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Abstract—Network coding and cooperative diversity have each
extensively been explored in the literature as a means to substan-
tially improve the performance of wireless networks. Yet, little
work has been conducted to compare their performance under a
common framework. Our goal in this paper is to fill in this gap.
Specifically, we consider a single-hop wireless network consisting
of a base station andN receivers. We perform an asymptotic
analysis, asN → ∞, of the expected delay associated with the
broadcasting of a file consisting ofK packets. We show that if
K is fixed, cooperation outperforms network coding, in the sense
that the expected delay is proportional toK (and thus within
a constant factor of the optimal delay) in the former case while
it grows logarithmically with N in the latter case. On the other
hand, if K grows with N at a rate at least as fast as(log N)r, for
r > 1, then we show that the average delay of network coding
is also proportional to K and lower than the average delay of
cooperation if the packet error probability is smaller than 0.36.
Our analytical findings are validated through extensive numerical
simulations.

I. I NTRODUCTION

Significant breakthroughs in wireless technology over the
past decade have enabled implementation of third generation
cellular systems capable of offering services traditionally more
applicable to wireline networks. In particular, the growing
use of cellular systems has lead to demand for broadcasting
services requiring simultaneous data transmission to multiple
users. Notable examples of such services include podcasting
and distributions of software updates [1].

It has been recently shown that network coding provides
the maximum achievable throughput gains for multicast and
broadcast wired networks [2], [7], [8]. In wireless networks,
network coding has been proposed for disseminating informa-
tion to all receivers [3] and has been shown to provide excel-
lent delay performance compared to round-robin scheduling,
in particular, for large file sizes. In this context, the delay is
defined as the average number of packet transmissions to trans-
mit a file consisting ofK packets to allN receivers. Network
coding relies on the transmission of algebraic combinations of
K packets implying that the individual packets can be decoded
only after the correct reception of at leastK combinations [2].

In this paper, we propose a cooperative transmission scheme
based on round-robin scheduling as an alternative method
that substantially reduces the error probability of the wireless
link in re-transmissions of a packet and therefore improves
the transmission delay. We compare the delay benefit of this
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cooperative-based scheduling scheme with network coding
which has not been done before. The proposed cooperative
transmission scheme is done by exploiting a relatively small
number of receivers who have already successfully decoded
the packet to cooperatively transmit the packet to the rest of
network. This amounts to a distributed multi-antenna system
with substantial diversity gain benefit and reduction in theerror
probability [12] [13], [14].

Towards this end, we analyze and compare the delay per-
formance of network coding and cooperation in a single-hop
wireless network (i.e., downlink) composed of one base station
andN nodes. Single-hop means that all nodes can communi-
cate directly with each other. In the cooperative scheme this
translates to packets being simultaneously transmitted bythe
base station and a subset of nodes serving as relays. We pro-
vide closed-form asymptotic expressions for the average delay
of these two schemes, asN → ∞. In particular, for network
coding, we show that if the number of packetsK of the file is
fixed, then the average delay scales likelog1/pe

N wherepe
1

is the error probability of the link between the transmitterand
any receiver. As the number of packets increases, even poly-
logarithmically withN , it is shown that the delay achieved by
network coding is proportional toK. On the other hand, for
cooperation, the average delay is proportional toK for any
K, and thus achieves performance within a constant factor
of the optimal delay. This result holds even if a relatively
small number of receivers are allowed to cooperate, in fact
as few as(log N)r for r > 1, to achieve near-optimal delay
performance.

Our results imply that when the number of packetsK is
much smaller thanN , the cooperative scheme outperforms
network coding. However, asK grows logarithmically withN
or faster, the average delay of network coding is within a factor
of 1 + 1

log 1/pe
of the optimal delay, lower than the average

delay of cooperation for the practical casepe < 0.36. Note
that, for the sake of tractability, our analysis ignores overhead
associated with the implementation of the studied schemes.
Thus, our results should be interpreted as lower bounds on
practical delay performance.

The rest of the paper is organized as follows. In Section
II, we introduce our network model and underlying statistical
assumptions. In Section III, we provide delay bounds for the
baseline, traditional round-robin scheduling. In SectionIV
and V, we respectively analyze the asymptotic performance

1In our analysispe is assumed to be fixed independent ofN .
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of random linear coding and cooperation for large networks
and different regimes of file sizes. In Section VI, we present
numerical results comparing the performance of the two
strategies. We conclude the paper in Section VII.

