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Server Allocation with Delayed State Observation:
Sufficient Conditions for the Optimality of an
Index Policy

Navid Ehsan and Mingyan Liu

Abstract—In this paper we study an optimal server allocation
problem, where a single server is shared among multiple queues
based on the queue backlog information. Due to the physical
nature of the system this information is delayed, in that when
the allocation decision is made, the server only has the backlog
information from an earlier time. Queues have different arrival
processes as well as different buffering/holding costs. The ob-
jective is to minimize the expected total discounted holding cost
over a finite or infinite horizon. We introduce an index policy
where the index of a queue is a function of the state of the queue.
Our primary interest is to characterize conditions under which
this index policy is optimal. We present a fairly general method
bounding the reward of serving one queue instead of another.
Using this result, sufficient conditions on the optimality of the
index policy can be derived for a variety of arrival processes and
packet holding costs. These conditions are in general in the form
of sufficient separation among indices, and they characterize the
part of the state space where the index policy is optimal. We
provide examples and derive the indices and illustrate the region
where the index policy is optimal.

Index Terms—Optimal server allocation, resource allocation,
optimization, index policy, delayed state observation, differenti-
ated services, restless bandit, sufficient separation.

I. INTRODUCTION

HE optimal use of available resources is a key element

ensuring the efficiency of any system, wireless networks
in particular, as resources (e.g., bandwidth) are shared and
tend to be scarce. In this paper we study a class of band-
width/resource allocation problems, where allocation decisions
are based on partial and delayed information of the system
state. Consider the problem of N users/queues competing
for shares of a common channel to transmit packets. The
channel consists of time frames of a fixed number of M
time slots. Each slot is equivalent to one packet transmission
time. A bandwidth allocation policy determines which slot to
assign to which user within a frame, as shown in Fig. 1. The
allocation decision is made once per frame based on backlog
information, i.e., instantaneous queue occupancy, given by the
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users/queues at the beginning of each frame. Due to non-
negligible delay (e.g., propagation delay), such information
reaches the server only in time for the allocation decision to be
made for the next frame, by which time the queue occupancies
may have changed due to packet arrivals within the current
frame. In other words, the state information is delayed and
partially obsolete. This results in possible over-allocation or
under-allocation. Thus in this case the allocation needs to take
into account unknown random arrivals that occur in between
state information updates. Every queued packet incurs a cost
at the beginning of each frame, known as the buffering or
holding cost. This cost may depend on the queue size and
may vary from one queue to another, allowing us to consider
differentiated service classes. The objective is to minimize
the total expected discounted cost over a finite or an infinite
horizon.

This optimal bandwidth allocation problem is primarily
motivated by wireless communication systems that either have
large propagation delay (e.g., in satellite data communication),
or where resource allocation is done relatively infrequently
compared to packet transmission time, due to cost or design
constraint such as energy (e.g., under the IEEE 802.15.4
standard for low-power indoor wireless networks). In the
case of a satellite network, users/terminals transmitting to the
satellite are assumed to follow a dynamic TDMA schedule,
each assigned a certain number of slots within a TDMA
frame that consists of a fixed number of slots. Users inform
the satellite their current backlog carried in packet headers.
The assignment is made based on the backlog information
and broadcast to the users over a non-interfering channel.
An allocation specifies which slot in the upcoming frame
is reserved for/to be used by which user. Due to the long
propagation delay of the satellite channel (250ms one way),
the allocation decision for a particular frame is made based on
the backlog information collected during the previous frame,
which is partially obsolete by the time the allocation is used
since by that time the backlog situation may have changed.

In this paper, we will largely focus on a class of policies
known as index policies. Under an index policy, each user is
assigned an index, which is a function of its own backlog
and/or channel state, and does not depend on other users’
states. An index policy is one that serves the user with the
highest index at each instance of time. If the indices are
chosen properly, the index policy can be shown to be optimal
in certain scenarios or under certain conditions [1].
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Fig. 1. The bandwidth allocation problem.

Optimal resource allocation problems have been extensively
studied in the literature. Here we review those most relevant
to the one under consideration in this paper. In [2]-[4] the
problem of assigning a single server to parallel queues with
different holding costs was considered, where packet trans-
missions are successful with a certain probability and that the
state information on queue backlogs are perfectly observed. It
was shown that the cu rule was optimal, where c is the unit
holding cost and x is the probability of transmission success.
This can be viewed as an index policy in that the server is
always allocated to the non-empty queue with the highest
cit value, the index. [5]-[7] considered the server allocation
problem to multiple queues with varying connectivity proba-
bility but of the same service class. In each of these papers
policies that maximize throughput over an infinite horizon
were determined. [8] further considered a similar problem
where different queues have different holding costs, with the
objective being to minimize total discounted holding cost over
a finite horizon. An interesting result is that the optimality of
an index policy does not hold in general, but holds when the
indices are sufficiently separated. The intuition, as pointed out
in [8] is that due to different holding costs, allocation to shorter
but more costly queues (which runs the risk of emptying the
queue) is only justified (or compensated) if it is sufficiently
more expensive than a longer but less costly queue. [9] studied
the power allocation problem in a single cell with fading and
showed that the optimal policy is to schedule the user with the
best channel when considering a saturated system (i.e., queues
always have packets to send). [10], [11] studied the stability
of power allocation policies in a satellite channel.

One common feature of the above cited work is that the
state of the system is known before making a decision (e.g.,
the queue size information in [2]-[4], or the channel gain in
[9]). Therefore the policy does not need to take into account
the uncertainty in the state observation (in our problem this
is reflected as the unknown arrivals and thus the unknown
queue size at each decision epoch). This is a major difference
between the above cited work and the problem considered
here.

The problem studied in this paper (in the case of an infinite
horizon) can also be cast as a special case of the restless bandit
problem [12]-[15], where a number of controlled Markov
chains undergo state transitions even when they are not played
or selected. [12] and [13] studied the asymptotic behavior of
this class of problems when the number of projects (queues
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Slot assignment

in this case) and servers (slots in a frame in this case) go to
infinity with a fixed ratio. A general optimal solution is not
known for this class of problems. However, an index policy
can be defined based on Whittle’s heuristic, which is sub-
optimal in the finite (number of servers and projects) case
and asymptotically optimal in the infinite case.

