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Iterative Joint Multi-User Decoding
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Abstract—In this letter, we develop a rate allocation scheme for
interleave-division multiple-access (IDMA) systems with iterative
decoding. We use a fully-analytical approach to predict the
performance of the scheme. Then, we propose a modified linear
programming method to find the best rate profile for the scheme.
Numerical results show that with just repetition coding and
optimal rate allocation, the performance of the scheme is only
about 5 dB away from the capacity for a wide range of SNR,
provided that the number of users is sufficiently large. Compared
with power allocation schemes for IDMA, the proposed rate
allocation scheme achieves a similar performance at a moderate
spectral efficiency and the requirement of sophisticated power
amplifiers can be relaxed.

Index Terms—Multi-user detection, iterative decoding, CDMA,
power allocation.

I. INTRODUCTION

FROM information theory, it is well-known that the max-
imum sum-capacity of a multiple-access channel (MAC)

can be achieved by using successive cancellation (SC) together
with power allocation (PA), provided that capacity-achieving
error control codes are employed [1]. Unfortunately, an ideal
code does not exist and the SC-PA technique, which is also
referred to as “onion-peeling (OP)”, is subjected to excessive
power consumption. For a system with poor codes, the extra
power consumption could be so significant that the perfor-
mance of the system with onion-peeling is far from being
acceptable [2].

Nowadays, it has been widely understood that the total
power can be reduced if an iterative “soft onion-peeling
(SOP)” technique [3] is employed. In this approach, the
multiple-access interference is gradually removed [4] rather
than being successively and completely cancelled, typically
from the strongest user to the weakest user. If the power
distribution is designed properly, the system with SOP can
approach the interference-free performance after a number of
iterations.

Recently, it has been shown that for a system with equal
power distribution, the capacity bound can also be achieved
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by adopting unequal rate allocation (RA) and successive
cancellation, as long as the number of user rate groups is
sufficiently large [5]. In a system with iterative SOP and
unequal rate distribution, low-rate users converge faster than
high-rate users and the operation of the iterative receiver is
facilitated by using the rate allocation.

So far, we have seen that the iterative decoding (ID) of
multi-user systems can be enhanced by either power allocation
or rate allocation. In literature, the PA method for itera-
tive SOP systems, such as interleave-division multiple-access
(IDMA) systems [6][7], has been intensively investigated. To
the best of our knowledge, the research on the rate allocation
for the iterative SOP systems is rather limited. As a matter of
fact, there are some inherent advantages of rate allocation over
power allocation in practical applications, e.g. the requirement
of the sophisticated power amplifier can be relaxed.

In this letter, we study the rate allocation for equal-power
IDMA systems in AWGN channels. We develop a fully-
analytical rate allocation approach for an IDMA system with
repetition coding. The performance of the systems can be
precisely predicted via a variance evolution technique. For
a wide range of signal-to-noise ratio, we observe that with
just repetition coding and rate allocation, the performance
is only about 5 dB away from the capacity limit at a bit
error rate (BER) of 10−4, provided that the number of users
is sufficiently large. Moreover, the achievable rate is almost
parallel to the Shannon-bound. Compared with the power
allocation scheme for IDMA, the proposed rate allocation
scheme achieves a similar performance at a moderate spectral
efficiency, whereas it suffers a fairly small power loss at a
high spectral efficiency.

The letter is structured as follows. Section II reviews an
IDMA system with iterative decoding. Section III introduces
the variance evolution technique which is employed to pre-
dict the performance of the IDMA systems. In particular,
we provide an upper bound on the code variance transfer
characteristics of repetition codes such that the performance
of a repetition-coded IDMA system is fully-analytical. In
section IV, we depict the rate allocation technique for the
IDMA system with equal power distribution. The optimal
rate allocation factors are obtained by employing an modified
linear programming (LP) method. In section V, the numerical
results and performance bounds are given. Finally, we draw
the conclusion in section VI.

