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Abstract— In this paper we propose a new speed estimation
technique, applicable to both mobile and base stations, based
on the characteristics in the power spectrum of mobile fading
channels. Our analytic performance analysis, verified by Monte
Carlo simulations, shows that our low-complexity estimator is
not only robust to both Gaussian and non-Gaussian noises,
but also insensitive to nonisotropic scattering observed at the
mobile. The estimator performs very well in both two- and three-
dimensional propagation environments. The robustness against
both nonisotropic scattering and line of sight can be further
increased, by taking advantage of resolvable paths in wideband
fading channels, due to the differences among the Doppler spectra
observed at different paths. We also extend this technique to
base stations with antenna arrays. By exploiting the spatial
information, the proposed space-time estimator exhibits excellent
performance over a wide range of noise power, nonisotropic
scattering, and line-of-sight component, verified by simulation.
The utility of the new method is further demonstrated by
applying it to the measured data.

Index Terms— Doppler estimation, velocity estimation, fading
channels, multipath channels, correlation, Doppler spectrum,
multiple antennas, macrocell.

I. INTRODUCTION

THE mobile speed, or the maximum Doppler frequency,
reflects the rate of channel fluctuations, and plays a

vital role in wireless mobile applications such as handoff,
adaptive modulation, equalization, power control, etc. [1]
[2]. Therefore, one needs to accurately estimate the mobile
speed under different channel conditions. There are three
major classes of speed estimation techniques: crossing-based
methods, covariance-based methods, and maximum likelihood
(ML) based methods. Crossing-based approaches [3] rely
on counting the number of received signal’s level crossing
which is proportional to the mobile speed, while covariance-
based algorithms exploit the maximum Doppler frequency
information which exists in the sample autocovariance of the
received signal [4] [5] [6] [7] [8]. However, both crossing-
based and covariance-based speed estimators are sensitive
to noise, especially for small Doppler spreads [2] [3] [9].
Although the ML-based estimators [10] [11] are optimal
or near optimal, they are complex to implement, need the
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knowledge of signal-to-noise-ratio (SNR), and require that the
noise be Gaussian. Furthermore, the effects of nonisotropic
scattering and line-of-sight (LOS) on ML-based estimators
are not investigated in [10] and [11]. Wavelet and pattern
recognition methods are also used for speed estimation [12]
[13], but they are computationally intensive. Recently, two
other methods are proposed to estimate Doppler spread by
integrating [14] or differentiating [15] [16] the power spectrum
density of the mobile fading channel.

In this paper, we propose a new technique, with low
complexity, which is not only robust against noise, including
both Gaussian and impulsive non-Gaussian, but also insen-
sitive to nonisotropic scattering and LOS. The impact of
three dimensional (3-D) propagation which is more likely
in urban environments [17] is investigated as well. Two
single-antenna-based speed estimators are proposed for the
mobile station (MS), relying on the new technique, applicable
to both narrowband and wideband channels. Moreover, the
performance of the new technique is thoroughly compared
with two nonparametric approaches suggested in [14] and [15].
Using the antenna array at the base station (BS), a space-
time estimator is also developed. Mathematical performance
analysis of the single-antenna estimators is also presented and
confirmed via Monte Carlo simulation.

The organization of this paper is as follows. Signal, channel,
and noise models are discussed in Section II, whereas the new
speed estimation technique and the associated single-antenna
solutions are presented in Section III. Extension to multiple an-
tennas is given in Section IV. Section V includes mathematical
performance analysis of single-antenna estimators. Section VI
provides numerical results obtained via extensive Monte Carlo
simulations. Comparison with measured data is carried out in
Section VII, and Section VIII concludes the paper.

II. SIGNAL, CHANNEL AND NOISE MODELS

The received lowpass complex envelope in a noisy Rician
frequency-flat fading channel, in response to an unmodulated
carrier, is

z(t) = h(t) + v(t), (1)

where v(t) represents the noise and h(t) includes the random
diffuse component hd(t) and the deterministic LOS compo-
nent

h(t) =

√
σ2

h

K + 1
hd(t) +

√
Kσ2

h

K + 1
e−j2πfDt cos α0 sin β0+jφ0 .

(2)
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In eq. (2), hd(t) is a zero-mean unit-power complex Gaussian
process, σ2

h = E[|h(t)|2] is the average power of h(t), and
Rice factor K is the ratio of the LOS power to the diffuse
power. In the LOS component, fD = ν/λ = νfc/c is the
maximum Doppler frequency in Hz, ν is the MS speed, λ is
the wavelength, fc is the carrier frequency, and c is the speed
of light. We also have j2 = −1, α0 and β0 stand for the
angle-of-arrival (AOA) in the horizontal and vertical planes,
respectively, and φ0 is the phase of the LOS component.