In [16] we studied a special case of the problem considered
here, with single slot allocation (M = 1), linear holding costs
and Bernoulli arrivals. An index policy was introduced and
shown to be optimal under sufficient separation of the indices.
Given this prior work, a question naturally arises as to whether
a method exists with which similar index policies along with
their sufficient optimality conditions may be derived for cases
of more general holding cost functions and arrival processes.
Consequently our primary interest in this paper is to develop
such a method. We will limit our attention to the case of
allocating frames consisting of a single slot (M = 1) in this
paper. Discussion on batch assignment (M > 1) is provided
in Section VII.

In subsequent sections we present a fairly general method
that achieves the above goal. We start by bounding the reward
of serving one queue instead of another. We then introduce an
index policy where the index of a queue is defined as the one
step immediate reward of serving the queue, and depends only
on its state and arrival statistics. The resulting index policy is
greedy in nature.

Using those bounds, sufficient conditions on the optimality
of the index policy are derived for a variety of arrival processes
and packet holding costs (limited to convex functions). These
sufficient conditions are in the form of sufficient separation
among indices, and they characterize the part of the state
space where the index policy is optimal. We emphasize that
although we have considered a very specific problem scenario
in this paper (delayed state information) the method itself is
quite general and can be applied in a broader class of server
allocation problems (for example it can be used to extend the
results in [8] to the more general case of convex cost functions
and arbitrary arrival and channel state processes).

The rest of the paper is organized as follows. In the next
section we formulate the problem and state our assumptions.
In Section III we derive the sufficient conditions on the
optimality of serving one queue versus another, and apply
these conditions to specific examples in Section I'V. In Section
V we introduce an index based on the one step reward and
show by using the results from the previous sections that if
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Fig. 2. The bandwidth allocation dynamics.

the indices are sufficiently separated, then the corresponding
index policy is optimal. Section VI concludes the paper.

II. PROBLEM FORMULATION AND ASSUMPTIONS

In this section we present the network model used as an
abstraction of the bandwidth allocation problem described in
the previous section, and formulate the optimization problem
along with a summary of assumptions and notations.

A. Problem Formulation

Consider a set of N' = {1,2,--- , N} queues that need to
transmit packets to a single server/receiver and compete for
shares of a common channel. Time is slotted, and packets are
of equal length and one packet transmission time equals one
slot time. Transmissions are assumed to be always successful.

M consecutive slots constitute a frame, The bandwidth
allocation decision is based on the backlog information of
each queue (number of packets in the queue) provided by
the queues at the beginning of a frame. We will ignore the
transmission time of such information. This is reasonable since
one can always increase the frame length with dedicated fixed
number of slots at the beginning for the transmission of such
information, which does not affect our discussion of optimal
allocation. Based on this information an allocation decision is
made by the server and broadcast to all queues over a non-
interfering channel. This broadcast is received by the queues
at the end of that frame, in time to be used for the next frame.
The same procedure then repeats, as shown in Fig. 2.

Each user advertises to the server its queue size at the
beginning of the t*" frame, denoted by the N-vector b,, with
bit,i € N being the queue size of queue i at time ¢. The
server allocates slots to be used for transmission in the next
time frame, denoted by the N-vector x;41, with z; ;11 being
the allocation to queue 7, where 0 < x;,41 < M,i € N
and Zi\;l Zi+1 = M. This procedure starts from ¢ = 0 and
ends at t = T (T can be infinite). Note that in this scenario
queues do not transmit during the first frame and only start
transmitting in the second frame (starting ¢ = 1). Similarly,
the state information update is not shown for the last frame
(starting t = T' — 1) since the horizon ends at ¢ = T for the
finite horizon case.

For the rest of this paper we will only consider the special
case where each frame consists of exactly one slot, i.e., M =
1. Consequently, z;; ;+1 € {0,1},i € N and Zi\;l Tit+1 = 1.

Let b;;+ denote the number of packets in queue ¢ at time
t, incurring a cost ¢;(b; ) for that time slot, with the total
cost of the ]s\fystem being the summation over all queues, i.e.,
c(by) = > i, ci(bi¢). We will further assume that functions
c;(.) are non-decreasing and convex .

The objective is to find an allocation policy 7 that minimizes

the following cost function:

JT = ET[C|Fo,

T N
C = Zﬂtilzci(bi,t)a
t=1 i=1

where Fy summarizes all the information available at time
t=0,and 0 < 3 < 1 is the discount factor?.

B. Assumptions

Below we summarize key assumptions underlying our net-
work model.

1) We assume that each user has an infinite buffer. Without
this assumption we need to introduce penalty for packet
dropping/blocking, which makes the problem drastically
different.

2) We assume that if for some ¢ and ¢t we have z;; > b;;
(which implies b; ; = 0 and x; ; = 1), then the one slot
allocation cannot be used to transmit packets that may
have arrived during the t'* frame, i.e., within [t, ¢ + 1).
This is because the exact arrival time of this packet is
random, and unless it arrives right before ¢ it cannot be
transmitted during that slot.

3) We assume that the arrivals to each queue are mutually
independent and they are also independent and iden-
tically distributed in each frame. The arrival process
statistics are assumed known to the server.

4) The server recalls the latest allocation it has made.

5) We will also adopt the trivial assumption that xo =
0 for simplicity of discussion. It does not affect our
results on optimal policy and can be easily relaxed in a
straightforward way.

IConcave cost functions lead to unfair allocation, as the marginal gain for
allocating a server to a queue decreases as the queue-size increases, resulting
in more incentive to allocate the server to smaller queues. This does not seem
natural, thus the convex function assumption.

2The condition 8 < 1 is required in the infinite horizon case to ensure
that the cost of having an extra packet in a queue is bounded. For the finite
horizon case this is not necessary, i.e., we can have 8 = 1 in that case.



1696

C. Notations

We consider time evolution in discrete time steps indexed
by t = 0,1,---T, with each increment representing a frame
length. Frame ¢ refers to the frame defined by the time interval
[t,t 4+ 1). In subsequent discussion we will use terms frames,
slots, steps and stages interchangeably.

