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On the ARMA Approximation for Fading Channels Described by the
Clarke Model with Applications to Kalman-based Receivers
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Abstract—We consider a terrestrial wireless channel, whose
statistical model under flat-fading conditions is due to Clarke.
A lot of papers in the literature deal with receivers for this
scenario, aiming at estimating and tracking the time-varying
channel, possibly with the aid of known (pilot) symbols. A
common approach to derive receivers of reasonable complexity is
to resort to a Kalman filter which is based on an approximation
of the actual fading process as autoregressive moving-average
(ARMA) of a given order. The aim of this paper is to show that
the approximation of the actual fading process, usually exploited
in the literature, is far from effective. Thus, we present a novel
technique, based on an off-line minimization of the mean square
error of the channel estimate, which ensures a considerable gain
in terms of bit-error rate for Kalman-based receivers without
increasing the receiver complexity. Moreover, we also propose
a novel approximation, to be employed in Kalman smoothers
proposed for iterative detection schemes, which allows further
performance improvements without a significant increase of the
computational complexity.

Index Terms—Fading channels, time-varying channels, param-
eter estimation, autoregressive moving average processes, Wiener
filtering, Kalman filtering.

I. INTRODUCTION

STATISTICAL models to describe terrestrial wireless chan-
nels are necessary to design effective receivers. Among all

models, the Clarke model [1] is widely accepted in the litera-
ture for frequency-flat correlated Rayleigh fading channels [2].

Typically, when no channel state information (CSI) is
available at the receiver, the time-varying channel amplitude
and phase must be estimated and tracked. This is often
carried out by taking advantage of known (pilot) symbols,
periodically inserted into the coded data stream [3]. Moreover,
when iterative joint detection and decoding is adopted at the
receiver, channel estimates are iteratively updated using the
soft information coming from the decoder [4]–[7].

An approximation often employed in the literature to design
receivers for correlated fading channels consists of modeling
the fading process as autoregressive (AR) or, more generally,
as autoregressive moving average (ARMA). This allows the
application of a low-complexity Kalman filter [8] to track the
channel variations (e.g., see [4], [7], [9]–[11]). Moreover, since
the complexity of a Kalman filter increases with the order
of the ARMA process, a tradeoff between complexity and
accuracy is necessary—the larger the order of the model, the
better the approximation of the actual fading statistics but also
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the larger the tracking complexity. Several papers published so
far deal with the approximation of the fading process with a
finite order Markov model, as for instance an ARMA process,
(e.g., see [12]–[14]). In most of them the authors conclude that
a first order approximation can capture most of the dynamics
of the actual fading process.

However, the choice of the parameters of an AR process
is based upon trying to best match the actual fading process
and its approximation. This is done by solving a Yule-Walker
linear system with respect to the coefficients of an AR
model [15]. We propose a different approach whose aim is
to find the coefficients of an ARMA model which minimize
the mean square error (MSE) of the channel estimate under the
hypothesis of perfect knowledge of the transmitted symbols.
It turns out that the optimized coefficients depend in this
case on the signal-to-noise ratio (SNR). We will show that,
following the proposed method, not only the MSE of the
channel estimate is reduced, but also the bit-error rate (BER)
performance of Kalman-based receivers can be dramatically
improved. This performance improvement comes at practically
no cost, since the complexity of the receiver is unchanged, the
only modification being the different parameters of the ARMA
model.

The remainder of this paper is organized as follows. In
Section II, we define the system model and formulate the
problem. The proposed method to obtain the coefficients of
the approximating ARMA process is described in Section III.
Mathematical details are shown for the case of first- and
second-order AR models. In Section IV, the receiver proposed
in [4], [7], based on a Kalman smoother [8], is briefly
summarized and an improvement is proposed. Numerical
results, comparing the performance of classical receivers based
on Kalman smoothing with that of the proposed one, are
shown in Section V by approximating the fading process using
the proposed optimization method. Finally, some concluding
remarks are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the transmission of a sequence of complex
modulation symbols c = (c0, c1, . . . , cK−1) over a flat corre-
lated Rayleigh fading channel. We assume that the sequence
c is a codeword, possibly interleaved, of a channel code C
constructed over a modulation constellation X ⊂ C. We
include possible pilot symbols (known to the receiver) as a part
of the code C. Symbols {ck} are linearly modulated. Assuming
Nyquist transmitted pulses, matched filtering, and channel
variations slow enough so that no intersymbol interference
arises, the discrete-time baseband complex equivalent of the
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received signal is given by