II. IDMA SYSTEM MODEL

The block diagram of a generic IDMA system is depicted
in Fig. 1. In this system, the kth user’s information bk is
encoded by a channel code, yielding coded sequence dk. Then,
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Fig. 1. Architecture of an IDMA transceiver for 4 users.

dk is encoded by a repetition code with length Lk, yielding
discrete chips ck(t), t = 1, 2, ..., T where T is the number of
chips for each decoding frame and t indexes the tth chip of
each frame. Note that T is also the interleaver size of the
IDMA system. Then, the chips are interleaved by πk and
BPSK modulated, yielding chip-interleaved symbol sequence
xk = [xk(1), xk(2), ..., xk(T )]. Note that the rates of the
repetition codes for different users are not the same. The chip-
interleaved signals go through a multiple-access channel and
the received signal is modelled as

r(t) =
K∑

k=1

xk(t) + n(t) (1)

which is the superposition of the chip-interleaved signals from
all users plus the noise. In (1), n(t) is an AWGN with variance
σ2

n. The receiver at the base station is required to decode all
users’ information which are distinguished by their specific
interleavers.

Now, let us have a brief review of the iterative decoding
of this IDMA model. We consider an equal-power system
in which each chip has a unit power. In each iteration,
the interference resolver (multi-user detector) first computes
the chip-level estimates in the form of log-likelihood ratios
(LLRs), given by

yk(t) = 2
r(t) − E [ζk(t)]

V ar [ζk(t)]
. (2)

where

E [ζk(t)] =
K∑

k′=1,k′ �=k

E [xk′ (t)] (3)

and

V ar [ζk(t)] =
K∑

k′=1,k′ �=k

V ar [xk′(t)] + σ2
n (4)

are the estimated statistical mean and variance of the inter-
ference plus noise. After chip-level de-interleaving, the chip
LLRs w.r.t a specific coded bit are summed to yield the bit-
level soft information. That is,

ΛD [(dk(i)] =
Lk∑
j=1

yk [(i − 1) × Lk + j)] (5)

where ΛD [(dk(i)] stands for the bit-level LLR obtained
from the detector. The bit-level LLRs are forwarded to the
FEC decoders which employ maximum a posteriori proba-
bility (MAP) decoding to update the statistical mean of the
coded bits as well as the chip-level statistics E [xk(t)] and
V ar [xk(t)]. Subsequently, the most recent chip-level statistics
E [xk(t)] and V ar [xk(t)] are feedback to the detector. In
the next iteration, by using a better statistics, the detector
generates refined chip-level LLRs. For more details about the
iterative decoding for IDMA, please refer to [6][7].

The virtue of IDMA system is that for each transmitted
symbol, the interference for one chip is independent from that
for another chip due to the chip-interleaver. Hence, the optimal
filtering process after the interference cancellation is simply
the summation of the log-likelihood-ratio (LLR) values for all
the chips, enabling a low-complexity but yet powerful detector
for the system.

III. PERFORMANCE ANALYSIS OF IDMA SYSTEMS

In this section, we first provide a variance transfer function
in a closed form for a repetition code. Then, we illustrate the
variance evolution for the performance analysis of the IDMA
system.

A. Variance Transfer Function of Repetition Codes

Consider a repetition-coded IDMA system with K users. As
illustrated in section II, the kth user is encoded by a repetition
code with length Lk, where Lk ∈ [Lmin, Lmax]. For simplicity,
we only consider the case that Lk is an integer. The signal to
noise ratio (SNR) is ρ = K/σ2

n where we assume unit chip-
power for each user.

We define σ2
k the variance of interference plus noise at the

detector’s output for the kth user. Let E
[
1 − tanh(ΛC(dk))

]2
be the bit-variance [9] of the output signal from user-k’s
repetition-code decoder, where ΛC(dk) is the bit-level LLR
from the repetition-code decoder. Note that for a repetition
decoder, the output bit-variance is a function of the input
variance σ2

k as well as the length of the repetition code. This
function is referred to as a variance transfer (VT) function [9].
Now, we present the following lemma.