As a general rule, boldface letters represent column vectors
and normal letters represent scalars/random variables. When-
ever we need to distinguish between two policies, we show
the policy as a superscript. For example b7, means the buffer
size of the i-th queue at time ¢ under policy . If w is a scalar,
[w]t takes value w or 0, whichever is greater. For a vector
w, we define [w]™ in the same way for each component.

A list of notations is as follows.

by = [b1,t,b2,t, - -bn )]s The column vector of all queue
occupancies at time t.

Xt = [xl,t, T2ty
of bandwidth) allocated to users, x;(t)
1, ,N,t=1,---,T—1.

d; = [bi—1 — x;—1]". This value is completely determined
from the buffer occupancy and allocation information of the
(t—1)t" frame. We will call this amount the existing backlog
since this is the amount carried over from the previous slot
due to under-allocation (as opposed to new arrivals occurred
during the previous slot). Alternatively we will also call this
value the amount of deterministic packets to be distinguished
from the random arrivals occurred during that frame.

a; = [a14,024, --an,): The number of packet arrivals
during frame ¢. We sometimes use the notation a; to denote
the random arrivals in queue ¢ during a time frame whenever
it does not cause any confusion.

pi(k) = Pla;: = k], Vt (note that the arrivals are indepen-
dent and identically distributed in each frame).

di’L := d; + e; where e; is an N-dimensional vector with
all entries zero except for a 1 in the ¢-th position.

di” = [d; — et

¢i(b;): The holding cost function for having b; packets in
queue %.

C = Zzzt gt Zivzl ¢i(biw): The cost to go, from time
t on (note that C; = C).

Fi: The o-field of the information available up to time ¢.

Remark 1: The information available for making the al-
location at time t is the queue occupancy of the previous
frame b;_7 and the allocation made earlier, x;_;. This will
determine the number of deterministic packets in the buffer at
time ¢, d;. The total number of packets in the queue at time ¢
is the sum of this deterministic part plus the random arrivals
during slot ¢t — 1, i.e.,

,n,¢)": The number of slots (amount
e {0,1},i =

by =d;+a;_1 . (D

Separating the queue size into the deterministic part and the
random part will prove convenient in our analysis of the
optimal policy.

Given that the server knows the arrival statistics and that
the server recalls its last allocation decision, the state of the
system at time ¢ is completely described by the deterministic
part of the queues, d;. Also note that for this problem it can
be shown [17] that we can restrict ourselves to the class of

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 4, APRIL 2009

Markov policies (i.e. we can find a Markov policy that is
optimal over the set of all general policies).

III. SUFFICIENT CONDITIONS ON OPTIMALITY

In this section we derive a sufficient condition under which
serving a particular queue i is optimal. We start by introducing
an upper and lower bound on the cost difference in assigning
the slot to different queues. We then show how these bounds
may be calculated to produce the desired sufficient condition.

A. Sufficient Conditions

We are interested in sufficient conditions under which it is
optimal to assign the slot to one queue instead of another.
Therefore the key is to find bounds on the cost difference
between the two allocations. The following definition charac-
terizes these bounds.

Definition 1: Let 7,7’ be the optimal policies given the
states dyy1, dijrl, respectively. Suppose there exist functions
Si(d,u) and R;(d,u) such that

B'Si(dyy1, T — 1)
< E™[Craldisr, Fra] — E™ [Copaldiyy, Figa]

< B'Ri(di1, T —t) a.s., (2)

where T is the time horizon. We call function S; the lower
bound on cost increase for having one more packet in queue 1
or in short, the lower bound on queue i. We call function R;
the upper bound on cost increase for having one more packet
in queue 1 or in short, the upper bound on queue 1.

Functions R; and S; are not unique. We will focus on those
that only depend on the state of queue i, i.e., d;. This turns
out to be possible, as we will show later via Lemmas 2 and
3.

Suppose at time ¢t we want to allocate the slot to one of the
queues. The following lemma compares the allocation to two
different queues.

Lemma 1: Let T be the time horizon and suppose d; is the
state at time ¢. Let 7 be the policy that assigns the slot at time ¢
to queue ¢ and assigns optimally thereafter. Let 7’ be the policy
that assigns the slot at ¢ to queue j and assigns optimally
thereafter. Suppose there exist functions Rg(.,.), Sk(.,.),k €
N that satisfy (2). If the following condition holds:

Ea,_ [Rj(di+a;_1,T—t) = Si(d¢+a;1,T —t)] <0, (3)
then we have:
EW[Cf/|dt,ft] S Eﬂl [Ct|dt7]:t] a.s..

The proof of this lemma can be found in Appendix A. This
lemma immediately leads to the following theorem.

Theorem 1: Suppose the state at time ¢ is d; and that there
exist functions Ry(.,.),Sk(.,.),k € N that satisfy (2). Then
it is optimal to allocate the slot at ¢ to queue ¢ if the following
condition holds:

Eat—l [R](df +ay1, T — t) - S?,(dt +a_1, T — t)] <0
iti. 4

Proof: This is a direct result of Lemma 1, by comparing
allocation to queue ¢ with allocation to all other queues. W
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B. Calculating The Bounds

In this part we present a general method for finding func-
tions S;(.,.), Ri(.,.) for an arbitrary arrival process. Recall
the following assumption on the cost function.

Assumption 1: The cost function ¢;(b;) is non-decreasing
and convex in b;.

Definition 2: For any user ¢ and deterministic queue size
d;, define the cost ¢;(.) to be

éi(di) =Y pila)ei(di +a) ,
a=0

where ¢; is essentially the expected holding cost of queue
given that the deterministic part is d;. This definition connects
cost as a function of the deterministic queue and cost as
a function of the actual buffer occupancy. Note that by
Assumption 1, function ¢; is also non-decreasing and convex
in di.

Definition 3: For any user ¢ and b;, d; > 0 define a;(b;)
and &;(d;) to be:

a;(b;) = inf{a € Rla > 0, (¢;(b; + 1) — ¢i(b;))
< (14 a)(ei(bi) —ci(bi — 1))},
Gi(d;) =inf{a e Rl& > 0, (&(d; + 1) — &(d;))
< (1 +a)(6(di) —éi(di — 1))} . &)

The above definitions are introduced primarily for technical
reasons. « indicates how fast the function is growing compared
to an exponential growth, thus it is a measure of how convex
the cost function is. If the function grows exponentially, then
« is a constant. If the function grows slower than exponential,
then « deceases as the queue size increases. Note that if ¢;(b;)
is linear in b;, then ¢;(d;) is linear in d; (from Definition 2). In
this case (linear cost functions) we have «;(b;) = &;(d;) = 0,
Vb;, d; > 1.