II. SYSTEM MODEL

We consider a cellular downlink consisting of a single
antenna base station andN single antenna receivers. We are
concerned with the case where a single file, consisting ofK
packets, is demanded by all the receivers in the network. We
are interested in finding the average file transfer delay, defined
as the minimum number of channel uses that guarantees
complete download of the whole file by all nodes in the
network.

Files are segmented into packets to be transmitted in time
slotted manner, with a single packet transmission requiring one
time slot. The transmission takes place over a time varying
broadcast channel. The assumed channel is Rayleigh block-
fading that changes independently from one block to the other.
One channel block corresponds to one time slot and, thus, one
packet transmission.

In wireless channels, packets are usually dropped when
the channel goes into deep fade resulting in an outage. In
particular, the outage happens when instantaneous channel
capacity falls below the amount of information carried in the
packet [11]. Therefore, we can model the channel from the
base station to then-th receiver as a random on/off channel,
with parameterpe representing the probability of ‘off’ or
outage state. Since fading is independent across time and users,
the error events are similarly independent across time and
users.

We assume that the network is homogeneous implying that
the channels between any user and the base station have iden-
tical and independent distribution. In a cooperative scheduling
scenario, analyzed in more detail in a subsequent section, users
that have correctly received a packet can potentially aid the
base station in future transmissions of the same packet. We
assume that channels between any user acting as a transmitter
and all users acting as receivers are independent and identically
distributed, with the same distribution as the distribution of
channels between the base station and any user. In our set-
up, we assume that each receiver has perfect knowledge of its
own channel state toward the base station and users acting
as transmitters, but the channel state information (CSI) is
unknown to transmitters. In this paper, we are interested in
characterizing the average delay for the regime of largeN
and for various regime ofK, i.e., K fixed or growing with
N .

It is quite clear that the lower bounds on the minimum
delay for sending theK packets to all users isK. In the
next section, we show that the delay of a simple, plaintext
round-robin transmission can be significantly worse than that
of the lower bound.

III. ROUND-ROBIN SCHEDULING

In this section, we consider a simple round-robin trans-
mission scheme in which the base station sends each packet

sequentially until every user is able to decode all theK
packets. We assume that the base station stops scheduling a
certain packetk once every node received it. All outstanding
packets are cyclicly scheduled by the base station at regularly
spaced time slots until all nodes successfully received the
whole file. To simplify the analysis, we ignore the overhead
of the control channel.

Denote byDk
n the number of transmissions of packetk

needed for usern to receive packetk. The random variable
Dk

n is geometrically distributed with probability of success
(1− pe). A packet transmission is considered successful once
it is received by all nodes in the network. LetDk represent the
number of transmissions of the packetk until its successful
reception by all users. Therefore, thek-th packet delay is
given by Dk = maxn=1,...,N Dk

n. Since different packet
transmissions are non-overlapping in the scheduling mode,the
file completion delay is calculated asDRR =

∑K
k=1 Dk.

Lower and upper bounds on the optimal expected comple-
tion delay for this policy are presented in [18], Proposition 1,
using properties of stochastic ordering. This result is repro-
duced here, for completeness.

Proposition 3.1:Consider the time slotted broadcasting of
a singleK-packet file to allN users. Under a round-robin
scheduling, the expected delay, denoted byE[DRR], is given
by,

E[DRR] = K log1/pe
(N) + O(1). (1)

for largeN and anyK.
This result shows, that for largeN , the delay of a round-

robin scheme in a noisy channel can be substantially worse
than in a noiseless channel. In the next section, we show that
this large gap, i.e.,log1/pe

N , can be reduced using random
linear coding, but only forK growing fast enough withN .

IV. RANDOM L INEAR CODING

In this section we analyze the scaling law of the expected
delay achieved by a random linear coding (RLC) policy. In
a slot i, where a slot corresponds to the duration of a packet
transmission, the transmitted packet is actually computedas
a linear combination of all packets:P [i] =

∑K
k=1 ak[i]Pk,

such thatak[i] ∈ Fq for eachk ∈ {1, . . . , K} and where
q represents the size of the finite coefficient fieldFq [9].
Coefficientsak[i] are chosen uniformly at random over the
field Fq for eachk.