rk = fkck + wk, k = 0, . . . , K − 1 (1)

where {wk} is the additive white Gaussian noise (AWGN)
and {fk} is the fading process. The vector of noise samples
w = (w0, w1, . . . , wK−1) has independent and identically
distributed (i.i.d.) complex circularly symmetric components,
with wk ∼ N

C
(0, 2σ2).1 The fading process {fk} is a

sequence of zero-mean complex Gaussian random variables
with autocorrelation sequence modeled according to isotropic
scattering2 [1], i.e., given by

Rf (m) = E{fk+mf∗
k} = J0(2πfDTm) (2)

where J0(·) is the zero-th order Bessel function, T is the
signaling rate, and fD is the Doppler spread, assumed known
to the receiver. This latter assumption is common in the
literature (e.g. see [7], [16]). Moreover, fD can be estimated
using, for example, the algorithm in [17]. The vector f =
(f0, f1, . . . , fK−1), unknown to both transmitter and receiver,
is statistically independent of c and w.

Receivers for this scenario have been widely studied in
the literature and many different approaches have been pur-
sued (e.g., see [4], [7], [9]–[11], [18]–[21]). In this paper,
we are interested in receivers based on a Kalman filter. In
particular, we will consider the receiver, proposed in [4],
[7] and briefly reviewed in Section IV, based on a Kalman
smoother and iteratively refining the channel estimate by using
the extrinsic information coming from a soft-input soft-output
(SISO) decoder. A common characteristic of receivers based
on a Kalman filter is that they model the fading process as
ARMA(N, M ), i.e., {fk} is approximated with a new process
{gk} that can be generated as

gk =
N∑

n=1

ρngk−n +
M∑

m=0

γmvk−m (3)

where {vk} is a complex circularly symmetric white Gaussian
process with unitary variance.3 Therefore, in the considered
scenario it is necessary to find a proper approximation for
the considered fading process, that is, for any given N and
M , to find the coefficients (ρ1, . . . , ρN) and (γ0, . . . , γM ) for
which the best approximation, in some sense, of the actual
fading process results. In the case of an AR(N ) model, the
common approach in the literature consists of obtaining the
coefficients (ρ1, . . . , ρN ) by solving the Yule-Walker linear
system Rg(m) = Rf (m), for m = 1, 2, . . . , N [15], whereas
γ0 can be expressed as a function of coefficients (ρ1, . . . , ρN)
from the constraint Rg(0) = Rf (0). This is exactly the same
approach followed in [4], [7] and many other papers (e.g. [11],
[14]). In the next section, we propose an alternative method
to derive the ARMA coefficients.

1A complex circularly symmetric Gaussian random variable v with mean
μ and covariance Σ is denoted by v ∼ NC(μ, Σ). We denote the complex
circularly symmetric Gaussian probability density function (pdf) with mean
μ, covariance Σ and argument x by gC(x; μ, Σ).

2Although in this paper we always assumed the Clarke model because
it is widely used in the literature, we wish to point out that any arbitrary
autocorrelation function can be used in (2).

3When M = 0, the process is said to be autoregressive of order N
[AR(N )].
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Fig. 1. Pictorial representation of the proposed method.

III. ARMA APPROXIMATION OF THE ACTUAL FADING

CHANNEL

Let assume that we know the transmitted symbols. We are in
fact interested in coded systems with iterative joint detection
and decoding, where this information on code symbols can be
derived from the decoder and becomes more and more reliable
through the iterations. Hence, we can remove the modulation
from the observation obtaining the sequence {r′k}, with

r′k =
rk

ck
= fk + w′

k (4)

having defined w′
k = wk/ck. With reference to Fig. 1, which

represents a pictorial description of the proposed method, let
us design the minimum MSE linear estimator of a generic
ARMA(N, M ) process {gk} from the observation {gk +w′

k}.
The impulse response of this filter will be denoted to as {hk}
and its transfer function, in terms of Z-transform, as H(z).
Obviously, {hk} will be a function of the parameters of the
ARMA process. Then, we employ this filter to estimate fk

from the observation {r′k}. We will choose the parameters of
the ARMA model such that the mean square value of the error
εk = fk − f̂k is minimized.

