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On the Performance of
Golden Space-Time Trellis Coded Modulation
over MIMO Block Fading Channels

Emanuele Viterbo and Yi Hong

Abstract

The Golden space-time trellis coded modulation (GST-TCahesne was proposed in [1] for a high
rate2 x 2 multiple-input multiple-output (MIMO) system over slowdmg channels. In this letter, we
present the performance analysis of GST-TCM over blocknfgadhannels, where the channel matrix is
constant over a fraction of the codeword length and varies fone fraction to another, independently.
In practice, it is not useful to design such codes for spetifick fading channel parameters and a
robust solution is preferable. We then show both analyicahd by simulation that the GST-TCM

designed for slow fading channels are indeed robust to attkbfading channel conditions.

Index Terms

Golden code, Golden space-time trellis coded modulatiaigrubound, block fading.

I. INTRODUCTION

The Golden code was proposed in [2] as a full rate and fullrditye code for2 x 2 multiple-
input multiple-output (MIMO) systems withon-vanishing minimum determinaiMVD). It was
shown in [3] how this property guarantees to achieve therslityemultiplexing gain trade-off.
In order to enhance the coding gain, a first attempt to conasgehe Golden code with an outer
trellis code was made in [4]. However, the resultand) hocscheme suffered from a high trellis
complexity.
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In [1], a Golden space-time trellis coded modulation (GSIM) scheme was designed for
slow fading channels. The NVD property of the inner Goldewlecas essential for a TCM
scheme. This property guarantees that the code will nogéstrim a reduction of the minimum
determinant, when a constellation expansion is requirgdT]2e systematic design proposed in
[1], is based on set partitioning of the Golden code in ordeéntrease the minimum determinant.
An outer trellis code is then used to increase the Hammintamiie between the codewords.
The Viterbi algorithm is applied for trellis decoding, wiethe branch metrics are computed
with a latticesphere decodef7, 8] for the inner Golden code.

In this letter, we analyze performance of the GST-TCM schem#ock fadingchannels [5].
The block fading channel is a simple and powerful model tadles a variety of wireless fading
channels ranging from fast to slow. For example, in OFDM Hdasestems over frequency selec-
tive fading channels it can model various channel delay leofin particular, low delay spread
channels correspond to small frequency selectivity, heany adjacent subcarriers experience
similar fading coefficients. On the contrary, channels Wwoting delays profiles correspond to large
frequency selectivity, i.e., the fading coefficients vaigngicantly among adjacent subcarriers.

In practice, it is not useful to design a GST-TCM for specificdi fading channel parameters
and a robust solution is preferable. We therefore analyegérformance of known GST-TCM,
designed for slow fading, over arbitrary block fading chelsnThe impact of the block fading
channel on the code performance is estimated analyticailygua two-term truncated union
bound (UB). We finally show both analytically and by simubatithat the GST-TCM designed
for slow fading channels are indeed robust to various blacknig channel conditions.

The rest of the letter is organized as follows. Section Haduces the system model for block
fading channels. Section Ill presents an analytic perfoiceaestimation of linear STBCs over
block fading channels. In Section IV we specialize the el GST-TCM designed for slow
fading. Section V shows simulation results. Conclusiomsdrawn in Section VI.

Notations Let 7" denote transpose arfjddenote Hermitian transpose. L&t C andZ[i| denote
the ring of rational integers, the field of complex numbers] &he ring of Gaussian integers,
respectively, where? = —1. Let [z] denote the smallest integer greater or equak.tahe

operator(-) denotes the algebraic conjugation in a quadratic algelmaicber field [2].
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II. SYSTEM MODEL

Let us first consider & x 2 MIMO system (1 = 2 transmit andny = 2 receive antennas)
over a slow fading channel using the Golden c@tdeA 2 x 2 Golden codewordX € G is

transmitted over two channel uses, where the channel méAtrix constant and
Y=HX+Z 1)

is received, where&Z is a complex white Gaussian noiex 2 matrix. The Golden codeword
X € G is defined as [2]

A 1 ala+b0) a(c+db)
X=— 2
Vh | ia (c—l—dé) @(a+b9_) )

wherea, b, ¢, d € Z[i] are the information symbol8,2 16 = Y5 o £ 1440, a £ 1446, and

the factorl /v/5 is used to normalize energy [2]. As information symb@}sQAM constellations

are used, wher@ = 27. The QAM constellation is assumed to be scaled to mafdh-(1+1)/2.

In this letter we will consider linear codes of lengthover an alphabeg in a block fading
channel, i.e., the transmitted codewords are giveXby (X,,...,X;,..., X)) € C?*%L;

« if the elementsX; € G are selected independently, we have tileoded Golden cogle

. if a trellis outer code is used to constrain thg's, we have a GST-TCM [1].