Each receiver stores all correctly received packets up until
a time it collectsK linearly independent combinations. The
expected number of successful receptions before a user re-
ceivesK linearly independent combinations is upper bounded
by Kq/(q − 1) [4], [5], [6]. Notice also that it is impossible
for a receiver to successfully decode aK-packet file with less
thanK successful receptions. In this paper we assume that the
upper bound is tight and made close toK by choosing field
size q sufficiently large. We also ignore the communication
overhead of network coding. Then, by standard linear coding
arguments, the mean completion time of theK packet file is
equal toE[maxn=1,...N Tn], whereTn is the minimum number
of time slots beforeK transmissions can be successfully
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decoded by noden. The random variableTn is the sum of
K independent geometric random variables and thus,Tn has
a negative binomial distribution with parameters1 − pe and
K. Denote the file transmission delay of the random linear
coding policy byDRLC . Then, the average file transmission
delay is given by [3]:

E[DRLC ] = K (2)

+

∞
∑

t=K

[

1 −

N
∏

i=1

(

t
∑

τ=K

(

τ − 1

K − 1

)

pτ−K
e (1 − pe)

K

)]

To gain more insight into behavior of the expected delay
for large networks, we provide an asymptotic analysis of the
delay in the regime of largeN and for different cases of file
lengthK whereK is fixed,K grows logarithmically withN ,
and finallyK grows faster than logarithmically withN .

Theorem 4.1:Consider the setting of Proposition 3.1. Un-
der randomized linear coding strategy and for largeN , the
scaling law of the average delay in sending the file of sizeK
packets to allN users is given by,

1) For fixedK,

E[DRLC ] =

log1/pe
N + (K − 1) log1/pe

log N + o(log log N).

2) ForK growing logarithmically withN , i.e.,K = log N ,

E[DRLC ] = β1K + o(log N),

where3.146/(log 1/pe) ≤ β1 ≤ 1 + 3.146/(log 1/pe).
3) For K growing faster than(log N)r, wherer > 1,

E[DRLC ] = β2K + o ((log N)r) ,

where1/(log 1/pe) ≤ β2 ≤ 1 + 1/(log 1/pe).

Proof: We first obtain lower and upper bounds on the expected
delay using the properties of stochastic ordering as in [18].
Next, given the upper and lower bounds on the expected delay
we derive the asymptotic result for the first moment ofDRLC

for different regions ofK andN .
As mentionedDRLC = maxn=1,...N Tn where Tn is

the sum of K independent geometric variablesT k
n , i.e.,

Tn =
∑K

k=1 T k
n . Here T k

n has a geometric distribution
with parameter1 − pe. An equivalent continuous random
variable Xk

n with the same mean has the pdff(x) =
∑∞

i=1 pi−1
e (1 − pe)δ(x − i) where δ(x) is the Dirac’s delta

function. The complementary cumulative distribution function
(CCDF) of this variable isF̄ (x) = p

⌈x⌉−1
e , for x > 0.

Now we consider an exponential random variableY k
n with

parameterλ = log 1/pe that has the CCDF of̄FY k
n
(x) = px

e .
We further defineZk

n = Y k
n + 1 with CCDF of F̄Zk

n
(x) =

min(1, px−1
e ). The CCDFs of Xk

n , Y k
n , Zk

n clearly satisfy
F̄Y k

n
(x) ≤ F̄Xk

n
(x) ≤ F̄Zk

n
(x) implying by definition the

desired stochastic ordering ofY k
n ≤stX

k
n≤stZ

k
n. Note that the

notation X ≤st Z denotes that the random variableX is
stochastically dominated by the random variableZ.

Finally, we considerXn =
∑K

k=1 Xk
n, Yn =

∑K
k=1 Y k

n and
Zn =

∑K
k=1 Zk

n. These variables have the same stochastic

orderingYn≤stXn≤stZn leading to

E[ max
n=1,...N

Yn] ≤ E[DRLC ] ≤ E[ max
n=1,...N

Zn] (3)

where we used the fact thatE[DRLC ] = E[maxn=1,...N Xn].
Now, we evaluate the asymptotic behavior of the bounds.