The rationale for such an approach is very simple. The
described procedure is exactly what we want to do with a
Kalman filter. In fact, this Kalman filter works on the true
observation but is designed with an ARMA model in mind
and our aim is the minimization of the MSE of the estimate
produced by the Kalman filter. For simplicity, and also because
this case will be considered in the numerical results, we
assume a phase shift keying (PSK) modulation with |ck| = 1.
Hence, sequences {wk} and {w′

k} are statistically equivalent.
Since in the numerical results we will consider a Kalman
smoother, as a filter H(z) we may consider the non-causal
minimum MSE estimator that, in this case, can be expressed
in closed form [15]:

H(z) =
Sg(z)

Sg(z) + 2σ2
(5)

where Sg(z) is the Z-transform of the autocorrelation function
Rg(m) which depends on the parameters of the ARMA model.
Since the estimate f̂k can be expressed as

f̂k =
∞∑

n=−∞
hnr′k−n =

∞∑
n=−∞

hn(fk−n + w′
k−n) (6)

the MSE to be minimized as a function of the parameters of
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the ARMA model is given by

E{|εk|2} = E

⎧⎨
⎩

∣∣∣∣∣fk −
∞∑

n=−∞
hn(fk−n + w′

k−n)

∣∣∣∣∣
2
⎫⎬
⎭

= 1 + 2σ2
∑

n

|hn|2 +
∑
m

∑
n

hnh∗
mRf (m − n)

−2Re

[∑
n

h∗
nRf (n)

]
. (7)

The MSE (7) cannot be evaluated in closed form due to
the presence of the Bessel function in the expression of
the autocorrelation Rf (n). Hence, it must be numerically
evaluated by truncating the summations in (7). This can be
done since both hn and Rf (n) go to zero for n → ±∞. We
now detail the proposed method in the case of AR(1) and
AR(2) models.

AR(1) approximation

We consider a first order autoregressive process {gk} which
is defined by the following recursive equation

gk = ρgk−1 +
√

1 − ρ2vk (8)

where the real parameter ρ is such that |ρ| < 1 to ensure wide-
sense stationarity. The Z-transform of the autocorrelation
function of such a process becomes

Sg(z) =
1 − ρ2

(1 − ρz−1)(1 − ρz)
. (9)

After substituting (9) in (5), the expression of the non-causal
minimum MSE estimator H(z) becomes

H(z) =
1 − ρ2

1 − ρ2 + 2σ2(1 − ρz−1)(1 − ρz)
(10)

which has two real poles p1 < 1 and p2 > 1, with the property
that p1 = 1/p2. It follows that the corresponding impulse
response is

hn = Ap
|n|
1 (11)

where

p1 =
1
2

(
ρ−1 + ρ +

ρ−1 − ρ

2σ2

)

− 1
2

√(
ρ−1 + ρ +

ρ−1 − ρ

2σ2

)2

− 4

A =
1

2σ2

ρ−1 − ρ

p−1
1 − p1

.

(12)

After substituting (11) in (7), the remaining step is to search
for ρ ∈ (−1, 1) such that the MSE E{|εk|2} is minimized. �

AR(2) approximation

We now consider the case of the AR(2) model. Two
parameters have to be optimized in this case, since an AR(2)
process is defined by this recursive equation

gk = ρ1gk−1 + ρ2gk−2 + γ0vk (13)

where γ0 can be expressed as a function of ρ1 and ρ2,
exploiting the constraint E{|gk|2} = 1, and the search for