For simplicity of our discussion in the next few lemmas,
we further introduce the following random processes.

Let {X; .} be a Markov chain taking values in the set Z* =
{0,1,2,---} with transition probabilities

P(Xit41 =UXie = k) =pi(l — k), (6)

where p;(l — k) = 0 for all [ < k. Note that if X, ;, = d; 1,
then X;; represents the number of deterministic packets in
queue ¢ at time t > tq if it is never served or allocated a slot.

Let {Y;:} be a Markov chain taking values in the set Z*
with transition probabilities

PYiip1 =1llYie=k)=pi(l—k+1), VE#0, @)

where p;(l —k+1) =0 forall [ < k—1, and P(Y; ;41 =
0|Y;+ = 0) = 1 so that O is an absorbing state. Note that if
Yi +, = di,, then Y;, represents the number of deterministic
packets in queue ¢ at time t > tg if queue 1 is assigned every
slot until its deterministic part becomes zero.

Note that the transition probabilities of both processes X ;
and Y; ; are functions of the i-th queue’s arrival process.

When d; = 0, then it is easy to see that R;(d,u) =
Si(d,u) = 0 satisfies (2). In the following lemmas we
calculate these bounds when d; > 0.
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Lemma 2: Let 7 be the optimal policy given d¢y1 where
dit+1 > 0 and let 7" be the optimal policy given d; ;. Then
we have

E™[Cyi1ldir, Frar] — E™ [Crpr|disy, Fria]

oo

> ") (&lk) — &k —1))

ol
Z ﬁ“IP(Yw = k?|Yi,0 = di,t+1) . (8)
u=0

Proof of this lemma can be found in Appendix B. This
result shows that we can find function S; that satisfies (2) and
is a function of the state of queue ¢, d; rather than the whole
vector d.

Remark 2: Although Lemma 2 gives a good lower bound
for the cost difference of starting from state d rather than di-,
we will use the following bound instead. It is not as tight as
that given in Lemma 2, but has a more explicit expression
and will be more useful in the examples presented in the next
section. Since d; ¢+1 > 0, we have:

oo T—t—1
B (@lk) =&k =1)) Y BUP(Yiu = klYio = disr1)
k=1 u=0
>80 Y (k) — ek — 1)
k=d; t+1
T—t—1
BUP(Yiu = E|Yio = dit1)
u=0
> BY(Ci(dipr1) — Ci(digsr — 1))
T—t—1 oS
BN P(Yiw = k[Yio=dis1)
u=0  k=di 11
T—t—1
> B A¢(digs1) Y BPlaip > 0,t <t/ <t+u)
u=0
. 1—(B(1 — pi(0)))""
= B Aé(d;
Fel ) T T ) ®

where A¢;(d;) = é;(d;) — ¢;([d; — 1]%). Note that the first
and the second inequalities result from the convexity of ¢; as
a consequence of Assumption 1. The third inequality is due
to the fact that {ai’tf >0, t <¢ <t+u}is only one of the
events resulting in Y; , > d; 441 given Y; o = dj ¢41.

Next, we find an expression for R;(d,T). We consider
non-decreasing and convex cost functions that also satisfy the
following assumption.

Assumption 2: &;(d;) is a non-increasing function of d;
for d; > 0 for all ¢ € N.

A few comments are needed on this additional assumption
before we proceed. Firstly, as long as ¢; does not grow faster
than exponential in d; then Assumption 2 is true. In fact under
many commonly used cost functions &; decreases with d;, e.g.,
when the cost function is a polynomial of any degree and
arrivals in each time frame are finite with probability one. For
instance, consider ¢;(b;) = ¢;b) where n is a positive integer
and assume that packets arrive in batches of K packets. During
each frame a batch of K packets arrive with probability p; and
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there will be no arrivals with probability 1 — p;. In this case
we have ¢;(d;) = ¢ (1 — p;)d} + cipi(d; + K)™. If we let
¢; = 1 and p; = 0.2, Figure 3(a) plots ¢&; as a function of d;
for different values of n where K = 1 is fixed. Figure 3(b)
plots &; as a function of d; for different values of K where
n = 2 is fixed. It can be seen from these figures that &; decays
rapidly and approaches zero. Therefore we will also try to find
simpler expressions from time to time for a class of convex
cost functions where &;(d;) — 0 as d; — oo.

Lemma 3: Let 7 be the optimal policy given d;;; where
dit+1 > 0 and let 7’ be the optimal policy given df;jrl. If
Assumptions 1 and 2 hold, then we have:

E™[Crirldigr, Fraa] — E™ [Coaa|dity, Fora
< B(i(di1) — ¢i(digs1 — 1))
T—t—1 [e’s)
Z B ZP[Xi,u =1Xi0=0]-(1+&l(dies1)) .
u=0 =0
(10)

Proof of this lemma can be found in Appendix C. Again we
see from this lemma that there exists function R; that satisfies
(2) and is only a function of the state of queue 4, d; rather
than d.

We can find an approximation to the above expression for
the case where & is small. As & — 0 we have (1+4)! ~ 1+1a.
Therefore when « is close to zero we get (11).

To summarize, in this section we derived a sufficient con-
dition under which serving a particular queue ¢ is optimal.
This sufficient condition is characterized by upper and lower
bounds on the cost difference for having one extra packet in
a particular queue. In the next section we derive these bounds
in specific example scenarios.

