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Underwater Wireless Communication Networks 
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Abstract—In this letter it is shown that by taking advantage of the particle velocity, in 

addition to the pressure, multichannel reception can be accomplished in underwater acoustic 

wireless channels. Theoretical formulation and Monte Carlo simulations are provided for a 

vector sensor equalizer that measures the pressure and the velocity at a single point in space. 

These results demonstrate the usefulness of small-size vector sensors as multichannel 

equalizers for underwater acoustic wireless systems and sensor networks. 

 
Index Terms—Underwater communication, vector sensors, multichannel equalization, 

particle velocity. 

 

I. INTRODUCTION 

A vector sensor is capable of measuring important non-scalar components of the acoustic field such 

as the particle velocity, which cannot be obtained by a single scalar pressure sensor. In the past few 

decades, extensive research has been conducted on the theory and design of vector sensors (see, for 

example, [1] and [2]). They have been mainly used for underwater target localization and SONAR 

applications. 
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On the other hand, underwater acoustic communication systems have used scalar sensors only, 

which measure the pressure of the acoustic field. The new idea of this paper is to take advantage of 

the vector components of the acoustic field, such as the particle velocity, sensed by a vector sensor 

at the receiver, for detecting the transmitted data. This reduces the size of the receiver since a vector 

sensor measures the scalar and vector components of the acoustic field at a single point in space. In 

other words, multiple channels in the proposed receiver are co-located. This is different from 

conventional multichannel underwater acoustic receivers, which employ spatially separated 

pressure-only sensors that may result in large arrays. The small size of the proposed receiver makes 

it particularly useful for small unmanned underwater vehicles and some underwater wireless sensor 

networks [4]. 

 

II. SYSTEM EQUATIONS IN A VECTOR SENSOR RECEIVER 

In general, there are two types of vector sensors: inertial and gradient [1] [2]. Inertial sensors 

truly measure the velocity by responding to the acoustic particle motion. Gradient sensors, however, 

implement a finite-difference approximation to estimate the gradients of the acoustic field such as 

the velocity. Each sensor type has its own advantages and disadvantages [3]. However, the 

proposed idea, to take advantage of the vector components of the field at the receiver, is not limited 

to a particular sensor type. Of course the input dynamic range, bandwidth, sensitivity, and other 

characteristics of a vector sensor affect the reception performance, but the principles, models, and 

concepts developed in the sequel remain the same. Depending on the application, system cost, 

required precision, etc., one can choose the proper sensor type and technology. 

In this section we derive basic system equations for data detection via a vector sensor. To 

demonstrate the basic concepts of how both the vector and scalar components of the acoustic field 

can be utilized for data reception, we consider a simple system in a two-dimensional (2D) depth-
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range underwater channel. As shown in Fig. 1, there is one transmit pressure sensor, shown by a 

black dot, whereas for reception we use a vector sensor, shown by a black square, which measures 

the pressure and the y and z components of the particle velocity. This is basically a 1 3×  single-

input multiple-output (SIMO) system. 

A. Pressure and Velocity Channels and Noises 

There are three channels in Fig. 1: the pressure channel p , represented by a straight dashed 

line, and two pressure-equivalent velocity channels zp  and yp , shown by curved dashed lines. To 

define zp  and yp , we need to define the two velocity channels  and , the vertical and 

horizontal components of the particle velocity, respectively. According to the linearized equation 

for time-harmonic waves 

zv yv

[2] [5], the z and y components of the velocity at the frequency 0f  are 

given by 

                                     1
0 0 0 0( ) / , ( ) /1ρ ω ρ ω−= − ∂ ∂ = − ∂ ∂z yv j p z v j p y− . (1) 

In the above equations, 0ρ  is the density of the fluid, 2 1= −j  and 0 2 0ω π= f . Eq. (1) states that the 

velocity in a certain direction is proportional to the spatial pressure gradient in that direction [5]. 

The velocity channels in (1) are then multiplied by 0ρ− c , the negative of the acoustic impedance, 

where c is the speed of sound. This gives the associated pressure-equivalent velocity channels as 

0ρ= −z zp c v  and 0ρ= −y yp c v . With λ  as the wavelength and 02 / /π λ ω= =k c  as the 

wavenumber we finally obtain 

                                              1( ) / , ( ) /−= ∂ ∂ = ∂z y 1− ∂p jk p z p jk p y . (2) 

The additive ambient noise pressure at the receiver is shown by n  in Fig. 1. At the same 

location, the z and y components of the ambient noise velocity, sensed by the vector sensor are 

1
0 0( ) /z j n zα ρ ω −= − ∂ ∂  and 1

0 0( ) /y j n yα ρ ω −= − ∂ ∂ , respectively, derived in the same manner as (1)

. So, the vertical and horizontal pressure-equivalent ambient noise velocities are 
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1
0 0( ) / and ( ) / ,z z y yn c jk n z n c jk n y1ρ α ρ α−= − = ∂ ∂ = − = ∂ ∂− respectively, which resemble (2). 

