional noise terms proportional to
ρ2 (see the EN term in (44)) get generated.

Similar observations can be made on the expanded form of
the equations for the subsequent stages of the CLPIC4. For
m → ∞, the CLPIC is known to converge to the decorrelating

3Depending on ρ’s being positive or negative, the term D in (44) can be
positive or negative, because of which there can be a desired signal gain or
loss.

4The general expression for the mth stage output in expanded form, for
any m ≥ 3, and the corresponding observations are given in Appendix B.

detector, provided the eigenvalues of the R matrix are less than
two [3]. That is, when m → ∞, in the expression for G(m)

output in (48), the desired signal loss/gain and the interference
terms go to zero and the noise term gets enhanced.

Proposed matrix filter, Gp
(m): We propose to avoid the

generation of new interference and noise terms in T3 in (47),
caused in the process of recovery/removal of desired signal
loss/gain in the previous stage. Since there is no desired signal
loss/gain in the 1st stage, the 2nd stage of the proposed filter
is the same as that of the G(m) filter, i.e., Gp

(2) = G(2). For
stages greater than two, i.e., for m ≥ 3, the mth stage output
of the proposed filter Gp

(m), denoted by y
(m)
k,p , can be written

as

y
(m)
k,p = y

(m−1)
k,p + (−1)m+1

K∑
k1 �=k

K∑
k2 �=k,k1

K∑
k3 �=k,k2

· · ·

K∑
km−2 �=k,km−3

K∑
km−1 �=k,km−2

ρkkm−1ρkm−1km−2 · · · ρk2k1 y
(1)
k1

. (10)

We note that the above expression is obtained by i) dropping
T3 from (47), and ii) modifying T4 in (47) such that all the
summations in it exclude the desired user index k. The above
two modifications ensure that the proposed filter removes
the previous stage interference while avoiding the recov-
ery/removal of the desired signal loss/gain5. Also, because of
these modifications, the interference and noise terms in a given
stage of the proposed filter will be a subset of the interference
and noise terms in the same stage of the G(m) filter. Equation
(10) can be written in the following form

y
(m)
k,p = y

(1)
k −

K∑
k1 �=k

(
ρkk1 −

K∑
k2 �=k,k1

ρkk2ρk2k1

+
K∑

k2 �=k,k1

K∑
k3 �=k,k2

ρkk3ρk3k2ρk2k1 − · · ·

+ (−1)m
K∑

k2 �=k,k1

K∑
k3 �=k,k2

· · ·
K∑

km−1 �=k,km−2

ρkkm−1 · · · ρk2k1

)
y
(1)
k1

, (11)

which, in turn, can be expressed in matrix form as

y(m)
p =

( m−1∑
j=0

Bj

)
︸ ︷︷ ︸

Gp
(m)

y(1), (12)

where

Bn =
[
Bn−1 (I − R)

]�
, (13)

[M]� denotes the matrix M with its diagonal elements made
equal to zero, and B0 = I. Note that, since (12) is structurally
the same as (8) and the [.]� operation in (13) does not
add to complexity, the proposed Gp

(m) filter has the same
complexity as the G(m) filter.

The G(m) filter is known to converge to the decorrelating
detector for m → ∞, provided the maximum eigenvalue of

5Although possible signal loss recovery is avoided in the process, the net
effect can still be beneficial (we will see this in Sec. III-F).
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the R matrix is less than two [3]. That is, G(∞) = R−1,
which results in the output vector(

y(∞)
)
G

= R−1y(1) = x + R−1n. (14)

As with G(m), all the interference terms in Gp
(m) also go to

zero for m → ∞. This can be seen as follows. From (12) and
(13), Gp

(∞) can be written in the form

Gp
(∞) = I︸︷︷︸

B0

+ {(I − R) − D1}︸ ︷︷ ︸
B1

+ {{(I − R) − D1} (I − R) − D2}︸ ︷︷ ︸
B2

+ · · · , (15)

where Dn is a diagonal matrix with the diagonal elements the
same as those in the matrix Bn−1(I − R). Equation (15) can
be written as

Gp
(∞) = (I − D1 − D2 − · · ·)︸ ︷︷ ︸

�
= F

R−1. (16)

Hence, the output vector for m → ∞ is given by(
y(∞)

)
Gp

= FR−1y(1) = Fx + FR−1n. (17)