ρ1 and ρ2 must be performed with the constraint that the
polynomial z2−ρ1z−ρ2 = 0 must have both roots inside the
unit circle to ensure the wide-sense stationarity of {gk}. In
this case, the filter H(z), computed from (5), has four poles:
p1 and p2 inside the unit circle and p3 = 1/p1, p4 = 1/p2

outside. Assuming for simplicity distinct poles, two scenarios
are possible: i) real poles, leading to the following impulse
response

hn = A1p
|n|
1 + A2p

|n|
2 (14)

with A1 and A2 real coefficients, and ii) complex conjugate
poles, for which (14) holds with A1 and A2 complex con-
jugate coefficients. The expression of the constants appearing
in (14) as a function of ρ1 and ρ2 is omitted. Again, after
substituting (14) in (7) the remaining step is to search for ρ1

and ρ2 such that the MSE E{|εk|2} is minimized. �
The parameters of the ARMA model computed using the

proposed method will depend on the Doppler spread and the
SNR. However, they can be computed off-line and stored
in a look-up table. Alternatively, simple approximations of
the coefficients as a function of the Doppler spread may
be introduced by fitting the numerically computed data. For
example, it turns out that, for the AR(1) coefficient ρ, the
approximation log(1 − ρ) = m log(fDT ) + q (where the real
coefficients m and q depend on the SNR, but are independent
of the Doppler spread) is excellent on a wide range of
Doppler values, for suitably selected m and q. Therefore,
in practice the computationally intensive evaluation of the
optimal coefficients can be carried out off-line, and the optimal
parameters m and q derived for a set of values of the SNR.
At the receiver, these coefficients are used to evaluate ρ for
any Doppler spread of interest, by calculating

ρ = 1 − em(SNR) log(fDT )+q(SNR) (15)

where we pointed out the dependency of m and q from the
SNR. The above function can be evaluated easily by means
of two look-up tables. We choose to express the coefficient ρ
as a function of the Doppler spread, instead of the SNR, since
the dependence on the first is much more pronounced than on
the latter. Therefore, even if m and q are evaluated and stored
only for a few values of the SNR, the approximation will be
very good.

Similarly, in the AR(2) case it turns out that a very good
fitting is obtained by means of the following functions

ρ1 = 2 − em1(SNR) log(fDT )+q1(SNR)

ρ2 = −1 + em2(SNR) log(fDT )+q2(SNR)

where again m1, m2, q1, q2 have to be evaluated off-line for a
set of SNR values of interest.

IV. ITERATIVE KALMAN SMOOTHER

We now briefly review the receiver proposed in [4], [7]
for the considered scenario, based on a Kalman smoother
and on an iterative refinement of the channel estimate using
the soft information coming from the decoder. This Kalman
smoother will be designed for a fading channel modeled as
ARMA(N, M ) and whose parameters can be chosen according
to the classical or the proposed optimization method.
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Omitting for simplicity of notation the explicit reference to
the current iteration, let us denote by P (ck) the extrinsic soft-
output produced by the SISO decoder in the iterative receiver.
Using these probabilities, the pdf p(rk|fk) can be computed
as

p(rk|fk) =
∑
ck

P (ck)p(rk|fk, ck)

=
∑
ck

P (ck)gC(rk; ckfk, 2σ2)
(16)

where the assumption of independence between data symbols
and fading coefficients has been used. From (16), it turns out
that p(rk|fk) is Gaussian only when the k-th code symbol is
perfectly known, e.g., it is a pilot symbol or the decoder has
taken a decision on it with high reliability, while otherwise
it is a linear combination of Gaussian pdfs. In [4], [7] the
following approximation is proposed

p(rk|fk) � gC

(
rk; fkαk, 2σ2

)
(17)

where αk =
∑

ck
ckP (ck) is the first-order moment of the

code symbol ck. As a consequence, in order to estimate and
track the channel, we may assume the following observation
model

rk = fkαk + nk (18)

where the noise samples {nk} are i.i.d., with nk ∼
N

C
(0, 2σ2). Hence, the modulation is removed and modeling

{fk} as ARMA(N, M ), a Kalman smoother [4], [7], [8] can
be adopted to obtain a Bayesian channel estimator. From this
channel estimate, the probabilities of symbols {ck} are then
updated and passed to the decoder [4], [7]. The approximation
(17) will be denoted to as approximation σ0.