B. Input-Output System Equations 

According to Fig. 1, the received pressure signal r at Rx in response to the signal s transmitted 

from Tx can be written as . Here = ⊕ +r p s n ⊕  stands for convolution in time and p is the 

pressure channel impulse response at Rx. We also define the z and y components of the pressure-

equivalent received velocity signals as 1( ) /−= ∂ ∂zr jk r z  and 1( ) /−= ∂ ∂yr jk r y , respectively. Based 

on (2) and by taking the spatial gradient of r  with respect to z and y we easily obtain the key 

system equations 

                                      , ,= ⊕ + = ⊕ + = ⊕ +y y y z zr p s n r p s n r p s nz

z

)

. (3) 

It is noteworthy that the three output signals  are measured at a single point in space. , andyr r r

C. Pressure and Velocity Noise Correlations 

We define the spatial pressure noise correlation between the two locations ( ,+ +y zy z  and 

 as , where * is the complex conjugate and ( , )y z *( , ) [ ( , ) ( , )]= + +n y z y zq E n y z n y z andy z  

are real numbers. Using the correlation properties of a differentiator in p. 326 of [6], at the location 

 one can show ( , )y z * 1[ { } ] ( ) /−= ∂ ∂y
n yE n n jk q , , and 

, all calculated for 

* 1[ { } ] ( ) /z
nE n n jk q−= ∂ ∂ z

y
* 2 2[ { } ] /z y

n zE n n k q−= − ∂ ∂ ∂ ( , ) (0,0)=y z . For an isotropic noise field in 

the y-z plane we have  2 2 1/ 2
0( , ) ( ( ) )= +n y z y zq J k [7], with  as the m-order Bessel function of 

the first kind. Using the properties of the Bessel functions and their derivatives 

(.)mJ

[8], it is easy to verify that 

, i.e., all the noise terms in * * *[ { } ] [ { } ] [ { } ] 0= =y z z yE n n E n n E n n = (3) are uncorrelated. 

D. Pressure and Velocity Average Powers 

1) Noise Powers: Using the statistical properties of a differentiator in p. 326 of [6], the powers 

of the y and z components of the pressure-equivalent noise velocity at  can be obtained as ( , )y z



 
 

5

2 2 2[| | ] /−Ω = = − ∂ ∂y y
n n

2E n k q 2 2 2 2[| | ] /−Ω = = − ∂ ∂z z
n n zE n k qy  and , respectively, both calculated at 

. Based on the  of the 2D isotropic noise model described previously, one can 

show . Note that the noise pressure power in this model is 

. This means 

( , ) (0,0)=y z nq

1/ 2Ω = Ω =y z
n n

2[| | ] (0,0) 1Ω = = =n nE n q Ω = Ω + Ωy z
n n n . 

2) Channel Powers: The ambient noise is a superposition of several components coming from 

different angle of arrivals (AOAs) [7]. In multipath environments such as shallow waters, the 

channel is also a superposition of multiple subchannels. Based on this analogy between n and p, as 

well as their spatial gradients, one can obtain Ω = Ω + Ωy z
p p p , where 2[| | ]Ω =p E p ,  

and . Note that in the 2D isotropic noise model the distribution of AOA is uniform 

over 

2[| | ]Ω =y y
p E p

2[| | ]Ω =z z
p E p

[0, 2 )π  [7], which results in . However, this is not necessarily the case in 

multipath channels such shallow waters, which means 

/ 2Ω = Ω = Ωy z
n n n

Ω y
p  and Ω z

p  are not equal in general. 

 

III. MULTICHANNEL EQUALIZATION WITH A VECTOR SENSOR 

In the previous section, signal and noise characteristics in a vector sensor receiver were 

discussed. In this section, we demonstrate the feasibility of multichannel intersymbol interference 

removal with a vector sensor receiver. Among the different types of equalizers [9], we choose the 

basic zero forcing equalizer to verify the concept. For the system equation we have 

                            

1 1

2 2

3 3

, such that , , and .