In wireless mobile systems, the complex noise process v(t)
in (1) is the superposition of two components: the receiver
thermal noise ng(t) and the man-made noise nimp(t) [18].
The receiver noise is commonly modeled as a white Gaussian
process, whereas the man-made noise, generated by electrical
equipments such as the vehicle ignition system, neon signs,
etc., has an impulsive non-Gaussian characteristic, very dif-
ferent from the Gaussian noise, and appears in the frequency
spectrum up to 7 GHz [18]. We use Middleton’s Class-A
model where the probability density functions (PDF) of the
non-Gaussian noise v(t), with zero-mean and variance σ2

v , can
be written as [19] [20]

g(v) = e−A
∞∑

k=0

Ak

k!πσ2
k

exp

(
−|v|

2

σ2
k

)
, (3)

where σ2
k = σ2

v((k/A)+Γ)/(1+Γ), with Γ denoting the power
ratio of ng(t) over nimp(t) , and parameter A is called the
impulsive index. Small values of A indicate a highly impulsive
noise whereas large A corresponds to a near-Gaussian one.

The autocorrelation function of hd(t) is defined by rhd(τ) =
E[hd(t)hd∗(t + τ)] with ∗ as the complex conjugate. In
a general 3-D environment with unit-gain isotropic receive
antenna , rhd(τ) can be expressed as [21]

rhd(τ) =
∫ π

θ=0

∫ 2π

φ=0

ej2πfDτ cos φ sin θq(θ)p(φ) sin θdφdθ,

(4)
in which p(φ) and q(θ) sin θ are the PDFs of the AOA
in the azimuth and elevation planes, respectively. For 2-D
propagation, i.e., q(θ) = δ(θ − π/2), where δ(.) is the Dirac
delta function, together with von Mises PDF for p(φ), (4) can
be written as [22]

rhd(τ) =
I0

(√
κ2 − 4πf2

Dτ2 + j4πκfDτ cos α
)

I0(κ)
, (5)

where α ∈ [−π, π) is the mean direction of the azimuth AOA,
κ ≥ 0 controls the width of the azimuth AOA, and I0(.)
is the zero-order modified Bessel function of the first kind.
Consequently, the power spectral density (PSD) of hd(t) is
given by [22]

Ωhd(f) =

e
κ cos αf

fD cosh

(
κ sinα

√
1−

(
f

fD

)2
)

πI0(κ)
√

f2
D − f2

, |f | ≤ fD,

(6)

where cosh(.) is the hyperbolic cosine.
For 3-D scattering, we consider the model where the

azimuth and elevation AOAs are uniformly distributed over

[−π, π) and [−β, β], respectively. In this channel, (4) is
expressed as [17]

rhd(τ) =
1

2 sin β

∫ π
2 +β

θ= π
2−β

J0(2πfDτ sin θ) sin θdθ, (7)

in which J0(.) is the zero-order Bessel function of the first
kind. The corresponding PSD of hd(t) is [17]

Ωhd(f) =





sin−1

(
sinβ

cos βf

)

πfD sinβ
, 0 ≤ |f | < fD cos β

1
2fD sinβ

, fD cos β ≤ |f | ≤ fD

, (8)

where βf = sin−1(f/fD).
If LOS is present, the autocorrelation function of the Rician

fading channel is easy to derive as

rh(τ) =
σ2

h

K + 1
rhd(τ) +

Kσ2
h

K + 1
ej2πfDτ cos α0 sin β0 . (9)

III. THE NEW SPEED ESTIMATION ALGORITHM

By looking at the basic fading spectrum for 2-D isotropic
scattering, which is proportional to (f2

D − f2)−1/2 [2], one
can easily observe the two singularities at f = ±fD. These
peaks at the maximum Doppler frequency remain to exist,
even with nonisotropic scattering, LOS, and 3-D propagation
1, irrespective of the PDF of noise. Therefore, to estimate fD,
we propose to estimate the spectrum of the received signal in
(1), and then find the frequency at which the spectrum has
a maximum. There are many methods to estimate the PSD
of a random signal [25]. We have chosen the periodogram-
based nonparametric spectrum estimation technique due to
its simplicity. We have also observed that more complex
nonparametric PSD estimators provide the same performance
as the periodogram, when applied to our speed estimation
problem. In this section, we propose two fD estimators for
frequency-flat and frequency-selective channels, respectively.