LetZ = (Zy,..., %, ..., 7Z1) € C**?L denote a complex white Gaussian noise matrix with
i.i.d. samples distributed a¥(0, Ny), where Z, are the complex white Gaussian noisex 2

matrices. At the receiver, we have the following receiveghal matrix
Y=(Y,,....Y;,..., ;) eC¥?

whereY; is given by
)/t:HtXt_‘_Zt tzl,,L (3)

where H, are assumed to be i.i.d. circularly symmetric Gaussianaandariables~ N¢(0, 1).
In a block fading channelthe matricest, € C?*? are assumed to be constant in a block of
N consecutive alphabet symbolsdh(i.e., 2N channel uses) and vary independently from one

block to another, i.e.,

HkN—l—l:"':H(k—i—l)N for kZO,,L/N—l
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where we assume for convenience thatdivides L. This implies that the number of blocks
within a codeword experiencing independent fadin@is- L/N. For N = L (B = 1) we have
a slow fading channel and foiV = 1 (B = L) afastfading channel. In this letter, we assume

that the channel is known at the receiver but not at the trateam

[1l. PERFORMANCE OF LINEARSTBC OVER BLOCK FADING CHANNELS

In this section we analyze performance of linear STBC ovecllfading channels. In the
following we will make the analysis specific to the GST-TCM.

Assuming that a codewor& is transmitted over alow fadingchannel (v = L), the
maximum-likelihood receiver might decide erroneously avdr of another codeworX, re-
sulting in apairwise error eventLet » denote the rank of theodeword difference matrix
X — X. Let Aj,j = 1,...,r, be the non-zero eigenvalues of thedeword distance matrix
A= (X- X)(X — X)T. The pairwise error probability(PEP) depends on the determinant
det(A) for full rank codes { = 2) [6].

The UB gives an upper bound to the performance of the STBClevehiruncated UB gives
an asymptotic approximation [9]. The dominant term in the igBhe PEP that depends on the
minimum determinantf the codeword distance matrix

Al(fn)n = min det (A)
X#£X
where the superscript denotes the slow fading case. The traditional code desiggrion for
space-time codes in [6] is based on the minimization of thmidant tlerm in the UB, which in
turn depends on thdiversity gainnrngy and thecoding gain (Affu)n> S

In this letter, we will consider the truncated UB with twortes
P(€)%N51P1+N52P2 (4)

where theP;,7 = 1,2, are the two largest PEPs of the two dominating events depgrati and

Ng, the corresponding multiplicities. We assume thatdepends o\, = A

o and P, depends
on A, the second smallest value dét (A).

Since we focus offull rank (i.e., » = ny = 2 for all A) andlinear (i.e., the sum of any two
codewords is a codeword) codes, we can simply consider tiReffin the all-zero transmitted

codeword matrix.
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Let us now consider alock fadingchannel, whered, is constant foR N channel uses and

changes independently in tli¢= L /N blocks. For a given codeworl, we define the matrices

F, 2 Z X X/ (=1,....B (5)
=({—1)N+1

Following [6], it can be easily shown that the dominantingrten the UB will be driven by the

quantity

B
AP A i det(Fy) (6)

min
det (F} 0
et(Fp)# e

where the superscriptdenotes the block fading case. The above performance mlg(ﬁjlccould
hard to exploit, due to the non-additive nature of the deit@amt metric in (6). Sinc@(tX;r are

positive definite matrices, we resort to the following deterant inequality [10]

IN
det(F) > Y det (thj) 2 g, (7)

t=((—1)N+1

and use the simpler lower bound:
A® > min H ap £ A (8)

We can see that tha”)' is not only determined by the code structure, but also by tbekb

min

fading channel parameters and N. Note thatAmln coincides with theA! , defined in [1],
when B = 1 (slow fading).
Finally, we note that for a specific value & and N the design of a good linear STBC is

clearly impractical and a robust solution is preferable.

V. PERFORMANCE ANALYSIS OFGST-TCM ON BLOCK FADING CHANNELS
In this section we show the specific analysis concerning GSW [1]. The design of GST-
TCM for slow fading B8 = 1) was based on:

. the design of a trellis code that maximizes the number of zemo-det (X, X, ) in (7)

« the design of partitions of the Golden code with increasiayes ofdet(XtX;')

In particular, the trellis design focused on thlgortest simple error evenite., a path diverging

from the zero state and remerging into the zero state in gikstdiagram. We will show here
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how the lengthS of such event influences the performance of the code over &k faaling
channel.
Lemma 1: A GST-TCM of lengthL > S > 2 can haveN, = L. — S + 1 shortest simple error

events. m
Proof — The shortest simple error events with lengtlean only start in a positiofil, 2, ..., L—
S + 1}, thereby we obtainVy, = L — S + 1. [ |

Since the codeword spatis= L/N independent fading blocks of lengt¥i, the simple error
events will affect different blocks depending on their stey position and length. We obtain the
following lemma.