IV. APPLICATIONS IN SPECIFIC SCENARIOS

In the previous section we proved that it is optimal to
allocate the slot at time t to queue ¢ if (4) holds. Using
Lemmas 2 and 3 we can define functions S; and R; that satisfy
(2) when d; > 0 as follows (note that we have used the bound

5 10 15 20 25 30
deterministic part of the queue, d‘

(b)

The effect of cost function and arrival processes on & (the Y -axis in both figures is &;). (a) K = 1 fixed, n variable; (b) n = 2 fixed, K variable.

defined in Remark 2 to calculate S;):

R;(d,u) = A& (d Z ﬁ“ ZP i
=0

=1[Xi0 = 0] (14 Oéi(dz'))l ;
pi(0)))"

s —pz( )

and when d; = 0 we have R;(d,u) = S;(d,u) =0

Remark 3: Note that in this case both functions depend

on d; rather than the whole vector d, i.e. we have S;(d,u) =
Si(d;,u) and R;(d,u) = R;(d;, w). In this case condition (4)

12)

Si(d,u) = Aéi(di)l — (60—

— (13)

reduces to:
sz (dig + Kk, T —1) > Z (dje +1,T—1)
vﬂéz. (14)

Therefore for the rest of this paper we will use functions
R; and S; defined as above and use (14) as the sufficient
condition for the optimality of allocating to queue ¢ at time ¢.

For finite 7' the sufficient condition in (14) depends on
T. In this section we apply these results to two scenarios to
derive more specific sufficient conditions for the optimality of
assigning the slot to a certain queue.

A. Batch and Bernoulli Arrivals

Suppose that the arrivals occur in batches of K packets.
During each time frame, with probability p; there are K
arrivals in queue ¢ and with probability 1 — p; there are no
arrivals in queue 7. Note that i = 1 represents the Bernoulli
arrival process.

We denote by SZ(d;, u) and RP(d;, ) the lower and upper
bounds satisfying (2). We have that p;(0) = 1 — p;, therefore
we can calculate SP(d;,u) (for d; > 0) using (13) as follows:

1 — (Bp:)"
1 — Bp;

R (d;,u) can be calculated (for d; > 0) using (12). We
have (16).

SB(di,u) = Aé&(dy) (15)
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T—t—1
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oo

B (Eildier1) = Gildiggr — 1)) D> B PXiu =1Xi0o=0]- (14 &i(diri1))

T—t—1 00

Q

oo

B A (dii41) Z ﬁu{z P[X; . =1|Xi0 = 0] 4+ &i(dit+1) Z IP[X;. =1|X;0=0]}

u=0 1=0 1=0
1_ BT_t T—t—1
= BtAéi(di,t-i-l)[W + &;(die41) Z BYE(X;u|Xi0=0)] . (11)
u=0
u—1 [e’e)
RP(diu) = A&(d) Y B PlXiw =1 Xi0 = 0] (1+ di(dy))"
/=0 1=0
u—1 u’
= A&(di) > B PXiw =h K|Xio=0]- (1+d(di)" "
uw/'=0 h=0
_ _m. . A . N K\ u

Using Theorem 1 for Batch arrivals as defined above we
have the following result. It is optimal to allocate the packet
at time slot ¢ to queue ¢ if

piRY (djy+ K, T —t)+ (1 —p; )R} (d;e, T — t)
< piSiB(di,t + Ka T— t) + (1 - pi)SiB(di,tv T - t) )
VjeN . a7

By replacing the expressions for S and RJB for this special
case we get the following result.

Theorem 2: Let T be the time horizon. Consider batch
arrivals where during each time frame queue ¢ has K arrivals
with probability p; and no arrivals with probability 1 — p;.
Suppose the state at time ¢ is d;, then it is optimal to allocate
the slot at time ¢ to queue 7 if the following two conditions

hold.
i) For all j # i where d;+ > 0 we have,

(B \T—t
%{piﬁéz‘(du + K)+ (1 —pi)Aci(die)}
o P = i(dje + K)T A (dj + K)

- 1 —;(dje + K)
N (1=pi) (A = ;(dj,e)" ") A (dyir)
1 —;(dj)

if dj;>0.

(18)
ii) For all j # ¢ where d;; = 0 we have,

1—(Bp)" !
1 — Bp;
o 1=+ K)T
- 1—’yj(dj7t+K)
where 7;(d; ) = B[(1 = pj) + p; (1 + &;(d;)) ™).
Theorem 2 holds true for all values of T". Therefore one can
let T — oo to get the following result 3.

piAéi (di,t + K)

ijéi (dj’t + K) s

3For the infinite horizon scenario, arrivals should be such that the right hand
side of equation (14) remains bounded. Note that this condition holds for the
batch and Poisson arrivals, as long as the cost function does not increase
exponentially.

1—B[(1 —ps) + pi(1 + &;(dy)) K]

Theorem 3: Consider an infinite horizon and batch arrivals
where during each time frame queue 7 has K arrivals with
probability p; and no arrivals with probability 1 — p;. Suppose
the state at time ¢ is dy. It is optimal to allocate the slot at
time ¢ to queue ¢ if the following two conditions hold.

i) For all j # i such that d;; > 0 we have 7;(d;+) < 1
and,

1
1— Bp;

{piAéi(diy + K) + (1 —pi)Aéi(dir)}

> ijéi(deg + K)

1= B[(1—pj) +pj(1+ &;(dje + K))X]
(1 —pj)A¢i(d;e)

1= B[(1 = pj) +pj (L + da;(dse)) ]

+ 19)

ii) For all j # ¢ such that d; ; = 0 we have ~;(K) < 1 and,
P Aéy(diy + )

1 — Bpi
Pj .
- 1 _B[(l _pj) +pj(1—l—dj(djﬂ‘/+K>)K]Acl(d1,t+K) .

B. Poisson Arrivals

Suppose that arrivals occur according to a Poisson distribu-
tion with rate \; packets per frame, i.e. we have

2\
_ 7)\1' 3
pi(k)=e T

We denote by S (d;) and RF(d;) the lower and upper
bounds satisfying (2). We have that p;(0) = 1—e~*¢, therefore
we can calculate ST (d;, u) using (13) as follows:

1= (51— )"
T—B—e ™)

A lower bound for the right hand side of (14) can be

SP(di,u) = Aé(d;) (20)
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calculated as follows. First assume that d; > 0.

D e
k=0
1— (Bl —e NIt Y
e

k=0
1—-(B1—e
S Ty

zSPcz +k, T —t)

—A,;))T—t

Aé(d;)

where the inequality is due to the fact that A¢; is non-
decreasing as ¢; is convex.