A. The Speed Estimator in Narrowband Channels

Consider the N -sample discrete-time version of z(t) with
duration T , {z[n] = x[n] + jy[n]}N−1

n=0 , with x and y as the
real and imaginary parts, respectively, and define the PSD of
{z[n]}N−1

n=0 as Sz(µ). In the absence of aliasing, Sz(µ) is the
scaled version of the PSD of the continuous signal z(t), Ωz(f),
given by [25]

Sz(µ) = fsΩz(µfs), |µ| ≤ 1/2, (10)

where fs = N/T is the sampling frequency of z(t). Sz(µ)
can be estimated directly from the data, using the periodogram

1Peaks at the Doppler spectrum bandlimits are not present for all channel
models. See, for example, the one given in [23]. Another example is the
Doppler spectra for mobile-to-mobile channels in ad-hoc wireless networks,
which often have large peaks near the zero frequency[24]. In such cases,
the method of [14] could be a better choice, when the estimator parameters
are chosen properly. The channel models used in the present manuscript are
commonly used in the literature and are widely adopted by current wireless
cellular systems such as GSM and WCDMA.
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defined as

Ŝz(µk) =
1
N

∣∣∣∣∣
N−1∑
n=0

z[n]e−j2πµkn

∣∣∣∣∣

2

, µk =
k

N
, (11)

where k = 1 − N
2 , ..., N

2 and N is even. Note that (11) can
be efficiently computed via fast Fourier transform (FFT). The
proposed estimator is then given by

f̂D = fs ×
∣∣∣∣arg max

µk

Ŝz(µk)
∣∣∣∣ . (12)

B. The Speed Estimator in Wideband Channels

Consider an I-tap wideband channel H(τ, t), with hi(t)
being the i-th channel gain corresponding to the propagation
path with the excess delay τi

H(τ, t) =
I∑

i=1

hi(t)δ(τ − τi). (13)

Wideband channel measurements conducted at the MS exhibit
a variety of different Doppler spectrum shapes at different
propagation paths [26]. As we will see later, this special
feature is particularly useful to decrease the estimation error
due to some strong nonisotropic scattering and/or LOS which
may occur. Based on (12), the speed estimator in frequency
selective channels can be written as

f̂D = max
{

f̂ i
D

}I

i=1
, 2 (14)

where f̂ i
D = fs ×

∣∣∣∣arg max
µk

Ŝzi(µk)
∣∣∣∣. Note that according to

(10), Ŝzi
(µk) is the the estimated Doppler spectrum of the i-th

path.

IV. THE SPACE-TIME SPEED ESTIMATION ALGORITHM

In this section, we extend our algorithm to a system with
multiple receive antennas in narrowband channels. Consider a
uniform linear antenna array at the elevated BS of a macro-
cell, composed of L omnidirectional unit-gain elements, with
element spacing d. The BS experiences no local scattering,
whereas the single antenna MS is surrounded by local scatters.
When MS transmits an unmodulated carrier, with the received
signals at the l-th element zl(t) = hl(t)+vl(t), l = 1, 2, ..., L,
the space-time crosscorrelation function between za(t) and
zb(t), defined by rz((b − a)∆, τ) = E[za(t)z∗b (t + τ)] with
∆ = d/λ, can be written as

rz((b− a)∆, τ) = rh((b− a)∆, τ) + rv(τ)δa−b, (15)

where rv(τ) = E[vl(t)v∗l (t + τ)], l = 1, 2, ..., L, is the auto-
correlation function of the noise component at each branch, δc

is the Kronecker delta function, 1 for c = 0 and 0 otherwise,

2One way to resolve different propagation paths is to use spreading codes
[2]. If different paths cannot be resolved, then one needs to use the proposed
narrowband speed estimator.

and rh((b − a)∆, τ) = E[ha(t)h∗b(t + τ)], when considering
2-D scattering, given by [27]

rh((b− a)∆, τ) =
Kσ2

h

K + 1
exp (j(u + w) cos α0) +

σ2
h

K + 1

×
I0

(√
κ2 − u2 − w2 − 2uw + j2κ(u + w) cos α

)

I0(κ)
, (16)

where u = 2πfDτ , and w = 2π(a−b)∆ with 1 ≤ a ≤ b ≤ L.
Note that in (16) we made reasonable assumption of equal
receive power σ2

h and Rician factor K at each antenna. The
noise components are independent at different elements, with
the same power σ2

v .
According to the experiments conducted at different loca-

tions and frequencies [28] [29] [30] [31], the angle spread at
the BS is generally small for macrocells in urban, suburban,
and rural areas, most often less than 30◦, which corresponds
to κ ≥ 14.6, and in some cases very small, say, less than 10◦,
which translates into κ ≥ 131.3 [27] [32]. In such heavily
nonisotropic scattering environments, the PDF of the diffuse
AOA at the BS can be accurately approximated by a Gaussian
PDF with mean α and variance 1/κ [27]. Due to the small
angle spread at the BS, it is reasonable to assume α0 = α.