Lemma 2: A shortest simple error event of lenghtis either affecting

1) ny = [S/N] consecutive blocks, or

2) no =n1+1=[S/N] + 1 consecutive blocks. [ |
Proof — Depending on the starting position of the shortest simpiler &event we have

o if S < N then eithern; = 1, if it is fully within one block, orn, = 2.

. if S > N then it will either cross:; = [S/N| or n, = n; + 1 concecutive blocks.

For example, ifS = 2 over a block fading channel whe®® = 4 and N = 4, as shown in
Fig. 1, we have some simple error events (solid arrows), ie= 1 consecutive blocks and others
(dashed lines) im; = 2 consecutive block. [ |

Lemma 3: The corresponding numbers of simple error events in Cased1Case 2 of the

previous lemma are respectively
N, =B'x¢ N, =N,—N,, (9)

where

;o S
B'=1B [N-‘vtl

62[%-‘ xN—-S5+1

[ |
Proof — We first recall from Lemma 2 for Case 1, that a simple erromewecupies|< ]
consecutive blocks of lengtly. Now, let us define @roupas[£] consecutive blocks. Hence,
a group has lengtfi$] x N and containg = [£] x N — S + 1 distinct shortest simple error
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events. Since there af® = B — [£] + 1 distict groups, we havéV,, = B’ x { shortest simple
error events of Case 1. The other case directly derives frardentity Ny = N;, + N,,. W

Using the same example illustrated in Fig. 1 wih= 2, B =4 and N = 4, it is shown that
we haveN,, = 12 simple error events crossing = 1 consecutive block (Case 1) aid, = 3
simple error events crossing = 2 consecutive blocks (Case 2).

In order to evaluate the two dominant terms in (4) we look at¢bntribution of the simple
error events in the trellis together with their multiplicitVe get/V,, terms with the corresponding
minimum determinant -

AY = min T aer (10)

n=0
and N, terms with the corresponding minimum determinant

na—1

Ay = min UO aren (11)

Depending on the length and structure of the simple erromteveheAgb)/ and Ag’)/, together
with their multiplicity Ny, , N,,, will dominate the performance of the coding scheme.

Even if we haveAS’)' smaller thanAgb)' its contribution to the overall performance can be
mitigated by the fact thatv,, > N,,. We will see in the following section how thes are
affected by the trellis code structure.

V. SIMULATION RESULTS

In this section we show the performance of different GST-T€emes over block fading
channels. Signal-to-noise ratio per bit is defined as SNRrE,/Ny, whereE, = E,/q is the
energy per bit ang denotes the number of information bits per QAM symbol of ggef,.

We consider two types of GST-TCM based on the two and threal |gartitionsZ®/ £ and
Z8/Lg in [1]. For each case we consider trellises with 4 or 16 stated 16 or 64 states,
respectively. The length of the simple error event$'is- 2, 3, 4 for 4,16 and 64 state trellises,
respectively. We assume the codeword lengtilis- 120 and the block fading channels are
characterized byV = 1,3,5,20,40,120. The GST-TCM were optimized in [1] for the slow
fading channel, i.e., fo’lV = 120 (or B = 1).

In Figures 2-5 we can see that the best performance is oldtaméhe slow fading case

(IV = 120), for which the codes were explicitly optimized. The worstrfprmance appears in
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the fast fading case\{ = 1), although the difference is about 1.5-2dB at FERL0f? and only
about 1dB at FER of(0~3. Note that the slow and fast fading curves will eventuallyss, since
the fast fading exhibits a higher diversity order. The intediate cases of block fading exhibit
a performance between the fast and slow, which degrad@é dscreases.

Let us analyze these simulation results using the trundd#&d4). The sequences of values
of det(XtXt) in the shortest simple error events of the GST-TCMs in Figgo 2 are given in
Table |, wherej = 1/5 is the minimum determinant of the Golden code.

Tables II-1ll show all the code parameters. Wh&nh= 1 or N = 120, the termAgb)' and its
multiplicity N,, dominate the performance. We see tlzte&)/ for N = 120 is always greater
than that forN = 1, providedé = 1/5 and a fixedN,,. This results in a better performance
when N = 120. The same observation can be found for 64-state GST-TCM when3.

For the remaining cases, we note tl'mf’)' is always smaller thamgb)/ sinceé = 1/5.
As N increases the multiplicityV,, of the AS’)' term decreases, whil&/,, of the Aﬁb)' term
increases, which results in a better performance. Thig/aisajualitatively agrees with the actual

performance of the codes.