In fact, the distribution ofYn can be written as

F̄Yn(x) =
K−1
∑

i=0

(λx)i

i!
exp−λx .

as Yn is the sum ofK exponentially distributed random
variables. Therefore,

E[ max
n=1,...N

Yn] =
1

λ

∫ ∞

0

(1 − (1 − SK(x)e−x)N )dx (4)

whereSK(x) =
∑K−1

i=0
xi

i! andλ = log 1/pe. The asymptotic
behavior of the integral in (4) is studied in [16] in a different
context for largeN . When K is fixed, it is shown that the
right hand side of (4) scales like,

1

λ
(log N + (K − 1) log log N + o(log log N)), (5)

which leads to a lower bound on the expected delay. We can
also find an upper bound by evaluatingE[maxn=1,...N Zn] and
noting thatF̄Zn(x) = F̄Yn(x − K) andE[maxn=1,...N Zn] =
K + E[maxn=1,...N Yn]. Therefore, we get

E[ max
n=1,...N

Zn] = K (6)

+
1

λ
(log N + (K − 1) log log N + o(log log N)).

Substituting (5) and (7) into (3), we obtain the first part of
the theorem. The proofs of the second and third parts follow
the same line as the proof of the first part, appealing arguments
similar to those developed in [16] and [17] Section 5.7.5. We
omit the proof for the sake of brevity.

Theorem 4.1 implies that whenK is fixed, the delay per-
formance of RLC in a noisy channel can be much worse than
that of the noiseless channels, even though the performance
is K times better than that of the round robin scheduling
obtained in Section 3. AsK grows slowly withN , i.e., only
logarithmically withN , the delay scales linearly withK and
the performance gap is at most1 + 3.146/(log 1/pe). Finally,
if K grows faster than logarithmically withN , the expected
delay of RLC is at most1 + 1/(log 1/pe) worse than in a
noiseless channel. Note that forpe ≤ 0.36, the expected delay
of RLC is within a factor of2 of the delay in a noiseless
channel.

In the next section, we show that for fixed or slowly growing
K the performance gap between noisy and noiseless channels
can be further reduced using cooperative transmissions.

V. COOPERATIVE SCHEDULING

In this section we describe and analyze a cooperative
scheduling strategy. The idea behind this strategy lies on the
simple observation that a successful file download by all users
in the scheduling mode requires repeated transmissions of
the same packet. Therefore at the beginning of the second
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transmission of a packet, there exist additional spatiallydis-
persed nodes that can decode the packet successfully with
high probability. Therefore, these nodes can collaborate in
transmitting the packet to the rest of the users. In particular,
it is well known that by using space time coding, significant
improvement on the error probability can be obtained using
collaborative nodes [19]. The gain is due to the fact that the
fading channels corresponding to the different transmitters,
i.e., the base station andM cooperative nodes, are independent
leading to better error probability via space diversity.

The packet loss probability in point-to-point MIMO chan-
nels is commonly characterized through a diversity gaind and
a coding gainα aspe = αρ−d, whereρ is the signal to noise
ratio [19]. The diversity gain of multi-antenna transmitters
have been well studied in the literature. In particular, forthe
case whereM + 1 transmitters and one antenna receiver, it
is straightforward to show that the packet error probability
pe = αρ−1 can be reduced tope(M) = βρ−(M+1) with proper
space time coding whereα and β are constants independent
of the SNR2. This shows the significant reduction in the error
probability in the second transmission can be achieved by
exploiting the receivers that have decoded the packet in the
first transmission of the packet.

Definition 5.1: Cooperative Scheduling (CS)is a strategy in
which K packets of a fileF are transmitted in two stages. For
every packet, in the first stage, the base station transmits the
packet until at leastM nodes can decode the packet. In the
second stage, the packet is re-transmitted cooperatively by the
base station and theM nodes who have successfully decoded
the packet.
It turns out that by lettingM grow slightly faster than
logarithmically with N , i.e., (log N)r for any r > 1, we can
achieve most of the gain offered by cooperation and can reduce
the average delay to within a factor two of that in a noiseless
channel for anyK.

The next theorem provides the scaling law of the expected
delay using a cooperative scheduling.

Theorem 5.1:Consider the setting of Proposition 3.1. The
average delayE[DCS ] in sendingK packets of a file to allN
users achieved by cooperative round-robin scheduling is given
by:

E[DCS ] = 2K(1 + o(1)),

for largeN and anyK whereM grows as(log N)r for any
r > 1 independent ofN .