When the channel experiences such heavily nonisotropic
scattering, the performance of our estimator degrades. In fact,
as proved in Appendix I, the Doppler spectrum Ωhd(f) of
the heavily nonisotropic channel has only one strong peak
approximately at f = fD cos α, while the peaks at f = ±fD

virtually disappear. However, for each branch zl(t), still we
can use the same technique as (12), which provides us with
an accurate estimate of fD cos α

f̂ l
D,α = fs ×

∣∣∣∣arg max
µk

Ŝzl
(µk)

∣∣∣∣ . (17)

On the other hand, by setting τ = 0 in (15), together with the
Gaussian approximation for AOA, the spatial cross correlation
function rz((b − a)∆, 0) = E[za(t)z∗b (t)], 1 ≤ a ≤ b ≤ L,
can be accurately approximated by [27]

rz((b− a)∆, 0) = rh((b− a)∆, 0)

≈
{

σ2
h

K + 1
exp

(
−w2 sin2 α

2κ

)
+

Kσ2
h

K + 1

}
ejw cos α, (18)

where rz(·, 0) = rh(·, 0), 1 ≤ a < b ≤ L, due to the spatial
independence of noise components at different branches. Now,
we can estimate cos α via

ĉos α ≈ ]r̂z(∆, 0)
−2π∆

, (19)

where ] denotes the phase of a complex number and r̂z(∆, 0)
is the estimate of rz(∆, 0) = E[za(t)z∗a+1(t)], ∀ a ∈ [1, L−1],
given by

r̂z(∆, 0) =
1

L− 1

L−1∑

l=1

r̂l
z(∆, 0). (20)

In eq. (20), r̂l
z(∆, 0) = N−1

∑N−1
n=0 zl(n)z∗l+1(n), l ∈ [1, L−

1], is the l-th adjacent-antenna-pair estimate of rz(∆, 0).
Finally, fD can be estimated via

f̂D = f̂D,α/ĉos α, (21)
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where f̂D,α = L−1
∑L

l=1 f̂ l
D,α, and f̂ l

D,α and ĉos α are given
in (17) and (19), respectively.

V. ANALYTIC PERFORMANCE ASSESSMENT

The performance of the estimator can be measured by using
the root mean squared error (RMSE) criterion

{
E[(f̂D − fD)2]

} 1
2

=
{

V ar[f̂D] + (E[f̂D]− fD)2
} 1

2
,

(22)
where the first term in the right-hand side of (22) is the
variance and the second stands for the bias of the estimator.
In this section, first we derive the key result for the speed
estimator in (12) for narrowband channels, and then extend it
to estimator in (14) for wideband channels.

It can be shown [33] that for a zero-mean proper complex
Gaussian random process z(t), the elements of the sequence
{Ŝz(µk)}N/2

k=1−N/2 are asymptotically independent as N →
∞, with an exponential PDF

pŜz(µk)(s) =
1

S̄z(µk)
exp

{
− s

S̄z(µk)

}
, s > 0, (23)

where S̄z(µk) is the mean of Ŝz(µk).
In the absence of both LOS and impulsive noise, z(t) in (1)

is a zero-mean proper complex Gaussian random process [34].
Now define f̂max = fs×arg max

µk

Ŝz(µk) so that f̂D =
∣∣∣f̂max

∣∣∣.
Obviously f̂max is a discrete random variable, taking N values
from the set {fsµk}N/2

k=1−N/2. Let Ei denote the event where µi

is the discrete frequency at which Ŝz(·) achieves its maximum.
Then the probability mass function (PMF) of f̂max can be
obtained as

pf̂max
(fi) = P(f̂max = fi) = P(Ei)

= P
{

Ŝz(µi) = max
(
{Ŝz(µk)}N/2

k=1−N/2

)}

=
∫ ∞

0

P
{

Ŝz(µ1−N/2) < s, ..., Ŝz(µN/2) < s
}

︸ ︷︷ ︸
N−1 terms

pŜz(µi)
(s)ds,

(24)

where fi = fs × µi = i/T , 1 − N/2 ≤ i ≤ N/2.
Since {Ŝz(µk)}N/2

k=1−N/2 includes independent random vari-
ables when N is large, (24) simplifies to

pf̂max
(fi) =

∫ ∞

0

N/2∏

l=1−N/2,l 6=i

PŜz(µl)
(s)pŜz(µi)

(s)ds, (25)

where PŜz(µk)(s) is the cumulative distribution function
(CDF) of Ŝz(µk), given by

PŜz(µk)(s) = 1− exp
{
− s

S̄z(µk)

}
, s > 0. (26)

After substituting (23) and (26) into (25), we obtain

pf̂max
(fi) =

∫ ∞

0

N
2∏

l=1−N
2

(
1− exp

{
− S̄z(µi)

S̄z(µl)
s

})
e−s

1− e−s
ds.