We propose a different approximation based on the mini-
mum Kullback-Leibler distance [22]:

p(rk|fk) � gC(rk; E{rk|fk}, var{rk|fk}) . (19)

It is straightforward to show that

E{rk|fk} = fkαk (20)

var{rk|fk} = 2σ2 + |fk|2
(
βk − |αk|2

)
(21)

where βk is the second-order moment of the code symbol
ck, i.e., βk

Δ=
∑

ck
|ck|2P (ck). On the other hand, the pdf

p(rk|fk) in (19) as a function of fk is not Gaussian since
|fk|2 appears in the expression of var{rk|fk}. In order to
derive a receiver based on a Kalman filter, the dependence on
|fk|2 in (21) has to be neglected in some way. We propose the
substitution of each fading sample fk in (21) with its estimate
f̂k made by the Kalman filter at the previous iteration, i.e.,

p(rk|fk) � gC

(
rk; fkαk, 2σ2 + |f̂k|2

(
βk − |αk|2

))
. (22)

Since no estimate is available at the first iteration, f̂k = 0
is assumed. This approximation will be denoted to as ap-
proximation σKL. The approximation σ0 in [4], [7] can be
considered as a particular case of the proposed approximation
based on the minimum Kullback-Leibler distance by using, at
every iteration, f̂k = 0 instead of the estimate produced by
the Kalman smoother.
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Fig. 2. MSE of the fading estimate, for different optimization methods for
the parameters of the ARMA model. The considered normalized Doppler
bandwidth is fDT = 10−2.

It is worth noticing that, with respect to [4], [7], the
proposed method entails only a minor increase in complexity.
In particular, it requires to store the estimates {f̂k} which
will be used at the next iteration, and to evaluate the second-
order moments {βk}. Moreover, two real additions and two
magnitude computations are required to evaluate (21).

V. NUMERICAL RESULTS

In order to illustrate the benefits that can be obtained with a
proper optimization of the parameters of the employed ARMA
model, in Fig. 2 the MSE E{|εk|2} as a function of ES/N0,
ES being the received signal energy per modulation symbol
and N0 the one-sided noise power spectral density, is shown.
Both the classical (based on the Yule-Walker linear system for
AR processes) and the proposed optimization methods have
been considered. A correlated Rayleigh fading process {fk}
with Clarke statistics has been considered, with normalized
Doppler bandwidth fDT = 10−2. The channel realizations
were generated according to the method proposed in [23]. It
can be observed that AR(1) and ARMA(1,1) models lead to
approximately the same MSE. This is confirmed by the BER
curves also. On the other hand, when the proposed optimiza-
tion method is employed, the AR(2) approximation exhibits a
quite large gain, in terms of MSE, with respect to the AR(1)
model. Hence, it may be worth employing Kalman filters
designed on the AR(2) approximation in practical receivers,
despite the increased complexity. Finally, it is important to
point out that the gain of the proposed method with respect
to classical method, for both AR(1) and AR(2), can be very
large, especially for low to medium SNR values. For a large
enough SNR, the MSE of the classical method asymptotically
approaches that of the proposed one. As pointed out in
Section III, the infinite summations in (7) must be truncated.
Since, for example in the AR(1) case, the summations in (7)
behave as geometric series with base p1, an effective way to
carry out those summations in practice is to truncate them
to the first

⌈
log ε
log p1

⌉
terms, where ε is a design parameter. In

the numerical simulations of this paper we chose ε = 10−9.
The same criterion can be used in the AR(2) case, where the
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Fig. 3. Coefficient ρ in the AR(1) scenario, along with its approximation (15).

largest (in magnitude) between p1 and p2 of eq. (14) has to
be used to determine the truncation.

Another interesting but also intuitive conclusion derived
from different simulation results, not reported in this paper,
is that the gain of the AR(2) model with respect to the AR(1),
decreases for increasing values of the equivalent Doppler
bandwidth. In other words, for very large values of the Doppler
bandwidth, the effective advantage of using a larger order
AR approximation disappears. This of course holds also for
the classical approach, and it is well in line with the results
in [12]–[14].

In order to show the accuracy of the approximation (15),
in Fig. 3 the optimized coefficient ρ in the AR(1) scenario
is shown along with its approximation, as a function of the
normalized Doppler spread and for three values of the SNR.
For comparison, the coefficient obtained with the classical
approach (that does not depend on the SNR) is also shown.
As it can be seen, when suitable values of m and q are used
in (15), the resulting approximation for ρ is excellent. As an
example, for ES/N0 = 5 dB, m = 1.34 and q = 1.51.