The diagonal matrix F defined in (16) can be written as

F = diag
(
f1, f2, · · · , fK

)
, (18)

where fk is given by

fk = 1 −
K∑

k1 �=k

ρkk1ρk1k +
K∑

k1 �=k

K∑
k2 �=k,k1

ρkk2ρk2k1ρk1k

−
K∑

k1 �=k

K∑
k2 �=k,k1

K∑
k3 �=k,k2

ρkk3ρk3k2ρk2k1ρk1k · · · (19)

For the case of equi-correlated users, fk in (19) can be shown
to converge to 1 − (

(K − 1)ρ2/(1 + (K − 2)ρ
)
, and there are

no interference terms in (17). Also, note that the outputs of
the G filter in (14) and the Gp filter in (17) have the same
SNR for m → ∞.

C. Why Gp
(m) can perform better than G(m) - An Illustration

To analytically see why Gp
(m) can perform better than

G(m) for m ≥ 3, consider the case of K equi-correlated users
with correlation coefficient ρ, and no noise. Let us consider
the average signal-to-interference ratio (SIR) at the 3rd stage
output for Gp

(m) and G(m). The 3rd stage output of G(m),
in the absence of noise, can be written as(

y
(3)
k

)
G

=
(
1 + D

)
xk + BI + EI , (20)

where the terms D , BI , EI are defined in (44). Likewise,

the 3rd stage output of Gp
(m) can be written as(

y
(3)
k

)
Gp

=
(
1 − A + D

)
xk + EI . (21)

Note that the interference term BI generated in G(m) is

not generated in Gp
(m). Also, the desired signal term A is

recovered in G(m) whereas it is not recovered in Gp
(m). Now,

from (20), the average SIR at the 3rd stage output of G(m),

for the case of equi-correlated and equal-amplitude users, can
be obtained as(

SIR
)(3)

G
=

(
1 + (K − 1)(K − 2)ρ3

)2

(K − 1)
(
(K − 1)ρ3 + (K − 2)2ρ3

)2 . (22)

Likewise, from (21), the average SIR at the 3rd stage output
of Gp

(m) can be obtained as

(
SIR

)(3)

Gp
=

(
1 − (K − 1)ρ2 + (K − 1)(K − 2)ρ3

)2

(K − 1)
(
(K − 2)2ρ3

)2 . (23)

From (22) and (23), it can be seen that

β
�
=

√√√√√(
SIR

)(3)

Gp(
SIR

)(3)

G

= 1 + δ (24)

where

δ =
(K − 1)

(
1 − (K − 2)ρ

)(
1 + (K − 2)ρ − (K − 1)ρ2

)
(K − 2)2

(
1 + (K − 1)(K − 2)ρ3

) .

(25)
For ρ > 0, the maximum eigenvalue for the R matrix is 1 +
(K − 1)ρ, so that the condition for convergence is 1 + (K −
1)ρ < 2, i.e., (K − 1)ρ < 1. Now, in (24), the 2nd term is
positive when (K − 1)ρ < 1, which results in β > 1. This
implies that Gp

(m) results in a higher average output SIR
than G(m). As will be seen in Sec. III-F, simulation results
show that Gp

(m) can perform better than G(m) in the case of
non-equicorrelated users as well as in the presence of noise.

D. A Modified MMSE Converging Filter, Gpµ
(m)

As pointed out in Sec. I, Guo et al, in [3], have proposed
modifications to the G(m) filter so that the resulting modified
matrix filter converges to the MMSE detector instead of the
decorrelating detector, by exploiting the equivalence of the
LPIC to the steepest descent method (SDM) of optimization
for minimizing the MSE. They also derived optimum step
sizes for various stages, which ensured convergence to the
MMSE detector in K stages, where K is the number of users.
We refer to this MMSE converging matrix filter proposed by
Guo et al in [3] as the Gμ

(m) filter, which is given by [3]

y(m)
μ = Gμ

(m)y(1), (26)

where

Gμ
(m) = μmI+

m−1∑
i=1

μm−i

i∏
j=1

(I−μm−i+j(R+σ2I)), (27)

μi is the step size at stage i, the optimum values of which
were obtained to be

μi =
1

λi + σ2
, i = 1, 2, · · · , K, (28)

where λi, i = 1, 2, · · · , K are eigenvalues of matrix R. We
note that a similar SDM view can be taken to modify our
proposed matrix filter Gp