(27)

Finally we have

pf̂D
(fi) = pf̂max

(fi) + pf̂max
(f1−i), i = 0, 1, ...,

N

2
. (28)

Note that if N → ∞, for a fixed T , then Sz(µi) →
Sz(µi) = fsΩz (µifs) [25]. In this case, (27) can be written
in terms of the PSD of the continuous-time signal z(t) as

pf̂max
(fi) =

∫ ∞

0

N
2∏

l=1−N
2

(
1− exp

{
−Ωz (fi)

Ωz (fl)
s

})
e−s

1− e−s
ds.

(29)
Based on (29) and (28), it can be shown that with large N ,
as T increases, pf̂D

(fi) becomes more spiky around the true
Doppler fD and the estimation error decreases accordingly.
Needless to say, the performance of the new estimator can be
numerically calculated by substituting (27) and (28) into (22).
Monte Carlo simulation results presented in the next section
further confirm the accuracy of the analysis of this section.

Now we derive the PDF of the speed estimator in (14)
for wideband channels. Since zi(t)’s of different propagation
paths can be reasonably modeled as independent processes,
the corresponding speed estimates f̂ i

D in (14) are independent
as well. Therefore, similar to the derivation of eq. (25), it can
be shown that

pf̂D
(fl) =

I∑

i=1

I∏

q=1,q 6=i

Pf̂q
D

(fl)pf̂i
D

(fl), l = 0, 1, ..., N/2,

(30)
where Pf̂q

D
(fl) is the CDF of f̂q

D and can be readily evaluated
using (27) and (28).

VI. NUMERICAL AND MONTE CARLO SIMULATION
RESULTS

In this section, we first investigate the performance of
the single-antenna speed estimators in (12) and (14), and
validate the theoretical performance analysis by Monte Carlo
simulations. Then we simulate the performance of the array-
based estimator in (21). The performance comparison with
two nonparametric speed estimators proposed in [14] and
[15][16] is also conducted in a narrowband channel scenario.
All curves are obtained via Monte-Carlo simulation, except
those identified by ”The” in the legend box, which stands for
”Theory”.

In each simulation, except mentioned otherwise, 500 in-
dependent realizations of Q zero-mean complex Gaussian
processes are generated using the spectral method [35], with
N = 256 complex samples per realization, over T = 1
second, where Q = 1, I, L, to simulate narrowband and
wideband channels for the single-antenna estimators, and the
space-time channel for the array-based estimator, respectively.
Also we choose the antenna spacing of ∆ = 1/2 for the
array-based estimator. If not explicitly mentioned, the noise
is Gaussian with a 10 dB signal-noise-ratio (SNR), defined
by σ2

h/σ2
v , where σ2

v is the power of the band limited noise
with a flat spectrum. The receiver bandwidth B is fixed at
101 Hz, assuming that the largest possible maximum Doppler
frequency fD is 101 Hz.
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A. Speed Estimator in a Narrowband Channel

First we use Monte Carlo simulation to validate our theo-
retical performance evaluation results in a general scattering
environment with 2-D nonisotropic AOA and Gaussian noise
in a Rayleigh channel with a single antenna

rz(τ) =σ2
h

I0

(√
κ2 − 4πf2

Dτ2 + j4πκfDτ cos α
)

I0(κ)

+ σ2
v

sin(2πBτ)
2πBτ

. (31)

Then, we examine the effect of LOS, non-Gaussian impulsive
noise, and 3-D propagation, on the performance, via Monte
Carlo simulation.

We also compare the proposed estimator with two nonpara-
metric estimators. The first one, suggested in [14], uses the
normalized cumulative periodogram (NCP) and is given by

f̂BB
D = fs × p

N
. (32)

In this estimator. p is the minimum index that satisfies

Fp > ψ, (33)

in which

Fp =
Ŝz(µ0)

χ
+

∑p
k=1

(
Ŝz(µk)

χ
+ Ŝz(µ−k)

χ
)

∑N/2
k=1−N/2 Ŝz(µk)

χ . (34)

In the simulations, χ = 1 and ψ = 0.9 are chosen, as recom-
mended in [14]. The other nonparametric estimator[15][16]
searches for the peak of the differentiated power spectra of
fading channels. This estimator can be written as

f̂SM
D = fs ×

∣∣∣∣arg max
µk

Ṡz(µk)
∣∣∣∣ , (35)

where
Ṡz(µk) =

∣∣∣Ŝz(µk)− Ŝz(µk−1)
∣∣∣ . (36)

The curves obtained using our proposed estimator is denoted
by PSD in the legend boxes.