1

2

3

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢= + = = = ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣

R H

R HS N R R H H N N

R H ⎦

N

N

 (4) 

In (4)  includes K transmitted symbols and  is the transpose. With M as the number 

of channel taps, the same for all l, 

0 1[ ... ]−= T
Ks sS T

1, 2,3=l , [ (0)... ( 2)]= + − T
l l lr r K MR  and 
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[ (0)... ( 2)]= + T
l l ln n K MN − ) 1 are the l-th ( 1+ − ×K M  received signal and noise vectors, 

respectively. Also the l-th ( 1)+ − ×K M K  banded channel matrix is 

                                                    

(0)

(0)

( 1)

( 1)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎣ ⎦

l

l

l

l

l

h

h

h M

h M

H . (5) 

Note that for a vector sensor receiver, the channel indices 1, 2 and 3 in (4) represent the pressure, 

pressure-equivalent horizontal velocity and pressure-equivalent vertical velocity, respectively. So, 

based on (3), for an arbitrary discrete time index t we have 1( ) ( )=r t r t , , 2 ( ) ( )= yr t r t 3( ) ( )= zr t r t , 

, , , 1( ) ( )=h t p t 2 ( ) ( )= yh t p t 3( ) ( )= zh t p t 1( ) ( )=n t n t , 2 ( ) ( )= yn t n t  and . Furthermore, 

according to 

3( ) ( )= zn t n t

(5), the channel convolution matrices  in 1 2, , andH H H3

.

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

]

(4) for a vector sensor 

receiver are given by 

1 2 3

(0) (0) (0)

(0) (0) (0)
, ,

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

y z

y z

y z

y z

p p p

p p p

p M p M p M

p M p M p M

⎡ ⎤ ⎡⎡ ⎤
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥= = =⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥

− − −⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣

H H H  (6) 

Assuming perfect channel knowledge at the receiver, the zero forcing equalizer is given by 

                                                              . (7) † 1 1 † 1ˆ ( )− − −=S H Σ H H Σ R

In this equation  is the minimum variance unbiased estimate of S Ŝ [10],  is the transpose 

conjugate and  is the covariance matrix of the noise vector N in 

†

†[E=Σ NN (4). The simulations of 

Section IV show the performance of (7). The effect of imperfect channel knowledge, i.e., channel 
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estimation error is discussed in [3]. 

 

IV. SIMULATION SET UP AND PERFORMANCE COMPARISON 

Here we compare the performance of the vector sensor equalizer in (7) with a vertical three-

element pressure-only uniform linear array (ULA) that performs the zero forcing equalization. The 

ULA equations and equalizer are the same as (4) and (7), respectively, where the three channels 

represent three vertically separated pressure channels. The noise vectors  in both 

receivers are considered to be complex Gaussians with white temporal correlations. For the 

isotropic noise model discussed in subsection II-C, the noise vectors  are uncorrelated 

in the vector sensor receiver. Therefore its noise covariance matrix 

 is given by 

1 2, andN N N3

3

⎥
⎥

1 2, andN N N

†
vector sensor vector sensor vector sensor[ ]E=Σ N N

                                , (8) 
1

vector sensor 1

1

( / 2)
( / 2)

n K M

n K M

n K M

+ −

+ −

+ −

Ω⎡ ⎤
⎢= Ω⎢
⎢ ⎥Ω⎣ ⎦

I 0 0
Σ 0 I 0

0 0 I

where  is an  identity matrix and  is a matrix whose elements are all zero. For the 

pressure-only ULA with the element spacing of L, there are some pressure correlations of  

and  for the separations of L and 

mI m m× 0

0 ( )J kL

0 (2 )J kL 2L , respectively. This means that the noise covariance 

matrix  can be written as †
pressure-only ULA pressure-only ULA pressure-only ULA[ ]E=Σ N N

                        . (9) 
1 0 1 0

pressure-only ULA 0 1 1 0 1

0 1 0 1

( ) (2 )
( ) ( )

(2 ) ( )

n K M K M K M

K M n K M K M

K M K M n K M

J kL J kL
J kL J kL

J kL J kL

+ − + − + −

+ − + − + −

+ − + − + −

Ω⎡ ⎤
⎢ ⎥= Ω⎢ ⎥
⎢ ⎥Ω⎣ ⎦

I I
Σ I I I

I I I

1

1

I

To calculate the velocity channel impulse responses (IRs) yp  and zp  in simulations using the 

p channel IR generated by Bellhop [11], each spatial gradient in (2) is approximated by a finite 

difference. Therefore at location  we have ( , )y z ( , ) / [ ( , 0.2 ) ( , )] /(0.2 )λ λ∂ ∂ ≈ + −p y z z p y z p y z  and 
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( , ) / [ ( 0.2 , ) ( , )] /(0.2 )λ λ∂ ∂ ≈ + −p y z y p y z p y z . 