Similarly when d; = 0 it can be shown that:

pu
e N k—l,Sf’(di + kT —t)

NE

el
Il

0
- (B(1— e )T
1—6(1—e )

vV

(1—e M)Ag(1) . 1)

On the other hand, Rf(., .) can be calculated using (12) as
follows:

RP(djv u)

u—1

ZBU ZP ]u’—llXJO_O] (1+dj(dj))l
=0

Z Bu Ze—)\ v
O

, /a — Aja;(d;)\u
— agy(a) S e Aéj(dj)l —

= 1 — Beridilds)
(22)

(1 +(dy))’

Now the left hand side of Equation (14) can be upper
bounded as follows, again considering the two cases d; > 0
and d; = 0 separately.

In the case of d; > 0:

)\l 1 (Behidy(dj+0)\T—t
1-— ﬁe/\ﬂ’h(d]‘f‘l)

1— (ﬁe&d;‘(d;‘))T—t o )\é .
/ 1 — Beridilds) Z e 1_(1 +a;(d;))

1=0
(1= (Beridstdn) Tt a;(dy)
1 — Beridi (d;)

e’ s

where the second equality is due to the calculation given in
(22), and the inequality is due to the definition of & given in
Definition 3, and the assumption that & is non-increasing.
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In the case of d; = 0:

ipj(l)Rj(dj +1,T—t)

zoi 1 — (Bera )Tt

21:16 () 1 — Beridi))

< 2500)° Z(f?;ffiift SN a0
YN (1- (ﬁe/\j&J(1))T—t)ze,\]aj(1) _eN) |

(1—Beri%M)(1 +a;(1))

The above derivation leads to the following result.

Theorem 4: Let T be the time horizon. Consider Poisson
arrivals where during each time frame the number of arrivals to
queue 7 follows a Poisson distribution with mean )\;. Suppose
the state at time ¢ is d;, then it is optimal to allocate the slot
at time ¢ to queue ¢ if the following two conditions hold.

i) For all j # 4 such that d;; > 0 we have,

L (51— e N))T
1—p6(01 —e M)
1— (ﬂe)\j&J(dJ))Tft

2 1— 56)‘36‘3(dﬁ')

Aé;(d;)

6)‘3&3 (dJ)Aéj (d]) .

ii) For all j # 4 such that d;; = 0 we have,

1—(B(1—e"
1—-p6(1—e M)
(1 — (Beridi N T=t) (e (D) — g=X)
B (1 — Berid M) (1 + a;(1))

)\i))Tft

(1 —e )Ag(1)

A&(1) .

Since Theorem 4 holds true for all T' we can let T' go to
infinity and get the following result.

Theorem S: Consider an infinite horizon and Poisson ar-
rivals where during each time frame the number of arrivals to
queue ¢ follows a Poisson distribution with mean ;. Suppose
the state at time ¢ is d;, then it is optimal to allocate the slot
at time t to queue ¢ if the following two conditions hold:

i) For all j # 4 such that d; ; > 0 we have Beridildi) <1
and,

Aé;(d;)
1—p1—e)

ii) For all j # ¢ such that d;, = 0 we have Beridi() < 1
and,

e/\jdj(dj)Aéj (d;)
1-— ﬁe)‘yé‘y(dy) )

)
= 1= Berau )1+ ay(1))

(1—eM)AG1)  Ag)(eN W —e
1—-p6(1—e M)

In this section we considered two specific examples and
derived the upper and lower bounds on the gain for allocating
to a queue. Using these bounds we were able to find sufficient
conditions for the optimality of a policy. These conditions,
while easy to verify, are not simple to interpret. In the next
section we derive alternative sufficient conditions that appear
as separation between the indices in an index policy.
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V. OPTIMALITY OF AN INDEX POLICY AND EXAMPLES

In this section we will use the sufficient conditions derived
in previous sections to study the optimality of an index policy
that is myopic/greedy in nature defined as follows.

Definition 4: The index of queue i at state d; is defined as
the immediate expected reward from assigning the slot to the
queue:

Ii(d;) = sz(k)[él(dz + k) —é&([di +k—1]7))
k=0

= pilk)Aéi(di + k) . (23)
k=0

Note that Aé;(d;) = 0 when d; = 0. The corresponding index
policy is defined as one that assigns the slot to the queue with
the highest index at each step.

This index policy is a natural one in that it compares the
benefit in allocating the next slot to a user based on the
expected reward gained in the next time slot. Results from
previous sections can be utilized in the following way in the
context of this index policy. Theorem 1 gives the sufficient
condition under which it is optimal to assign a slot to queue
i. By deriving appropriate functions R and S for given arrival
process and cost functions, as shown in the previous section,
we can obtain sufficient conditions under which the above
index policy is optimal. We shall see that this sufficient
condition appears as a separation condition in that the index
policy is optimal when the highest index is sufficiently larger
than the other indices.

Remark 4: The required separation exists only if the loss
from not allocating to queue j is bounded for all j # 1.
Assumption 2 can be viewed as the condition required for
this loss to be bounded.

In the remainder of this section we derive the sufficient
conditions under which this index policy is optimal for the
two special cases of batch and Poisson arrivals.

A. Batch and Bernoulli Arrivals

Consider the model of batch arrivals. The index in this case
is reduced to

Using Theorem 2 and the above index definition, we im-
mediately obtain the following result.

Theorem 6: Let T be the time horizon. Consider batch
arrivals where during each time frame queue ¢ has K arrivals
with probability p; and no arrivals with probability 1 — p;.
Suppose the state at time ¢ is dg, then it is optimal to allocate
the slot at time ¢ to queue 7 if both of the following conditions
hold.

i) For all j # i such that d;; > 0 we have,

1— (Bp)" "
1 — Bpi
(1= (dje + K)") (1 =7;(dj)" ")
L=vi(dje + K) 7 1—;(dje)

I;(diy)

> max{

Hj(dje) -

1701

ii) For all j # 7 such that d;; = 0 we have,

1— (Bp)Tt
1— Bp;

where ;(.) is defined in the statement of Theorem 2.

(1=9(dje + K)™)

I;i(di) >
( ’t) 1-— ’Yj(dj,t + K)

Ij (d]}t) )

Remark 5: Note that for a; = 0 (e.g., when the costs are
linear) and K = 1 (Bernoulli arrival), v(-) reduces to 3. Thus
the condition in Theorem 6 reduces to the following. It is
optimal to allocate to queue 7 at time ¢ if for all j # i we
have:

1-(piB)"" 1-pr
W) 2 Ij(dj,t)(ﬁ

This is the same condition derived in [16] for linear cost
and Bernoulli arrivals. In this case with linear cost function
¢i(b;) = ¢ib;, the index for queue i reduces to ¢; when d; # 0,
and the index is p;c; when d; = 0.