VI. CONCLUSIONS

In this letter, we analyzed the impact of a block fading cleron the performance of GST-
TCM by using a truncated UB technique. The analysis showsthigaperformance of the GST-
TCM designed for slow fading channel varies slightly if tHeaaonel condition varies from slow
to fast. It is further demonstrated by simulation that thefggenance degrades at most 1 dB at
the FER of10~3, when block fading varies from slow to fast. This robust cgdscheme can
be particularly beneficial for high rate transmission in VWNl&\using OFDM to combat widely

variable multipath fading.
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Figures

1) Comparison of 4-state trellis codes using 16-QAM coiheieh at the rate 7 bpcu form a
three level partitiorZ8 / Eg (S = 2).

2) Comparison of 16-state trellis codes using 16-QAM cdlsten at the rate 7 bpcu form
a three level partitiorZ®/ Eg (S = 3).

3) Comparison of 16-state trellis codes using 16-QAM cdlmien at the rate 6 bpcu form
a three level partitioZ.® / Lg (S = 3).

4) Comparison of 64-state trellis codes using 16-QAM cdladten at the rate 6 bpcu form
a three level partitiorZ®/Lg (S = 4).

5) Enumeration of simple error events of a GST-TCM with= 2 over a block fading channel
with B =4 and N = 4.

Tables

1) Sequences oﬁet(XtXt) for the simple error events of the GST-TCMs in Figs. 2-5
(0 =1/5).

2) Simple error events for 4, 16 staté%/ s GST-TCM, S = 2, 3 and different block fading
channels {V = 1, 3, 5, 20, 40, 120).

3) Simple error events for 16, 64 stafe%/ Ly GST-TCM, S = 3, 4 and different block fading
channels {V = 1, 3, 5, 20, 40, 120).
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Fig. 1. Enumeration of simple error events of a GST-TCM with= 2 over a block fading channel withh = 4 and N = 4.
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Fig. 2. Comparison of 4-state trellis codes using 16-QAMsteltation at the rate 7 bpcu form a three level partitity Es
(S =2).
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Fig. 3. Comparison of 16-state trellis codes using 16-QAMstellation at the rate 7 bpcu form a three level partifd Es

(S =3).
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Fig. 4. Comparison of 16-state trellis codes using 16-QAMstellation at the rate 6 bpcu form a three level partiidi Ls

(S =3).
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Fig. 5. Comparison of 64-state trellis codes using 16-QAMstellation at the rate 6 bpcu form a three level partiidi Ls

(S = 4).
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SEQUENCES OF DEtXth) FOR THE SIMPLE ERROR EVENTS OF THEST-TCMs IN FIGS. 2-5 (§ = 1/5).

S | step 1| step 2| step 3| step 4

2 5 25

3 25 5 25

3 45 5 25

4 45 5 25 45
TABLE |

Ist| NN, [N [ o [ne [ 207 AD
4 1] 119 —| 2| — | 26 —
4 3| 80| 39| 1| 2| 3 252
4 5| 96| 23| 1| 2| 3 262
4| 20| 114 5| 1| 2| 36 267
4| 40| 117 2| 1| 2| 3 262
41120 119 —| 1| —| 3§ -
16 1118 —| 3| — | 48 -
16 3| 40| 78| 1| 2| 55 | 20%2+26
16 5| 72| 46| 1| 2| 55 | 20%2+26
16| 20| 108| 10| 1| 2| 55 | 26®>+26
16 | 40| 114 4| 1| 2| 5 | 20%2+26
16120 | 118 — | 1| — | 56 -

TABLE II

16

SIMPLE ERROR EVENTS FOR4, 16STATESZ®/Es GST-TCM,S = 2,3 AND DIFFERENT BLOCK FADING CHANNELS
(N =1,3,5,20,40, 120).
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st N[N [N [ [n [ AW ag”
16| 1| 118 —| 3| — 85° -

16 40| 78| 1| 2 75 45 + 26
16 72| 46| 1| 2 75 45 + 26
16| 20| 108| 10| 1| 2 75 45 + 26
16 | 40| 114 41 1| 2 75 45 + 26
16| 120 | 118 — | 1| — 75 -

64 1| 117 —| 4| - 325* -

64 117 — | 2| — | 2852 4063 -

64 48| 69| 1| 2 116 2852, 406°
64| 20| 102| 15| 1| 2 116 2852, 406°
64 | 40| 111 6| 1| 2 116 2852, 406°
64| 120 117 —| 1| — 115 -

TABLE Il

17

SIMPLE ERROR EVENTS FORL6, 64STATESZ®/Ls GST-TCM,S = 3,4 AND DIFFERENT BLOCK FADING CHANNELS
(N = 1,3, 5,20, 40, 120).
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