(m) so that it can converge to the
MMSE detector. We refer to such a modified version of our
proposed filter as Gpμ

(m) filter, where we avoid the generation
of new interference and noise terms as in Gp

(m), while using
the step sizes obtained for Gμ

(m) in [3]. Accordingly, we
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propose the modified version of the MMSE converging filter
as

y(m)
pμ =

(
μmI +

m−1∑
i=1

μm−iJi

)
︸ ︷︷ ︸

Gpµ
(m)

y(1), (29)

where Ji is given by

Ji =
[
Ji−1

(
I − μK−i+1(R + σ2I)

)]�
, and J0 = I. (30)

E. A Weighted Matrix Filter, Gpw
(m)

In the Gμ
(m) and Gpμ

(m) filters above, different step sizes
are used in different stages (but the same step size for all
users in a stage). Improved performance can be achieved
if different scaling factors (weights) are used for different
users in different stages. Accordingly, we propose a weighted
version of our proposed filter Gp

(m). We refer to this weighted
version as Gpw

(m), and is derived as follows.
In a weighted LPIC (WLPIC), the MAI estimate in a given

stage is scaled by a weight before cancellation (unit weight
corresponds to CLPIC and zero weight corresponds to MF).
For example, the mth stage output of the desired user k, y

(m)
k,w ,

in a WLPIC is given by

y
(m)
k,w = y

(1)
k − w

(m)
k

K∑
j=1, j �=k

ρjky
(m−1)
j,w , (31)

where w
(m)
k is the weight with which the MAI estimate for the

kth user in the mth stage is scaled. For m ≥ 2, the weighted
cancellation operation in (31) can be written in the form

y(m)
w =

(
I + W(m)(I − R)

+ W(m)(I − R)W(m−1)(I − R) + · · ·
+W(m)(I − R)W(m−1)(I − R) · · ·W(2)(I − R)

)
y(1),(32)

where W(m) is the weight matrix at the mth stage, given
by W(m) = diag

(
w

(m)
1 , w

(m)
2 , · · · , w(m)

K

)
, and W(1) = 0.

Now, as in G(m), in order to avoid the generation of new
interference and noise terms, we modify (32) as follows:

y(m)
pw =

( m−1∑
j=0

B̃j

)
︸ ︷︷ ︸

Gpw
(m)

y(1), (33)

where

B̃n =
[
B̃n−1W(m−n+1)(I − R)

]�
, and B̃0 = I. (34)

Note that Gpw
(m) becomes Gp

(m) when W(m) = I, ∀m > 1.

Optimum Weight Matrix, W(m)
opt : The mth stage output of

the kth user when Gpw
(m) filter is used can be written as(

y
(m)
k

)
Gpw

= y
(1)
k − w

(m)
k

K∑
i�=k

q
(m)
k,i y

(1)
i

= xk

(
1 − w

(m)
k

K∑
i�=k

q
(m)
k,i ρki

)
︸ ︷︷ ︸

desired signal

+ nk − w
(m)
k

K∑
i�=k

q
(m)
k,i ni︸ ︷︷ ︸

noise

+
K∑

i�=k

(
ρki − w

(m)
k

(
q
(m)
k,i +

K∑
k1 �=i,k

q
(m)
k,k1

ρk1i

))
xi︸ ︷︷ ︸

interference

, (35)

where

q
(m)
k,i = ρki −

K∑
k1 �=k,i

w
(m−1)
k1

ρkk1ρk1i

+
K∑

k1 �=k,i

w
(m−2)
k1

K∑
k2 �=k,k1

w
(m−1)
k2

ρkk2ρk2k1ρk1i − · · ·

+ (−1)m
K∑

k1 �=k,i

w
(2)
k1

K∑
k2 �=k,k1

w
(3)
k2

· · ·
K∑

km−2 �=k,km−3

w
(m−1)
km−2

· ρkkm−2ρkm−2km−3 · · · ρk3k2ρk2k1ρk1i. (36)

Since the interference and noise terms in on the RHS of (35)
are the sum of linear combinations of complex Gaussian r.v’s
(since the fade coefficients hk are assumed to be complex
Gaussian), the average SINR for the kth user at the mth stage
output can be obtained, in closed-form, as