Using Theorem 3 and the index definition, we obtain the
following result, noting that é;(d;+ + K) < &;(d;+).

Theorem 7: Consider an infinite horizon and batch arrivals
where during each time frame queue ¢ has K arrivals with
probability p; and no arrivals with probability 1 — p;. Suppose
the state at time ¢ is d;. It is optimal to allocate the slot at
time ¢ to queue ¢ if the following two conditions hold.

i) For all j # i such that d;; > 0 we have 7;(d;+) < 1
and:

Ii(di)( ). (25)

1
1 — Bpi

Ii(diy)
S 1
T 1= Bl(1 = pj) +pi(1+ a;(dje)) "]

Ii(dje) -
(26)
ii) For all j # ¢ such that d; s = 0 we have v;(K) < 1:

1
1— Bp;

Ii(diz)
S 1
T 1=B[(1 = pj) +pi(1+ &;(dje + K))¥]

Ii(dje) -
(27)

Example 1: Consider two queues 4,5 and let p; =
0.5,p2 = 0.3,c1 = 1,co = 2 and let ¢(b) = ¢1b? + cob3.
Figure 4 illustrates the separation discussed above with two
values of 5 = 0.6 and 8 = 0.8. Below the dot-dash line is the
region where it is optimal to allocate the slot to queue 1 and
to the left of the dash line is the region where it is optimal
to allocate to the second queue. The solid line shows the
boundary determined by the index policy (above the boundary
allocate to queue 2 and below the boundary allocate to queue
1).

For the region where the sufficient condition is not met,
the optimal policy can be found by solving the dynamic pro-
gramming equations (e.g., using standard methods like value
iteration or policy iteration). Finding a general, structured (as
opposed to numerical) solution for this region remains an open
problem. We are also not aware of any bounds on the cost
function that apply here.
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Fig. 4. Required separation between the indices of two queues (a) 5 = 0.8, (b) 8 = 0.6.

B. Poisson Arrivals

Consider the case where queue ¢ has a Poisson arrival
process with parameter A;. The index in this case is
~ i ) ~
Aéi(di + k)= e SrAG(di+ k) . (28)

k=0 k=0

Theorem 8: Let T be the time horizon. Consider Poisson
arrivals where during each time frame, arrivals to queue
follow a Poisson distribution with rate \;. Suppose the state
at time ¢ is d;, then it is optimal to allocate the slot at time ¢
to queue ¢ if for all j # i we have

1-— ﬁ 1— —Xi\\T—t
1(—(5(1 i 62\3) Ii(diy)
1-— (ﬁe’\j&J(dg,f,-l-Ej,t))T_t

= 1-— 6e>\j¢3¢y(dg,t+fj,t) I (dj’t) ’ &
0, ifdj, >0
where ;; = 1, if djz =0

The proof of the following theorem can be found in [18].
Letting 7" go to infinity we immediately obtain the next result.

Theorem 9: Let T be the time horizon. Consider Poisson
arrivals where during each time frame, arrivals to queue i
follow a Poisson distribution with rate \;. Suppose the state
at time ¢ is d;, then it is optimal to allocate the slot at time ¢
to queue i if for all j # i we have e % (di++&i1) < 1 and,

Ii(di) I;(d; )
1—8(1—e ) = 1 —Beridildietie) ’

where §; ¢ is the same as defined in Theorem 8.

The above theorems illustrate the required separation be-
tween the indices to ensure the optimality of the index policy.
It’s worth mentioning that even when the index cannot be
explicitly derived, the results obtained in previous section
(Theorems 4 and 5) can still be applied to find the region
where it is optimal to allocate to any of the queues.

We next illustrate the separation between indices via an
example in the case of Poisson arrivals. Finding a closed form
expression for the index for all cost functions does not seem
straightforward. We therefore consider a special cost function.

Example 2: Consider the cost function ¢;(b;) = c;b7. We
have:

(di + k)? = ¢;[d? + 2Xidi + (A2 + )]

=G sz
(30)

The index can be derived as follows. For d; > 1 we have

sz
=ci Zpi(/f)(
k=0

For d; = 0 we have

sz
=i Zpi(k‘)(
k=1

= Ci[2>\i + (2d1 + 2\ — 1)(1 —e

Véi(d: + k) — é(di + k — 1)]

2k + 2d1 + 2>\i - 1) = Cl(4>\z + 2dz - ].) .

)éi(d; + k) — &(di + k —1)]

2% + 2d; + 2\ — 1)

).

Therefore an index can be defined as I;(d;)
61[4/\1‘ + 2d; — 1], if di 20
),

{ 61[2/\7;—1—(26[7;4—2)\1—1)(1—6_ ifd; =0 "~

Figure 5 illustrates the separation condition given by The-
orem 9 in the infinite horizon case. We have assumed that
c1(by) = b3 and co(ba) = 2b3. Other parameters are \;
0.5, A2 = 0.3, and results are shown for 3 = 0.6 and 8 = 0.8,
respectively. Below the dot-dash line is the region where it is
optimal to allocate the slot to queue 1 and to the left of the
dash line is the region where it is optimal to allocate to the
second queue. The solid line shows the boundary determined
by the index policy (above the boundary allocate to queue 2
and below the boundary allocate to queue 1).

Characterizing the tightness of these bounds can be very
complex and depends on the convexity of the cost function
as well as the arrival process. For linear cost functions the
index policy can be shown to be optimal except when the
deterministic part of all queues are zero [16]. In general the
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closer the cost function gets to an exponential function, the
looser the bounds will be.

The results presented in this section can be summarized
as follows. If the one step reward for serving a queue is
sufficiently larger than the one step reward of the other queues,
then it is optimal to serve the former. Note that this separation
is sufficient but not necessary. The main intuition behind this
separation result lies in the need to balance the queue size
and at the same time to empty high cost queues. That is,
due to the uncertainty in queue sizes, allocating the server
to a high cost queue with low probability of arrival runs the
risk of wasting resources if there happen to be no arrivals.
The separation ensures that the potential loss in doing so is
sufficiently compensated by the high cost in case of an arrival.
If the number of packets were exactly known at each instant
of time, then it is not difficult to show that the index policy
of allocating the server to the queue with the highest marginal
cost is optimal, i.e., no separation is needed.