Lemma 1: Let σ2
k denote the input variance to the kth user’s

repetition code decoder whose repetition length is Lk. The
variance transfer function of the repetition code for the kth
user is upper-bounded by [5][8]

f(σ2
k, Lk) ≤

⎧⎪⎨
⎪⎩

1

1+
Lk−1

σ2
k

, if
√

Lk−1
σ2

k
< 1

πQ
(√

Lk−1
σ2

k

)
, otherwise

(6)
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Fig. 2. Variance transfer function of repetition codes. The solid curves are
the genuine VT obtained from simulation. The dashed curves with “+” are
from the closed-form given in (6).

where f(σ2
k, Lk) is the output bit-variance from the kth

decoder for repetition code and Q(x) is the Gaussian error
function [5].

The VT function curves for repetition codes with various
lengths are shown in Fig. 2. The vertical axis denotes the
input variances of interference plus noise and the horizontal
axis stands for the output bit variances. From this figure, it is
clear that (6) is very accurate for repetition codes with small
lengths. However, as the code length increases, the difference
between (6) and the genuine VT function becomes larger,
especially for the region that

√
Lk−1

σ2
k

is close to 1. Therefore,

the performance analysis by using (6) provides an upper bound
on the BER (or a lower bound on the achievable sum rate).
Later on, we will see that good results can be yielded by using
(6).

B. Variance Evolution

Now, we illustrate the variance evolution technique. For
two consecutive iterations, the variance of the kth user at the
detector’s output is updated as follows

σ2
k,q =

K∑
k′=1

f(σ2
k′,q−1, Lk′) − f(σ2

k,q−1, Lk)

︸ ︷︷ ︸
residual interference

+ σ2
n. (7)

where “q” is the index for the qth iteration. As the receiver
iterates, the variance σ2

k,q, k = 1, 2, ..., K is gradually reduced.
After a number of iterations, the residual interference becomes
small if the iterative decoding process converges. At the final
iteration, we have

BER∞
k =

1
2
erfc

(√
1

2σ2
k,∞

)
(8)

which is the predicted bit error ratio (BER) for the user-k at
the final iteration. The total BER with respect to all the users

is given by

BER∞ =

∑
k

BER∞
k

Lk∑
k

1
Lk

. (9)

Later, we will see that this simple variance evolution approach
is able to give a good prediction of the BERs of the unequal-
rate IDMA systems.

IV. RATE ALLOCATION FOR EQUAL-POWER IDMA
SYSTEMS

In this section, we illustrate the rate allocation for the
repetition-coded IDMA systems with equal power distribution.
The advantage of using non-identical rate for different user is
that the strong user (low-rate user) can converge earlier than
the weak user (high-rate user) and thus the convergence of
iterative decoding is facilitated.

In the qth iteration, the residual interference plus noise, after
interference cancellation (IC) [11] and with respect to the kth
user, is given in (7). A sufficient condition for the iterative
receiver to converge, i.e. the overall BER is very small, is

σ2
k,q =

K∑
k′=1

f(σ2
k′,q−1, Lk′)−f(σ2

k,q−1, Lk)+σ2
n ≤ (1−δ)σ2

k,q−1

(10)
for all user-index k and for the variance range σ2

k,q−1 ∈[
σ2

min, σ
2
max

]
, where σ2

max = K − 1 + σ2
n and σ2

min is
determined by the SNR and the target BER. The parameter
δ in (10) is of a small value which affects the convergence
speed. Given the above condition, the variance of each user
keeps reducing throughout the whole iterative process and the
iterative receiver converges. The details for the convergence
behavior analysis of an iterative receiver can be found in
[5][9].

If the number of users K becomes very large, i.e. K → ∞,
we can assume that the Lindeberg condition [5] is satisfied.
Here, the Lindeberg condition means that as the number of
users goes to infinity, the ratio between the variance of any
user and the total variance of all users approaches zero, that
is

lim
K→∞

σ2
k′

K∑
k=1

σ2
k

= 0, k′ = 1,2,...,K.