SINR
(m)

k =
A2

k

(
1 − aw

(m)
k

)2

σ2
I + σ2

N

, (37)

where

σ2
I = b +

(
w

(m)
k

)2
c − 2w

(m)
k d,

σ2
N = σ2

(
1 +

(
w

(m)
k

)2
e − 2w

(m)
k a

)
,

a =
K∑

i�=k

q
(m)
k,i ρki, b =

K∑
i�=k

ρ2
kiA

2
i ,

c =
K∑

i�=k

(
q
(m)
k,i +

K∑
k1 �=i,k

q
(m)
k,k1

ρk1i

)2

A2
i ,

d =
K∑

i�=k

ρki

(
q
(m)
k,i +

K∑
k1 �=i,k

q
(m)
k,k1

ρk1i

)
A2

i ,

e =
K∑

i�=k

K∑
j �=k

q
(m)
k,i q

(m)
k,j ρij .

By differentiating the average SINR expression in (37) w.r.t.
w

(m)
k and equating to zero, the optimum weights w

(m)
k,opt can

be obtained, in closed-form, as

w
(m)
k,opt =

d − ab

c − ad + σ2(e − a2)
. (38)

In Fig. 1, we plot the average SINR at the mth stage output
of the proposed Gpw

(m) filter, as a function of weight, w
(m)
k ,

at an average SNR of 20 dB. The average SNR of user k is
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Fig. 1. Average output SINR as a function of weight w
(m)
k

for the proposed
Gpw

(m) filter. M = 1 (i.e., single carrier DS-CDMA), K = 20, P = 64,
average SNR = 20 dB. No near-far condition.

defined as A2
k/σ2. The number of users considered is K = 20,

the processing gain is P = 64, and there is no near-far effect
(i.e., A1 = A2 = · · · = AK). From Fig. 1, it can be seen that
for a given stage index m, the maximum output average SINR
occurs at an optimum weight; the closed-form expression for
this optimum weight is given by (38). The maximum average
SINR increases as m is increased. Also, we see diminishing
improvement in SINR with increasing m, as expected. Another
key observation in Fig. 1 is that, while non-unity weights are
optimum for small values of m, the optimum weights approach
unity for large m. Gpw being structurally similar to Gp except
for the weights, like Gp and G filters, Gpw is also expected to
converge to R−1 for m → ∞, and this explains why w

(m)
k,opt →

1 for m → ∞.

F. Results and Discussion

In this subsection, we present a comparison of the bit error
rate (BER) performance of different matrix filters. The various
matrix filters considered include: i) the conventional filter,
G(m), given by (8), ii) the proposed filter, Gp

(m), given by
(12), iii) the MMSE converging filter in [3], Gµ

(m), given
by (26), iv) the modified MMSE converging filter, Gpμ

(m),
given by (29), and v) the proposed weighted filter, Gpw

(m),
given by (33).

In Fig. 2, we plot the BER performance of the conventional
filter, G(m), and the proposed filter, Gp

(m), as a function of
the stage index, m, for M = 1, K = 20, P = 64, and average
SNR = 15 dB, for both no near-far (i.e., A1 = A2 = · · · =
AK) as well as near-far conditions. In all the simulations, user
1 is taken to be the desired user. Random binary sequences
are used as spreading sequences. For the near-far condition,
odd-indexed users (users 3, 5, 7, · · ·) transmit with the same
amplitude as the desired user 1, whereas the even-indexed
users (users 2, 4, 6, · · ·) transmit at ten times larger amplitude
than the desired user. The performance of the MF detector and
the DC detector are also plotted for comparison. From Fig. 2,
it can be seen that the conventional G(m) filter approaches
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Fig. 2. BER performance of various linear matrix filters – i) conventional
filter G(m), and ii) proposed filter Gp

(m) . M = 1, K = 20, P = 64,
average SNR = 15 dB. Near-far as well as no near-far conditions.

the DC detector performance rather slowly for increasing m.
Observe that the performance of the proposed Gp

(m) filter
and the conventional G(m) filter are the same for m = 2
because of no desired signal loss recovery at the 2nd stage
of both G(m) and Gp

(m). However, for m ≥ 3, the Gp
(m)

filter performs better than the G(m) filter. This is because
the Gp

(m) filter, as intended, avoids the generation of new
interference and noise terms (e.g., BI and BN terms for

m = 3) compared to the G(m) filter. The Gp
(m) filter is

found to offer greater advantage in near-far conditions, since
strong other-user interference terms in BI are avoided in the

Gp
(m).