In Fig. 1, simulations are shown for isotropic scattering,
κ = 0, which closely match our theoretical result. The
accuracy of the estimator for the 10 dB SNR is remarkable,
when compared with other methods summarized in [3] and [9].
The new estimator also slightly outperforms the nonparametric
estimator in (35) because the differentiation in (35) magnifies
the effect of noise. For small Dopplers, the proposed estimator
shows a better performance than the other nonparametric
estimator in (32). This is because the estimator parameters
χ and ψ in estimator (32) depend on the channel conditions
which are generally unknown a prior.

The estimation error versus the nonisotropic scattering
parameter κ with different α’s is shown in Fig. 2, where
the true Doppler is 41 Hz. Again, the simulation and theory
perfectly match. Note that 0 ≤ κ ≤ 3.3 represents typical
scatterings observed at the mobile, obtained from experimental
data collected at a variety of propagation environments [22].
The proposed estimator is generally robust to nonisotropic
scattering seen at the mobile and its performance degrades
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Fig. 1. Performance over a Rayleigh fading channel, isotropic scattering
(SNR=10 dB).
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Fig. 2. Effect of κ and α in a Rayleigh fading channel (fD = 41 Hz,
SNR=10 dB)

only for highly directive scenarios with α → 90◦. In this
case the strongest peak moves away from ±fD. Now we
compare the sensitivity to nonisotropic scattering of the three
nonparametric estimators. It appears (the simulation results are
not shown here due to the space limitation.) that estimator in
(32) exhibits better performance at highly directive scenarios
with α → 90◦.

The estimation error with respect to different SNRs, for
fD = 41 Hz, is shown in Fig. 3. As we see, the proposed speed
estimator and the one in (35) provide the best performance,
even for SNRs as low as 5 dB. On the other hand, the estimator
in (32) degrades at low SNRs. This is because the selection of
estimator parameters χ and ψ in (32) depends on the channel
characteristics, including the noise level.

Fig. 4 illustrates the estimation error versus fD , when the
mobile receives a LOS in Rician fading with K = 5. One
observes that the performance degrades to some extent as α0

increases because the strongest peak shifts away from fD. On
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Fig. 4. Performance over a noisy Rician fading channel (SNR=10 dB, K = 5,
κ = 2.1, α = 10.8◦).

the other hand, the LOS component is able to improve the
estimator’s performance, where α0 is small. This is due to
the impulse generated by LOS at f = fD cos α0. We will
see in the next subsection that this dependency on LOS can
be easily removed in wideband channels. The comparison
in Fig. 4 shows that the new estimator provides almost the
same performance as the estimator in (35). It outperforms the
estimator in (32) for low Doppler spreads, but degrades at
moderate and high Doppler spreads, as α0 → 90◦.

To look at the effect of the impulsive noise, we consider
(Γ = 0.01, A = 0.1) and (Γ = 0.01, A = 10), which indicate
that the channel noise is highly impulsive and near-Gaussian,
respectively [36]. As shown in Fig. 5, the new estimator is
insensitive to the PDF of noise, as expected. The impact of
3-D scattering on speed estimation is shown in Fig. 6. One
can see that the new method is still able to provide accurate
Doppler estimation over a wide range of mobile speeds. Again,
in both cases of β = 5◦ and β = 25◦, the proposed estimator
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Fig. 5. Performance over a Rayleigh fading channel with impulsive-noise
(κ = 2.1, α = 10.8◦).
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demonstrates the same or slightly better performance than the
estimator in (35). At small Dopplers, the proposed estimator
performs better than the estimator in (32).

Now we discuss the effect of the observation time T and
the sample size N . First we simulated the estimation error
with respect to T in a noiseless isotropic Rayleigh fading
channel with fD = 41Hz (simulation results not shown
due to space limitation.). We observed that, among the three
nonparametric estimators, the proposed estimator was more
robust to the estimation window length T . Even with a small
observation time, say, T = 10ms, the numerical analysis
was still accurate and matched the simulation. Moreover, the
simulated estimation error with respect to N , for a noiseless
isotropic Rayleigh fading channel with fD = 41Hz and
the observation time window T = 0.1s showed that all the
estimators were fairly insensitive to N . We also observed that
the theoretical performance analysis was still accurate enough,
even with N as small as 32.
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B. Speed Estimator in a Wideband Channel

As we have seen in Fig. 2 and Fig. 4, the performance of
the proposed narrowband estimator degrades in nonisotropic
scattering environments as α → 90◦ or in the presence of
LOS as α0 → 90◦. This is due to the spike generated at
f = fD cos α and fD cos α0, respectively. However, according
to the experiments conducted at the MS [26], the Doppler
spectra observed at different propagation paths of the wide-
band channel have different shapes. In fact, only the first path
or the second path may include LOS or a specular component.
Furthermore, the spectra of longer paths are closer to U-
shape Clarkes’ spectrum, with clear peaks at ±fD. These
observations serve as strong motivations for using (14). With
I denoting the total number of paths, the total signal power
is σ2