In practice, we found that for K ≥ 24, the variance of
any user is very tiny compared to the total variance of all
users. As a result, the variance of the iterative process become
independent of the user index and the variance for all users
approaches the value

σ2
q =

K∑
k=1

f(σ2
q−1, Lk) + σ2

n. (11)

Then, (10) becomes

K∑
k=1

f(σ2
q , Lk) + σ2

n ≤ (1 − δ)σ2
q , σ2

q ∈ [σ2
min, σ

2
max

]
. (12)

where σ2
q is the total variance of all the users and the additive

noise. The above observation indicates that for a large system
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case, it is allowed that the system behavior can be described
by a single-parameter dynamical system, similar to [9][10]. In
the optimization, (12) becomes the constraints. Therefore, the
RA problem becomes finding max

∑
k

1
Lk

subject to (12).

Let M = Lmax −Lmin + 1 be the total number of possible
lengths of the repetition codes and L(m) be the code-length
of the mth repetition code. Note that in order to ensure that
the weakest user can achieve the target SNR, we have

Lmin > 2
[
erfc−1 (2 · BERtarget)

]2 · σ2
n. (13)

Let m ∈ [1, M ] and N(m) be the number of users assigned
to a rate of 1/L(m). Then, the constraints become

∑
m

N(m)f
[
σ2, L(m)

]
+σ2

n≤(1 − δ)σ2
, σ2∈ [σ2

min, σ2
max

]
∑
m

N(m)= K (14)

and our objective function becomes max
∑
m

N(m)
L(m) . Please note

that the iteration index “q” is omitted in the above constraint.
Generally, the best rate profile N(m), m = 1, ..., M can

be found via two methods. The most straightforward method
is to exhaustively search the best rate profile. However, this
approach is of a prohibitive complexity even for a moderate
number of users. The second approach is to use linear pro-
gramming (LP) since constraints and the objective function
are linear.

Typically, the solutions of N(m) from the LP are not
integers. For a large system, intuitively, we may consider
that the ratio between the non-integer solution N(m) and
the total number of users K indicates the “portion of users”
allocated to a certain rate. However, in practice, the integer-
solutions are almost exclusively of interests. Therefore, the
best rate distribution should be computed by using “integer
programming”, where the constraints remain the same as (14)
but N(m) are within the set of positive integers.

In our work, we consider two cases. Firstly, we consider
a “large-system” scenario that there is no constraints on the
number of users. For this case, we will see a lower bound on
the achievable rate predicted by the variance evolution. In the
second place, we consider a “small-system” scenario in which
we have limited number of users. In this letter, we regard a
system with less than 100 users as a “small-system”. Usually,
integer programming can be realized by using branching-and-
bounding algorithm on top of linear programming to get the
integer solutions. Unfortunately, the number of sub-problems
may become very huge even for a moderate number of users.
Therefore, we make some simple modifications on LP to yield
the integer solutions.

1) Case 1 Large systems: Suppose that the rate allocation
operation was carried out based on K users and we obtained
the rate profile N(m), m = 1, ..., M which are not integers
for the base system. If there is no constraints on the number
of users, we may enlarge the base system by a factor of F ,
resulting an F · K-user system. While enlarging the system,
we decrease the rate of each repetition code by a factor
of 1/F so that the sum-rate is maintained. Consequently,

the rate profile becomes N ′(m) = F · N(m), L′(m) =
F · L(m), m = 1, ..., M . After that, we round F · N(m) to
its closest integer, yielding N(m), m = 1, ..., M which is the
new rate distribution for this system with F ·K users. As long
as F is large enough, the rounding error is negligible.