In simulations the S vector includes 200=K  equi-probable 1±  BPSK symbols, and the entries 

of the channel matrix H are calculated as described above. The noise vector N is generated by pre-

multiplying a simulated white complex Gaussian vector with the Cholesky factor of , the noise 

covariance matrix of interest. After calculating the received vector R according to 

Σ

(4), S is 

estimated using (7), and the bit error rate (BER) is shown in Fig. 2. The water depth for the shallow 

channel of Fig. 2 is 81.1 m, where the Tx and Rx are 5 km apart. The Tx and Rx are 25 m and 63 m 

below the water surface, respectively. A coarse silt bottom is considered, with  and a bit 

rate of 2400 bits/sec. The sound speed profile we used was measured during the underwater 

communication experiments conducted on May 10, 2002, in waters off San Diego, CA 

0 12 kHz=f

[12], and is 

shown in Fig. 3. 

To define the average signal-to-noise ratio (SNR) per channel in Fig. 2, let 

,  be the taps of the 

pressure, y- and z-velocity IRs, respectively. Then the pressure, y- and z-velocity SNRs are 

[ (0)... ( 1)]= − Tp p Mp [ (0)... ( 1)] and [ (0)... ( 1)]y y y T z z zp p M p p M= − =p p T−

/ζ = Ω Ωp p n , /ζ = Ω Ωy y y
p p n  and /ζ = Ω Ωz z

p p
z
n , respectively, such that †Ω =p p p , †( )Ω =y y

p p p y

z

 and 

. The average SNR per channel for the vector sensor receiver is †( )Ω =z z
p p p ( )ζ ζ ζ ζ= + +y z

p p p / 3 

by definition. Also p is normalized such that 1Ω =p . Based on subsection II-D, this implies that 

 in our simulations. Since 1Ω + Ω =y z
p p / 2Ω = Ω = Ωy z

n n n  in a 2D isotropic noise model, we finally 

obtain 1/ζ = Ωn , which is the same as the SNR of a unit-power pressure channel ζ p . 

 

V. DISCUSSION AND CONCLUSION 

The performance of the compact vector sensor receiver is shown in Fig. 2, which is 

significantly better than a single pressure sensor receiver. Performance of the three-element 
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pressure-only array depends on its element spacing L, as shown in Fig. 2. As L increases, the noise 

spatial correlation decreases and also the three pressure channels become less correlated. These 

both result in a reduction in BER, as L increases. According to Fig. 2, the pressure-only array 

receiver with 50L λ=  outperforms the vector sensor receiver. By changing the simulation scenario, 

for example the bottom type, the pressure-only array may outperform the vector sensor receiver 

with an element spacing smaller than 50λ . However, the general picture does not change, i.e., both 

the vector sensor and pressure-only array receivers are much better than a single pressure sensor 

receiver. The advantage of the vector sensor receiver is it smaller size, compared to the pressure-

only array. 

To confirm the accuracy of the BER results shown in Fig. 2, one can look at the level of error 

in symbol estimates, which are obtained using the equalizer in (7). The covariance matrix of the 

symbol estimation error vector  can be shown to be ˆ −S S [10]

                                                  † † 1ˆ ˆ[( )( ) ] ( )E 1− −− − =S S S S H Σ H , (10) 

where H and  are the channel matrix and the noise covariance matrix, respectively. In Fig. 4 the 

square root of the sorted diagonal elements of 

Σ

† 1 1( )− −H Σ H  in (10) are plotted, which are the 

standard deviations of the symbol estimation errors. As expected, the estimation error standard 

deviations of the pressure-only array decrease as L increases. Furthermore, the estimation error 

standard deviations of the vector sensor are much smaller than those of a single pressure sensor and 

pressure-only arrays with small element spacings. All these are consistent with the BER results of 

Fig. 2 and demonstrate the usefulness of a vector sensor as a compact multichannel receiver. 
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Fig. 1.  A 1×3 vector sensor communication system, with one pressure transmitter and 

one vector sensor receiver. The vector sensor measures the pressure, as well as the y

and z components of the acoustic particle velocity, all in a single point at the receive 

side. The system equations are given in (3). 
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Fig. 2.  Performance comparison of a vector sensor receiver, a single pressure sensor 

receiver, and a uniform linear array receiver with three pressure sensors and different 

element spacings , 5 , 50L λ λ λ= . 
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Fig. 3.  Sound speed versus the water depth. 
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Fig. 4.  Square root of the sorted diagonal elements of the symbol estimation error 

covariance matrix, given in (10). The receivers are a vector sensor, a single pressure 

sensor and a uniform linear array with three pressure sensors and different element 

spacings , 5 , 50L λ λ= λ . The average SNR per channel for each receiver is 6 dB. 


	I. Introduction
	II. System Equations in a Vector Sensor Receiver
	A. Pressure and Velocity Channels and Noises
	B. Input-Output System Equations
	C. Pressure and Velocity Noise Correlations
	D. Pressure and Velocity Average Powers

	III. Multichannel Equalization with a Vector Sensor
	IV. Simulation Set up and Performance Comparison
	V. Discussion and Conclusion