Proof: We show the result by proving that the total expected
number of transmissions in each of the two stages is equal
to K(1 + o(1)). In the first stage, we obtain the expected
number of transmissionsE[Dk

stage1] in order to have at least
M = (log N)r users successfully decode thek’th packet for
r > 1. Then, we defineE[Dstage1] as a total time spent in stage
1 such that each ofK packets is successfully transmitted to at
leastM nodes. LettingNk

s be the number of users that have
successfully received packetk after its first transmission, we
get,

2Here α and β only depend on the space time code and the geometry of
the channel, i.e., the distances between the transmitters and the receiver.

E[Dk
stage1] ≤ P{Nk

s ≥ M} + log1/pe
N × P{Nk

s < M}

≤ 1 + log1/pe
N × P{Nk

s < M}

where we used the fact thatE[Dstage1] is bounded by
log1/pe

N using the result of Proposition 3.1. We can further
prove that forM = (log N)r,

P{Nk
s < M} =

M−1
∑

i=0

(

N

i

)

pN−i
e (1 − pe)

i

= e−N log 1/pe+o(N), (7)

leading toE[Dk
stage1] = 1+o(1). Equation (7) can be obtained

by first upper bounding(1−pe)
i with 1 and then replacing the

leftover summation byM times its maximal element achieved
at i = M = 1. Hence, the total average time spent in stage1
is E[Dstage1] = K(1 + o(1)).

In the second stage the cooperation of the base station and
M nodes reduces the probability of error frompe = αρ−1 to
pe(M) = βρ−(M+1) = (γpe)

M+1, whereγ = β1/(M+1)

α takes
into account the space-time coding gainsα andβ. Note that
for fixed and finiteα and β, M = (log N)r and N → ∞
we haveγ → 1

α . The minimum second stage delay isK,
which is easily justified by noting that the probability of having
to transmit each packet to at least one user in the second
stage becomes one for fixedpe and N → ∞. Furthermore,
a delay of a transmission ofk’th packet to all users in the
second stage,Dk(M), is a maximum ofN geometrically
distributed random variables leading to the following bound
on the expected second stage delay,E[Dstage2]:

E[Dstage2]=E

[

K
∑

k=1

Dk(M)

]

=K

∞
∑

i=1

P{Dk(M) ≥ i}

=K

∞
∑

i=1

(

1 − (1 − (γpe)
(M+1)(i−1))N

)

(8)

=
K

M

∞
∑

i=1

MP{Dk
γ ≥ (M + 1)(i − 1) + 1} (9)

≤K
M − 1

M
+

K

M

∞
∑

i=1

P{Dk
γ ≥ i} (10)

=K
M − 1

M
+

1

M
E[DRR] (11)

=K + O

(

K

M
log 1

γpe
N

)

. (12)

Equation (8) is obtained by calculating the CCDF of the
maximum of N geometrically distributed random variables
with the probability of success1 − pe(M) = 1 − (γpe)

M+1.
Equation (9) rewrites the same expression in terms of the
summation of CCDFs of the maximum ofN geometrically
distributed variables but with the probability of success(1 −
γpe). The new variableDk

γ is equivalent to the delay of thek-
th packet in the round-robin policy when communicating over
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a channel with probability of being in “on” state(1 − γpe).
Inequality (10) is obtained by adding termsP{Dk

γ ≥ j}, j ∈
{(M +1)(i−1)+2, . . . , (M +1)i} for eachi ∈ {1, 2, . . . ,∞}
that are absent in the summation of Eq. (9). Equation (11) is
obtained by the definition of the expected delay of the round-
robin policy and finally, the last equation is obtained by using
the result of Proposition 3.1.

This results show that the expected delay for the second
stage is also equal toK(1 + o(1)) for the case whereM
grows like (log N)r for r > 1.

Therefore,

E[DCS ] = E[Dstage1] + E[Dstage2] = 2K(1 + o(1)),

which completes the proof.

This theorem shows that the expected delay in a noisy chan-
nel achieved by cooperative transmission is asymptotically
worse than that of noiseless channels by a factor of two in
the regime of largeN and for anyK. It is worth mentioning
that this result is achieved using a relatively small number
of cooperative nodes proportional to(log N)r for r > 1.
Using more cooperative nodes, we can not further improve
the expected delay beyond2K. However, it does improve the
convergence rate of the expected delay to2K.