The improvement in terms of MSE produces an improve-
ment also in the BER performance. The sequence c is now
assumed a codeword, possibly interleaved, of a channel code
C constructed over a PSK constellation. For every considered
scenario, simulation results for the case of known fading
samples is carried out and the relevant curves (labeled “perfect
CSI”) added to every figure for comparison purposes. The
BER performance will be shown versus Eb/N0, where Eb

denotes the received signal energy per information bit.
Fig. 4 refers to a binary PSK (BPSK) transmitted over a

Rayleigh fading channel with fDT = 10−2. A (3,6)-regular
rate-1/2 low-density parity-check (LDPC) code is employed,
with codewords of 4000 bits. At the receiver, iterative decod-
ing is carried out allowing at most 200 iterations. In order
to ensure convergence of the iterative detection and decoding
algorithm, 1 pilot symbol (known at the receiver) every 19
code symbols is placed in the transmitted codeword. This
corresponds to a decrease in the effective transmission rate
of a factor 19/20, resulting in an increase in the required
signal-to-noise ratio of 0.223 dB which has been introduced
artificially in the curves labeled “perfect CSI” for the sake
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Fig. 4. Performance for an LDPC-coded BPSK modulation. The considered
normalized Doppler bandwidth is fDT = 10−2.

of comparison. Hence, the gap between the “perfect CSI”
curve and the others is uniquely due to the need for fading
estimation/compensation, and not to the rate decrease due
to pilot symbols. The receiver described in Sect. IV based
on the approximation σ0 is considered, for several channel
models: AR(1), AR(2), and ARMA(1,1). There is a significant
performance gain deriving from the proposed optimization
method, reaching about 2.5 dB for both AR(1) and AR(2)
models. As already pointed out, the ARMA(1,1) model gives
no gain with respect to the AR(1) approximation, hence its
use can be avoided since the computational complexity of
receivers based on this model is larger than that of receivers
based on the AR(1) model. For a very similar scenario, in [7]
simulation results are reported showing that a simple low-pass
filtering approach can outperform the first-order Kalman filter
of a fraction of dB. Hence, the authors conclude that this
simple approach is favorable. However, this conclusion does
not hold when a proper optimization of the parameters of the
employed ARMA model is adopted—a gain of about 2.5 dB
is obtained in this case.

In Fig. 5, an LDPC-coded 8-PSK modulation over a fading
channel with fDT = 5 ·10−3 is considered. The irregular rate-
2/3 LDPC code proposed for the DVB-S2 standard, whose
codeword size is 64800 bits, is employed. At the receiver,
iterative decoding is carried out allowing at most 40 iterations.
As in the previous considered scenario, 1 pilot symbol every
19 code symbols is placed in the transmitted codeword to
ensure convergence. All curves shown in the figure are ob-
tained by using the proposed optimization method to choose
the parameters of the AR models. The aim of this figure is
to show the advantage of the proposed approximation σKL

with respect to the classical approximation σ0. This gain is
about 1.5 dB in the case of a Kalman-based receiver for the
AR(1) model, while the gain for the AR(2) model is negligible,
since with both approximations the perfect CSI performance
is reached thanks to the proposed method for optimizing the
parameters of the AR model.
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Fig. 5. Performance for an LDPC-coded 8-PSK modulation. The considered
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VI. CONCLUSIONS

In this paper, a new method to approximate a Rayleigh
fading process with Clarke dynamics with an ARMA model
has been proposed, showing that the classical method is highly
suboptimal in terms of mean square error. We have shown
that with the proposed optimization method not only the
mean square estimation error is reduced, but also the bit-
error rate of classical receivers based on a Kalman smoother
can be dramatically reduced. It is worth pointing out that
this gain comes at no further computational cost, since the
optimization may be done once during the receiver design
and the receiver itself does not change, since only the model
parameters plugged in the receiver change.

Moreover, a novel approximation to be employed in de-
tection algorithms based on a Kalman smoother, suitable for
receivers based on iterative detection and decoding, has been
proposed. This approximation offers a better performance than
similar receivers presented in the literature with a similar
computational complexity.
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