h =
∑I

i=1 σ2
hi

, where σ2
hi

is the received signal power
via the ith path. We take the number of available paths as
I = 5 and consider the exponential power delay profile such
that σ2

hi
= σ2

h1
exp{−η(τi − τ1)} [37], where τi = i/5 µs,

1 ≤ i ≤ 5.
In simulating (14), we only picked up the first

three paths as SNR in the last two paths is small.
The statistics of the first three paths for scenario
1 are given by (K = 5, α0 = 60◦, κ = 3, α = 36◦),
(K = 0, κ = 3, α = 36◦), and (K = 0, κ = 2.1, α = 10.8◦),
respectively, whereas in scenario 2 we have
(K = 0, κ = 10, α = 60◦), (K = 0, κ = 3, α = 36◦), and
(K = 0, κ = 2.1, α = 10.8◦). Clearly in scenario 1 there is
a LOS in the first path, with mildly nonisotropic scattering
in all the paths, whereas in scenario 2 there is no LOS, but
strong nonisotropic scattering in the first path and mild ones
in the second and third. Although the path SNR decreases
by the path delay, one can still obtain sufficiently accurate
Doppler estimate, as shown in Fig. 7, due to the robustness of
our nonparametric technique to noise, already demonstrated in
Fig. 3. Note that the total SNR here is still 10 dB. Obviously
by taking advantage of multiple paths, the negative impacts
of LOS and strong nonisotropic scattering are avoided. Fig.
8 illustrates the effect of η on the performance for scenario
2, at fD = 41 Hz. When η is large, the first path, which
is heavily nonisotropic, becomes the dominant path. This is
why the performance degrades. In Figs. 7 and 8, our analytic
results match the simulations.

C. The Space-Time Speed Estimator with Multiple Antennas

The space-time crosscorrelation of fading channel with
multiple antennas used in the subsequent simulations is

rz((b−a)∆, τ) = rh((b−a)∆, τ)+σ2
v

sin(2πBτ)
2πBτ

δa−b, (37)

where rh((b − a)∆, τ) is given in (16). As shown in Fig.
2, heavily nonisotropic scattering, normally experienced by
BS in macrocells, could degrade the performance, if the
single-antenna estimator in (12) is applied directly. Fig. 9
illustrates the performance of the space-time speed estimator
in (21), versus the number of antenna elements L, in different
propagation scenarios, for fD = 41 Hz. Clearly the estimation
error decreases significantly as L increases from one to two,

1 11 21 31 41 51 61 71 81 91 101
0

0.5

1

1.5

2

2.5

3

f
D

 (Hz)

R
M

S
E

 (
H

z)

Scen.1,Sim
Scen.2,Sim
Scen.2,The

Fig. 7. Performance of the speed estimator in wideband channels (η = 1,
SNR=10 dB)

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

22

η

R
M

S
E

 (
H

z)

Scen.2,Sim
Scen.2,The

Fig. 8. Effect of η (SNR=10 dB, fD = 41 Hz)

because of the spatial information used. However, further
increase in L does not result in much performance gain, as

the L estimates
{

f̂ l
D,α

}L

l=1
in (21) are highly correlated, due

to the small element spacing. This observation indicates that
the space-time estimator is actually applicable to BS arrays
with any shape or configuration, via using only two adjacent
antennas. In the sequel, we choose L = 2 as well.

Fig. 10 illustrates the RMSE versus fD, for both Rayleigh
and Rician channels with the scattering scenario (κ = 100,
α = 60◦, α0 = 60◦). Clearly the performance of the array-
based estimator is much better, for different Rice K factors.
The effect of κ and α on the performance, for fD = 41
Hz, is shown in Fig. 11. Obviously the array-based estimator
provides much smaller estimation error, for different values
of α. Finally, the effect of element spacing ∆ is simulated
in different scattering environments, for fD = 41 Hz. We
have also observed that the array-based estimator is fairly
insensitive to the choice of ∆. For example, for fD = 41
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Hz, κ = 100, α = 60◦, and L = 2, in Rayleigh fading, the
RMSE changes within 1.5 Hz, as ∆ varies from 0.25 to 1.