As mentioned, the diversity gain promised in the second
round of transmission can be obtained via space time codes.
In this scheme, the transmitters do not have the knowledge of
the channel state of the users, however, every node expecting
the packet in the second step needs to estimate its own channel
to the base station and theM other cooperative transmitters.
It is also worth mentioning that sinceM is relatively small
and the channel estimation can be done in parallel for all
receiving users, the corresponding overhead of each packet
may be made negligible. Furthermore, since the probabilityof
having a receiver act as a relay isO(log(N)/N), the average
transmit power of each node (except for the base station)
tends to zero. Finally, since the cooperative nodes are spatially
dispersed, some sort of control messages has to be exchanged
among all cooperating nodes in order to ensure proper space-
time encoding. In our analysis we did not take into account
the delay cost associated with these overheads.

VI. COMPARISON AND NUMERICAL RESULTS

In this section we present simulation results comparing the
performance of the various schemes discussed in the paper,
for various settings of the parametersN , K, M , andpe.

In Figure 1 and Figure 2 we compare the average trans-
mission delay of different schemes in the same setting as
analyzed in [3]. Figure 1 shows that both network coding
and cooperative scheduling offer significant average delay
gains as compared to the baseline round-robin scheduling.
The figure also shows that cooperation can achieve signif-
icant reduction in the expected delay by using as few as
two cooperating nodes. Increasing the number of cooperating
nodes toM = (log N)2, brings in the average cooperation
delay below the delay of random linear coding and close to
the delay of optimal cooperative scheduling asN increases.
Furthermore, cooperative scheduling with an unlimited number

of cooperating nodes almost consistently outperforms random
linear coding as it quickly approaches the minimum of2K.

Figure 2 depicts the ratio of the average delay of cooperation
to that of coding for highly lossy links with packet error prob-
ability pe = 1/2. For M = α log N , whereα = (log 1

pe
)−1,

cooperation outperforms RLC for files roughly smaller then
30 packets and a network size in the range of100 − 500
receivers. In the regime of small file transmissions, broadcast
network applications of interest are, for example, emergency
message distributions or small software updates. Increasing
M to (log N)2, we see that cooperation approaches its best
possible delay of2K and consistently outperforms RLC over
the packet range of interest. The ratio is growing rather slowly
with the number of packets, so there must be a rather large
file size to make random linear code eventually do better. By
our analysis this ratio can approach at most two.

Figure 3 has the same setting as Figure 2, except that per-
formance is compared for higher quality links withpe = 0.1.
This situation fits better in practical wireless communication
environments. Even though cooperation is within its optimal
mean delay of2K, RLC generally better utilizes the higher
quality channel and performs better for almost all file lengths,
except for very short files of few packets. As noted before the
maximum ratio between the performance of the two schemes
is at most two.

Figure 4, obtained for the caseK = 10 andN = 100, shows
that random coding performs better at low loss probability
while cooperation is better at high loss probability, when using
enough relays. We also note that when the number is relays is
large enough, then the average delay of cooperative scheduling
remains remains fixed at a value of2K over a wide range
of packet loss probabilities. Both cooperative schedulingand
random linear coding significantly outperform round-robin,
sometimes by a factor as large as four.

VII. C ONCLUSION

In this paper we analyzed and compared delay performance
of network coding and cooperative diversity under the com-
mon framework. Specifically, we analyzed the expected file
completion delay of aK-packet file broadcast toN users in
a single-hop wireless network asN → ∞. The results show
that no technique is superior to the other in all regimes of
different file lengthsK.

In the regime of large file transmissions whereK grows at
least as fast as(log N)r, r > 1, random linear coding achieves
better performance at a small packet loss probability. Its delay
is within a factor of two of the optimal delayK, whereas
the average cooperation delay scales asymptotically as2K. In
this regime, the average delay of random linear coding grows
with the packet loss probability, whereas the average delayof
cooperative scheduling delay remains constant provided that
a sufficient number of nodes is allowed to cooperate. On the
other hand, in the fixedK regime, cooperation outperforms
network coding. In this regime, network coding delay grows
logarithmically with network sizeN , while cooperation retains
its near-optimal delay of2K.

In summary, the results indicate that in order to achieve
near-optimal expected delay in both file length regimes and a
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small packet loss probability, one should choose network cod-
ing when broadcasting large files and cooperative scheduling
for transmission of smaller files.
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