Next, in Fig. 3, we present a comparison of the performance
of the MMSE converging Gμ

(m) filter in [3], and the modified
MMSE converging, Gpμ

(m), for the same system conditions
in Fig. 2. The performance of the MF and MMSE detectors
are also plotted for comparison. Here again, the Gμ

(m) and
Gpμ

(m) filters perform the same for m = 2. Also, both Gμ
(m)

and Gpμ
(m) are seen to approach the MMSE performance

as m is increased. For m ≥ 3, Gpμ
(m) performs better than

Gμ
(m) because of the avoidance of new interference and noise

terms. In generating the plot for Gpμ
(m), we have used the

step sizes in (28), which are actually optimum for Gμ
(m).

Even with these step sizes (which can be suboptimum for
Gpμ

(m)), the proposed Gpμ
(m) filter approaches the MMSE

performance faster than the Gμ
(m) filter.

Finally, in Fig. 4, we illustrate the performance of all the
matrix filters considered in this paper, including the proposed
weighted filter, Gpw

(m), under the no near-far condition.
The performance of the MF, DC and MMSE detectors are
also plotted. It can be observed that among all the filters
considered, the proposed weighted filter Gpw

(m) performs
the best for small values of m (m < 6, for example). In
other words, Gpw

(m) performs best in terms of convergence,
i.e., fewer stages are sufficient to yield close to DC detector
performance. This may be expected, because in the Gμ

(m) and
Gpμ

(m) filters the optimum step sizes are obtained only on a
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Fig. 3. BER performance of various linear matrix filters – i) MMSE con-
verging filter Gµ

(m), and ii) modified MMSE converging filter, Gpµ
(m) .

M = 1, K = 20, P = 64, average SNR = 15 dB. Near-far as well as no
near-far conditions.

per-stage basis, whereas in the Gpw
(m) filter the optimum

weights are obtained on a per-stage as well as a per-user
basis. The computation of the optimum weights, w

(m)
k,opt, for

the Gpw
(m) filter, using the closed-form expression in (38),

adds to the receiver complexity. However, since these optimum
weights are computed by using the average SINR expression,
the weights computation can be carried out off-line once (or
whenever users exit from or enter into the system, which
changes the correlation matrix), and this need not add to the
per-bit complexity of the canceller. In Fig. 4, we also show
the performance of the conventional weighted LPIC given in
[9], denoted by Gw

(m), for up to m = 4. As can be seen,
because of the SIR maximization using optimum weights,
the performance of the Gw

(m) filter is almost the same as
that of the proposed Gpw

(m) filter. We further note that the
optimum weights expressions for the Gw

(m) filter need to be
derived separately on a stage by stage basis – the optimum
weights expressions for up to m = 4 are given in [9],[10],
and the optimum weights derivation becomes increasingly
cumbersome for increasing m. On the other hand, the feature
of making the diagonal elements zero in the Gpw

(m) filter
allows optimum weights expressions to be obtained for any
m (given by Eqn. (38)). In terms of convergence as well as
complexity, the proposed filter Gpμ

(m) is also quite attractive.

IV. PROPOSED FILTERS IN MULTICARRIER DS-CDMA

In this section, we extend the proposed matrix filter so-
lutions in the previous section to multicarrier DS-CDMA
(i.e., for M ≥ 2). Here, the multicarrier combining (MCC)
operation has to be performed in addition to LPIC. Depending
on which operation (i.e., MCC or LPIC) gets done first at the
receiver, the resulting performances and complexities differ.

Type-I Receiver: We first consider a receiver where we
perform LPIC first on each subcarrier, followed by MCC
as shown in Fig. 5 [12]. We refer to this receiver as Type-
I receiver. We note that with this Type-I receiver using the
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Fig. 4. BER performance of various linear matrix filters – i) G(m) filter, ii)
proposed Gp

(m) filter, iii) MMSE converging Gµ
(m) filter, iv) modified

MMSE converging filter, Gpµ
(m), v) proposed weighted filter, Gpw

(m),
and vi) conventional weighted LPIC filter in [9], Gw

(m) . M = 1, K = 20,
P = 64, average SNR = 15 dB. No near-far condition.

conventional filter G(m), tractable BER analysis becomes
feasible (reported in [12]). Also, this receiver architecture can
be viewed as a direct adoption of the filters proposed for single
carrier DS-CDMA in Sec. III, on individual subcarriers in the
MC DS-CDMA system. Hence, all the matrix filters in Sec. III,
namely, Gp

(m), G(m)
μ , Gpμ

(m) and Gpw
(m), can be directly

employed on the individual subcarriers.