VII. APPLICATION TO MEASURED DATA

In this section, we compare our proposed PSD-based esti-
mator in (12) (PSD) with seven other methods: five crossing-
based methods which consist of the inphase zero crossing rate
estimator (IZCR) [3], envelope level crossing rate estimator
(ELCR) [3], inphase rate of maxima estimator (IROM) [3],
envelope rate of maxima estimator (EROM) [3], instantaneous
frequency zero crossing rate estimator (FZCR) [9], and two
covariance-based methods which include the inphase integra-
tion estimator (IINT) [3] and envelope integration estimator
(EINT) [3]. We also compare our estimator with two non-
parametric estimators (32) and (35) which for convenience
are denoted as BB and SM respectively. They are all applied
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Fig. 11. Performance of the space-time speed estimator (SNR=10 dB, L = 2,
∆ = 0.5): Effect of κ and α in a Rayleigh multiple-antenna channel (fD =
41 Hz) .

to the narrowband measured data, collected at 910.25 MHz,
in urban and suburban areas [22]. A vehicle, moving with
the constant speed of 15 mph, fD = 20 Hz, has collected
sets of narrowband inphase and quadrature components, at
different locations, recorded as #0011, and so on. The signals
are filtered by a 42-tap digital Kaiser filter. The bandwidth
was 1 kHz to reject out-of-band noise, but large enough to
pass through the signal Doppler spectrum unchanged. Each
inphase (quadrature) component has approximately 250,000
samples, one sample per 28 microseconds. More information
about the data can be found in [22].

Without any further preprocessing and for each record,
IZCR, ELCR, IROM, EROM, FZCR, IINT, EINT, BB, SM,
and the proposed nonparametric PSD estimator are used to
estimate the maximum Doppler frequency from data segments
of length 0.56 ms, 200 samples per segment. Each record
includes nearly 1250 segments, and for a given method, 1250
estimates are obtained and combined by a simple averaging.
Based on Fig. 12, PSD demonstrates the best performance
and exhibits more accurate estimates for different records.
To see the effect of the number of samples, we chose larger
data segments, 1.4 ms each with 500 samples, and the results
show that the performance of FZCR degrades significantly
while the RMSE of IZCR, BB and SM decreases, and the
PSD is much more consistent and still the best. Overall,
our proposed PSD-based speed estimator is able to provide
significant performance improvement, when compared with
traditional techniques.

VIII. CONCLUSION

In this paper we have proposed a robust speed estimation
technique, based on the unique spectral features of the mobile
wireless fading channel. As a result, two temporal only speed
estimators which are applicable to narrowband and wideband
channels, and one space-time speed estimator based on an
antenna array, are developed. The effects of noise, nonisotropic
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scattering with two and three dimensional propagations, and
line-of-sight are extensively investigated through mathematical
performance analysis and Monte Carlo simulations. Compar-
ison with conventional speed estimation methods, using data
collected in urban and suburban areas, has demonstrated the
utility of the new approach in real-world scenarios.

APPENDIX I
THE PEAK IN THE DOPPLER SPECTRUM

The power spectral density (PSD) of the unit-power hd(t)
for an arbitrary 2-D AOA distribution p(φ), with a unit-gain
isotropic receive antenna can be expressed as [2]

Ωhd(f) =
1√

f2
D − f2

(p(φ) + p(−φ)) , (38)

where φ = cos−1(f/fD). In a heavily nonisotropic scattering,
i.e., κ > 10, p(φ) is approximately Gaussian with mean
α and variance 1/κ [27], and we observe p(φ)/ p(−φ) =
exp(2κφα). Clearly, as κ →∞ and for a given f , Ωhd(f) ≈
p(φ)/

√
f2

D − f2 when α and φ have the same sign, and
Ωhd(f) ≈ p(−φ)/

√
f2

D − f2, when α and φ have opposite
signs. Without loss of generality, we choose positive α and φ,
which yields

Ωhd(f) ≈ p(φ)√
f2

D − f2
=

√
κ

2π(f2
D − f2)

× exp

{
−κ

(
cos−1 (f/fD)− α

)2

2

}
. (39)

By taking the derivative of (39) with respect to f and
setting it to zero, with the assumption of f 6= ±fD and some
simplifications, we obtain

1
κ

+

((
fD

f

)2

− 1

) 1
2 (

cos−1

(
f

fD

)
− α

)
= 0. (40)

When κ À 1, f = fD cos α is the root of eq. (40). To verify
f = fD cos α corresponds to the maximum of Ωhd(f) in (39),

we look at the second derivative of (39) with respect to f at
f = fD cos α

−
√

κ(κ− 4− (κ + 2) cos(2α))
2
√

2πf3
D sin5 α

, (41)

which is negative for α > 0, when κ À 1.
To show that the peak at f = fD cos α includes most of the

unit power of hd(t) as κ →∞, using the method of Laplace
[38], one can obtain the power centered around f = fD cos α,
over a sufficiently small bandwidth ε, as follows

∫ fD cos α+ε/2

fD cos α−ε/2

Ωhd(f)df ≈ erf(U
√

κ/2), (42)

where erf(x) = 2π−1/2
∫ x

0
e−t2dt is the error function, and

U =
∣∣cos−1(cos α + 0.5f−1

D ε)− α
∣∣. Since U is a finite

positive number, the above integral converges to 1 as κ →∞.
So, for large κ, the power is mostly concentrated at fD cos α.
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