In fact, this approximation by enlarging the system is not
strictly the optimal rate profile for an F · K-user system.
However, by using the variance evolution for this F · K-
user system with the rate profile N ′(m) = F · N(m),
L′(m) = F · L(m), m = 1, ..., M ., we find that the enlarged
system can always converge to a very small variance. The
reason for this behavior is that, under the same condition, i.e.,
with the same a priori information from the decoders, the bit-
level SINR of the enlarged system is larger than that of the
base system. More details are given as follows:

Let ρB and ρE denote the bit-level SINRs of the base
system and the enlarged system, respectively. By enlarging
the system, while reducing the code rate of each user by a
factor of 1/F , we may regard that there are F times more
chips associated with each bit. Let us consider that the same
a priori information for m = 1,...,M is fed to the detector
of the base system and to that of the enlarged system. Then,
in the enlarged system, since the number of users is enlarged
by F , the total variance of interference is also enlarged by F
and the variance of interference plus noise is enlarged by a
factor of G which is less than F . Consequently, the chip-level
SINR of the enlarged system is reduced by a factor of 1/G.
However, since there are F times more chips associated with
one bit, after the chip-LLR combining given in (5), we have

ρE =
F

G
ρB > ρB. (15)

Since the bit-level SINR dictates the decoder’s output variance
[5] and we have (15), the decoder can yield a smaller output
variance in the enlarged system, as compared to that of
the base system. Therefore, the performance of the enlarged
system is not worse than the base system.

For a large system with F ·K users, using the Monte Carlo
simulation to find the BER is time-consuming. Therefore, we
will just use variance evolution to find an upper bound on
the BER and to obtain a lower bound on the achievable sum-
rate. In the next section, we will show the sum-rate for this
large-system scenario.

2) Case 2 Small systems: Now, we consider a small-system
scenario. Please note that “small-system” refers to the system
which cannot be “enlarged”. Again, let us suppose that the
rate allocation operation was carried out based on K users
and we obtained the rate profile N(m), m = 1, ..., M which
are not integers. If it is not allowed to enlarge the system,
as is described earlier, we should round the non-integers to
integers in a smart way.

In our work, we first round (towards the lower floor) the
rate allocation factors to the nearest integers, resulting a new
rate distribution. Let �·� denotes the operation of rounding
towards the lower floor. For example, if N(m) = 8.5, after
the rounding, we have N ′(m) = �N(m)� = 8. If we take
N ′(m) = �N(m)� , m = 1, ..., M as the new rate profile, the
aggregated number

∑
m

N ′(m) is obviously smaller than total

number of users K. Normally, K −∑
m

N ′(m) is of value 1
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Fig. 3. Achievable sum-rate of the unequal-rate IDMA systems for each real
dimension and for BER < 10−4 .

or 2. At this stage, there are still one or two users whose
code rates have not been allocated yet. We only need to find
the best code rates for these (one or two) users. This can
be performed by simply searching for the best rates which,
together with N ′(m), satisfy the constraints. In such a way,
the integer-solution for this scenario is obtained. Although
it is not possible to prove that this solution is precisely the
optimal integer solution, we will see in the next section that
the solution works very well in both the variance evolution and
Monte Carlo simulations. At the same time, this approach is
much easier than the integer-programming.

V. NUMERICAL RESULTS

In this section, we present the numerical results for the
unequal-rate, equal-power and repetition-coded IDMA sys-
tems.

A. Case 1 Large systems

For the large-system case, we use variance evolution to
predict the lower bound on the achievable sum rate of the
systems, which is depicted in Fig. 3. The Shannon-capacity
bound is also included in the figure. To find the results in
Fig. 3, we first perform linear programming based on K =32
(64, 128, 256) levels and we obtain the non-integer solutions.
Then, we enlarge the system by a factor of F , i.e. F=5,
resulting an enlarged 160 (320, 640, 1280)-user system. After
that, variance evolution is used to predict the performance and
the achievable sum-rate of this enlarged system.