Type-II Receiver: Since MCC operation can provide fre-
quency diversity, performing MCC before LPIC can enhance
the accuracy of the estimates of the MAI and hence improve
performance. Accordingly, we propose a Type-II receiver,
where MCC is performed first, followed by LPIC, as shown
in Fig. 6. The output of the MC combiner in vector form,
denoted by yc(1), can be written as

yc(1) = Rc b + z, (39)

where yc(1) = [ y
c(1)
1 y

c(1)
2 · · · y

c(1)
K ]T , y

c(1)
k =∑M

i=1

(
h

(i)
k

)∗
y
(1),(i)
k , Rc �

=
∑M

i=1

(
H(i)

)H
R(i)H(i), and z =[∑M

i=1

(
h1

(i)
)∗

n
(i)
1

∑M

i=1

(
h2

(i)
)∗

n
(i)
2 · · · ∑M

i=1

(
hK

(i)
)∗

n
(i)
K

]T
.

The conventional filter at the MCC output (referred to as
Gc(m) filter) has its mth stage output vector given by

=
(

I +
m−1∑
i=1

(I − Reff )i
)

︸ ︷︷ ︸
Gc(m)

yc(1), (40)

where Reff
�
= RcHD

−1, and HD =
∑M

i=1

(
H(i)

)H
H(i).

Similar to the proposed Gp
(m) filter for single carrier DS-

CDMA in the previous section (where the idea of zeroing the
diagonal elements of a certain matrix is adopted), a proposed
matrix filter for MC DS-CDMA Type-II receiver, denoted by
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Fig. 5. Type-I Receiver for multicarrier DS-CDMA, M ≥ 2. LPIC is done
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Fig. 6. Type-II Receiver for MC DS-CDMA, M ≥ 2. LPIC is done after
multicarrier combining.

Gp
c(m), can be obtained as

yc(m)
p =

( m−1∑
j=0

Bc
j

)
︸ ︷︷ ︸

Gp
c(m)

yc(1), (41)

where Bc
n =

[
Bc

n−1 (I − Reff )
]�

, and Bc
0 = I.

A. Results and Discussions

In Fig. 7, we present the simulated BER performance
comparison between the Type-I and Type-II receivers for
MC DS-CDMA using different matrix filters. Specifically, we
compare the performance of i) Type-I receiver with the G(m)

filter, ii) Type-I receiver with the Gp
(m) filter, iii) Type-II

receiver with the Gc(m) filter, and iv) Type-II receiver with the
Gp

c(m) filter. We also compare the performance of the above
detectors with DC and MMSE detectors. Random binary
sequences of length P are used as the spreading sequences
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Fig. 7. BER performance of the proposed Type-I and Type-II receivers as a
function of stage index m for MC DS-CDMA with – i) Type-I with G(m)

filter, ii) Type-I with Gp
(m) filter, iii) Type-II with Gc(m) filter, and iv)

Type-II with Gp
c(m) filter. M = 4, K = 20, P = 64, average SNR = 14

dB. Near-far effect as described in Sec. III-F.

on each subcarrier, and the average SNR of user k is defined
as MA2

k

σ2 . In Fig. 7, we plot the BER as a function of stage
index, m, for M = 4, K = 20, P = 64, and average SNR =
14 dB. The following observations can be made from Fig. 7:

• Comparing the performance of Type-I and Type-II re-
ceivers for a given filter, we observe that Type-II receivers
perform significantly better than Type-I receivers. For
example, comparing the performance of Type-I receiver
with the G(m) filter and Type-II receiver with the Gc(m)

filter, we see that Type-II receiver with the Gc(m) filter
performs significantly better (e.g., for m = 4, Type-I with
the G(m) filter gives a BER of 8× 10−2, whereas Type-
II with the Gc(m) filter results in a BER of 2 × 10−4).
The superiority of Type-II receivers is consistent across
all filters considered, i.e., G, Gp, DC, MMSE. This
superiority of Type-II receivers is expected, since the
MAI estimates can be more accurate in Type-II, because
of frequency diversity effect of multicarrier combining
before IC.