VI. DISCUSSION AND CONCLUSION

In this paper we considered the problem of sharing a
single server among multiple queues when the queue backlog
information is one step delayed. We introduced an index policy
that is myopic in nature, and derived sufficient conditions
under which it is optimal. This is done by bounding the
difference in reward/cost between serving one or the other
of any two queues. It is shown that the sufficient condition
corresponds to having sufficient separation among the indices.
This result is then applied to two specific cases where the
arrivals are of the batch and Poisson types.

In this paper we have only considered the case of single
slot allocation (M = 1). When M > 1 there are more than
one slot/server to be allocated. The results in this paper can
be extended to the case of M > 1 by considering applying a
policy for a single server repeatedly for M times as follows.
We allocate the first slot (say it is allocated to queue ¢). Then
we reduce the deterministic part of queue ¢ (if it is zero then
we update the arrival process) and allocate the second slot in
a similar manner, and so on. The sufficient condition derived
in this paper applies to each slot allocation. If the policy used
for a single slot is optimal (note the index policy studied in

0 1 1 1 1 1 i
0 10 20 30 40 50 60 70 80 % 100
number of deterministic packets in queue 1
b

Required separation between the indices of two queues for Poisson arrivals (a) 3 = 0.8, (b) 8 = 0.6.

this paper is not in general optimal for a single slot allocation,
and the identification of an optimal policy remains open), then
the optimality of this sequential procedure can be established
under fairly general conditions [19]. This result only relies
on the existence of an optimal policy, which we show in the
current paper.

A main contribution of this paper is the methodology in
deriving the sufficiency condition. The method developed
in this paper is quite general and can be applied to more
complicated arrival processes as well as more general forms
of state information. For example it can be used to generalize
the results obtained in [8] for server allocation in a simple
on-off fading channel, to the case of non-linear convex cost
functions [1].

As an extension, it would be interesting to derive similar
results for the more general case of restless bandit problems.
The results would then help characterize sufficient conditions
for the existence of an index policy where the index of each
queue is based solely on the property and state of that queue.

APPENDIX - A

Proof of Lemma 1: We can write the formula shown at the
top of the next page.

Note that in deriving the inequality, we have used Definition
1. For the last equality we have used the fact that both 7 and
7' are optimal from time ¢ + 1 on.

Therefore if (4) holds then we have,

E™[C|dy, i) < E™ [C|dy, Fi]  a.s.,

thus proving the lemma. W

APPENDIX - B

Proof of Lemma 2: Let 7 be the optimal policy from time
t+1 on given d;1. Define policy 7 for the starting condition
df;jrl as follows. Policy 7 assigns slots to the same queue as
policy 7 does under the starting condition d;1 for every slot.
The “best case”, in the sense of minimizing the difference in
cost between the two policies, is if both policies assign to
queue 7 until (the deterministic part of the queue is) empty.
If the slot is assigned to queue 7 in all the subsequent time
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E™[Ci|ds, Fi] — E™ [Cy|dy, Fi)
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= Ea,_ {E"[Cor|der1 = [di + a1 — ] ", Fipi]
— E™ [Cpialdir = [di +ar1 — e;]F, Fria]}

IA

Ea, AE™[Cipa|diyr =die +ar—1, Feq1] — Si(de + 2,1, T — 1)

+ Rj(ds + a1, T —t) — E™ [Crya|desr = de + ap1, Frpa]}
= Eaf,—l [Rj(dt +a;1,T — t) — Si(dt +a; 1, T — t)] .

E™[Cry1ldest, Fir] — E™ [Coat|disy, Fipa] 2 E*[Crat|dest, Fipa] — B [Coatldiyy, Fipa

Vv

t'=t+1
T

T oo
S BTSN P(YViw = kYigsr = diger +1) - (@(k) — &k — 1))
k=1

= > (@lk) =k —1) Y BUTIPViw = E|Yigr1 = digpr + 1)

t'=t+1
T—t—1

= Z(éz(k) —¢i(k—1)) Z BUP(Yitpusr = kYir = diga +1)

u=0
o] T—t—1

= Bt Z(éz(k) - éz(k - 1)) Z BUP(YL,u = k|Yi,O = di,t-{-l + 1) .

k=1 u=0

intervals (starting with d; 141 4+ 1 deterministic packets in the
queue), the number of deterministic packets in queue ¢ at any
time ¢’ >t + 1 will have the same distribution as the random
process Y; v/, conditioned on Y; 411 = d; 41 + 1. This is true
until the deterministic part of the queue hits zero. From that
point on both policies 7 and 7 will have the same performance
and are both optimal (since 7 is optimal). Therefore we can
write (B-1).

The first inequality is due to the fact that the policy 7 is not
necessarily optimal for the initial state dijrl and the second
inequality results from the evolution of the random process Y
as the best case. The rest of the equalities are simple algebra,
thus proving the lemma. N

APPENDIX - C

Proof of Lemma 3: Let ©’ be the optimal policy given dijrl.
Define policy 7 for the initial state d;;; as follows. Policy
7 assigns the slot to the same queue as policy 7’ does under
the starting condition dijrl at time ¢t + 1. The “worst case”,
in the sense of maximizing the difference between the cost of
two policies, is that queue ¢ is never served again. Therefore
the process for the number of packets in queue ¢ at any time
t' >t + 1 (given the initial deterministic packets d; ;41 + 1)
has the same distribution as X; ;» given that X; 111 = d; 141.
Therefore we can write (C-1).

The first inequality is obtained since 7 is not necessarily the
optimal policy. The second inequality is due to the fact that we
are considering the worst case when policy 7 is being used.
The next equality is just a change of variables [ = k —d;. The
third inequality is obtained by using the definition of &;, by
which we have: ¢;(d;+1)—¢;(d;i+1—1) < (1+4,(d;))! (e(d;)—
é(dl — 1)) for di,t+1 >0. 1

(B-1)
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