• Like in SC DS-CDMA, in MC DS-CDMA, the proposed
Gp filter performs better than the G filter. This is
observed to be true in both Type-I as well as Type-
II receivers. For example, Type-I with the Gp

(m) filter
achieves a BER of 9 × 10−3 in just 5 stages, whereas
the same BER is achieved by Type-I with the G(m) filter
only after 15 stages. Likewise, in Type-II receivers, the
Gp

c(m) filter performs better than the Gc(m) filter.

V. CONCLUSIONS

We proposed improved LPICs for CDMA by viewing an
LPIC as a linear matrix filter. Specifically, we proposed new
linear matrix filters which achieved better performance than
other linear matrix filters in the literature. This was made
possible by avoiding the generation of certain new interference
and noise terms by making the diagonal elements of a certain
matrix equal to zero in each stage, without adding complexity.
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We also extended the proposed matrix filter solutions to
multicarrier DS-CDMA, where we considered two types of
receivers; in both types of receivers the proposed filters were
shown to outperform other filters in the literature.

APPENDIX A
EXPRESSION FOR THE 3RD STAGE G(m) FILTER OUTPUT

In this appendix, we write the expression for the 3rd stage
output of the G(m) filter (i.e., CLPIC) in an expanded form.
From (8), y(3) can be written as

y(3) =
[
I + (I − R) + (I − R)2

]
y(1)

= y(2) + (I − R)2 y(1). (42)

Equivalently,

y
(3)
k = y

(2)
k +

K∑
j=1

K∑
i�=k,j

ρkiρijy
(1)
j

= y
(2)
k +

K∑
i�=k

ρkiρiky
(1)
k︸ ︷︷ ︸

T1: case ofj=k

+
K∑

j �=k

K∑
i�=k,j

ρkiρijy
(1)
j︸ ︷︷ ︸

T2: case of j �=k

. (43)

We point out that the term T1 in the above equation recovers
the desired signal lost in the 2nd stage, and the term T2

removes the interference terms generated in the 2nd stage.
Substituting (9) and (5) in (43), we can write y

(3)
k as shown

in (44) given at the bottom of this page.

APPENDIX B
EXPRESSION FOR mTH STAGE G(m) FILTER OUTPUT, m > 3

From (8), we can write y
(m)
k for m ≥ 3 as

y
(3)
k = xk

(
1 −

K∑
j �=k

ρkjρjk

)
−

K∑
j �=k

K∑
l �=j,k

ρkjρjlxl + nk −
K∑

j �=k

ρkjnj +
K∑

i�=k

ρkiρik

[
xk +

K∑
j �=k

ρkjxj + nk

]

+
K∑

j �=k

K∑
i�=k,j

ρkiρij

[
xj +

K∑
l �=j

ρjlxl + nj

]

= xk −
K∑

j �=k

ρkjρjkxk −
K∑

j �=k

K∑
l �=j,k

ρkjρjlxl + nk −
K∑

j �=k

ρkjnj +
K∑

i�=k

ρkiρikxk +
K∑

i�=k

ρkiρik

K∑
j �=k

ρkjxj +
K∑

i�=k

ρkiρiknk

+
K∑

j �=k

K∑
i�=k,j

ρkiρijxj +
K∑

j �=k

K∑
i�=k,j

ρkiρij

K∑
l �=j

ρjlxl +
K∑

j �=k

K∑
i�=k,j

ρkiρijnj

= xk −
K∑

j �=k

ρkjρjkxk︸ ︷︷ ︸
A

−
K∑

j �=k

K∑
l �=j,k

ρkjρjlxl︸ ︷︷ ︸
C

+ nk −
K∑

j �=k

ρkjnj +
K∑

i�=k

ρkiρikxk︸ ︷︷ ︸
A

+
K∑

i�=k

ρkiρik

K∑
j �=k

ρkjxj︸ ︷︷ ︸
BI

+
K∑

i�=k

ρkiρiknk︸ ︷︷ ︸
BN

+
K∑

j �=k

K∑
i�=k,j

ρkiρijxj︸ ︷︷ ︸
C

+
K∑

j �=k

K∑
i�=k,j

ρkiρijρjkxk︸ ︷︷ ︸
D

+
K∑

j �=k

K∑
i�=k,j

ρkiρij

K∑
l �=k,j

ρjlxl︸ ︷︷ ︸
EI

+
K∑

j �=k

K∑
i�=k,j

ρkiρijnj︸ ︷︷ ︸
EN

. (44)

y
(m)
k = y

(1)
k −

(
K∑

k1 �=k

ρkk1 −
K∑

k1=1

(
K∑

k2 �=k,k1

ρkk2ρk2k1

−
K∑

k2 �=k1

K∑
k3 �=k,k2

ρkk3ρk3k2ρk2k1 + · · ·

+ (−1)m−1
K∑

k2 �=k1

K∑
k3 �=k2

· · ·
K∑

km−1 �=k,km−2

ρkkm−1ρkm−1km−2 · · · ρk3k2ρk2k1

))
y
(1)
k1

. (45)

Equivalently, (45) can be written as

y
(m)
k = y

(m−1)
k + (−1)m+1

K∑
k1=1

K∑
k2 �=k1

K∑
k3 �=k2

· · ·
K∑

km−2 �=km−3

K∑
km−1 �=k,km−2

ρkkm−1ρkm−1km−2 · · · ρk3k2ρk2k1 y
(1)
k1

. (46)

The first summation in the 2nd term on the RHS of (46) can
be split into two terms, one for k1 = k and another for k1 �= k,
as shown in (47) given at the end of the next page. For m ≥ 4,
y
(m−1)
k can be written in an alternate form as shown in (48)

given at the end of the next page. Comparing the output terms
in stages m − 1 and m in Eqns. (48) and (47), respectively,
we can observe the following.

• The desired signal loss/gain that occurred in the (m−1)th
stage (i.e., T5 in (48)) is recovered/removed in the mth
stage (see T3 in (47) and note that y

(1)
k in it has xk).

In the process, new interference terms proportional to
ρm and additional noise terms proportional to ρm−1 get
generated, due to all terms other than xk in y

(1)
k in T3.

Note that for the case of m = 3, these interference
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y
(m)
k = y

(m−1)
k + (−1)m+1

K∑
k2 �=k

K∑
k3 �=k2

· · ·
K∑

km−2 �=km−3

K∑
km−1 �=k,km−2

ρkkm−1ρkm−1km−2 · · · ρk3k2ρk2k y
(1)
k︸ ︷︷ ︸

T3

+ (−1)m+1
K∑

k1 �=k

K∑
k2 �=k1

K∑
k3 �=k2

· · ·
K∑

km−2 �=km−3

K∑
km−1 �=k,km−2

ρkkm−1ρkm−1km−2 · · · ρk3k2ρk2k1 y
(1)
k1︸ ︷︷ ︸

T4

. (47)

y
(m−1)
k = xk + (−1)m

K∑
k2 �=k

K∑
k3 �=k2

· · ·
K∑

km−2 �=km−3

K∑
km−1 �=k,km−2

ρkkm−1ρkm−1km−2 · · · ρk3k2ρk2kxk︸ ︷︷ ︸
T5: desired signal loss/gain at the (m-1)th stage output

+ (−1)m
K∑

k1 �=k

K∑
k2 �=k1

K∑
k3 �=k2

· · ·
K∑

km−2 �=km−3

K∑
km−1 �=k,km−2

ρkkm−1ρkm−1km−2 · · · ρk3k2ρk2k1xk1︸ ︷︷ ︸
T6: new interference terms generated at the (m-1)th stage output

+ nk −
K∑

k1 �=k

ρkk1nk1 +
K∑

k1=1

∑
k2 �=k,k1

ρkk2ρk2k1nk1 − · · ·

+ (−1)m
K∑

k1=1

K∑
k2 �=k1

K∑
k3 �=k2

· · ·
K∑

km−3 �=km−4

K∑
km−2 �=k,km−3

ρkkm−2ρkm−2km−3 · · · ρk3k2ρk2k1nk1 . (48)

and noise terms generated are given by BI and BN in
Eqn. (44) in Appendix A.

• The new interference terms that were generated in the
(m − 1)th stage (i.e., T6 in (48)) are removed in the
mth stage (see T4 in (47) and note that y

(1)
k1

in it has
xk1 ). In the process, new interference terms proportional
to ρm and additional noise terms proportional to ρm−1

get generated, due to all terms other than xk1 in y
(1)
k1

in
T4. Note that for the case of m = 3, these interference
and noise terms are given by EI and EN in Eqn. (44)
in Appendix A.
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