From Fig. 3, we observe that the rate allocation based on
a larger value of K always yields better performance and
the advantage becomes more significant as the SNR goes up.
Moreover, we see that the achievable sum-rate for a system
with a reasonably large number of users is parallel to the
Shannon-capacity and the difference is around 5dB for a wide
range of SNR.
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B
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R
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2 bits/sec/Hz VE
2.5 bits/sec/Hz
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3 bits/sec/Hz,64 users VE

Power allocation scheme in [7],
 48 users, 3 bits/Hz           

Fig. 4. BER performance of unequal-rate IDMA systems. In all the
simulations and variance evolution, we simply use sufficiently large numbers
of iterations to yield the results.

B. Case 2 Small systems

For the small system case, we do not enlarge the system
and we only consider K=32 (40, 48, 64) users. After the
linear programming, the non-integers are properly rounded to
integers, as mentioned in section IV. 2).

In Fig. 4, we plot the BER performance of the small systems
evaluated by computer simulation, where the rate profile is
specified in Table. 1. The predicted bit error ratio by using
variance evolution is also included. For a fair comparison with
the power allocation scheme in [7], we use the same number
of users as in [7] to achieve a certain spectral efficiency1. From
Fig. 4, we see that the system with RA converges very well
and the “water-fall” region in the BER curve is apparent. At a
small BER region, the predicted bit error ratio from variance
evolution is very close to the simulated BER. We also include a
scheme where a spectral efficiency of 3 bits/sec/Hz is achieved
with 64 users. By using more users for rate allocation, a
noticeable performance improvement is achieved.

Now, we compare the RA schemes with the power alloca-
tion schemes in [7]. At a a spectral efficiency of 2 bits/sec/Hz,
the RA scheme based on 32 users achieves almost the same
BER performance as the PA scheme in [7], which is not
depicted in Fig. 4. At 3 bits/sec/Hz, the RA scheme based
on 48 users is about 2 dB worse than the PA scheme in
[7]. However, if we use a larger number of users, i.e. 64
users, to achieve that spectral efficiency, the gap is significantly
reduced. Note that in the RA scheme, we only use integer rates
which can be easily implemented by digital circuits. However,
in [7], the resolution of the quantized power levels could be
arbitrarily small, thus the design of power amplifier could be
very demanding. The performance of the RA scheme may be
further improved if the rate optimization is carried out over
non-integer rates which is not discussed in this letter.

In Fig. 5, we plot the BERs of the iterative receiver for
different number of iterations, where the SNR is fixed to 26
dB. In the figure, we compare the PA scheme in [7] with 48

1In [7], 2 bits/sec/Hz is achieved with 32 users and 3 bits/sec/Hz is achieved
with 48 users.
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TABLE I
RATE ALLOCATION

Length×no. of users
K=32, (2 bits/sec/Hz/dim) 8×11,12×1,37×20
K=40, (2.5 bits/sec/Hz/dim) 5×6,7×1,28×4,29×29
K=48, (3 bits/sec/Hz/dim) 2×2,3×1,22×26,24×1,46×18
K=64, (3 bits/sec/Hz/dim) 3×4,7×1,31×5,32×33,62×21

users (3 bits/sec/Hz) and the proposed rate allocation scheme
with 48 users (3 bits/sec/Hz) which is specified in Table I. We
see that both schemes requires a large number of iterations
to converge. This is phenomenon typical for schemes with
high spectral efficiency. Moreover, the RA scheme converges
slightly slower than the PA scheme.

VI. CONCLUSION

In this correspondence, we developed the rate allocation
for IDMA systems with iterative detection and decoding
in AWGN channel. We used a fully-analytical approach to
predict the performance of the scheme. Then, we proposed a
modified LP method to find the rate profile for the scheme.
Numerical results shows that with just repetition coding and

RA, the scheme is only about 5dB away from the capacity
for a wide range of SNR, provided the number of users is
large enough. Compared with the power allocation scheme
in [7], the proposed RA scheme suffers a small power loss
at a high spectral efficiency. However, the implementation of
the RA scheme becomes easier since the requirement of the
sophisticated power amplifier can be relaxed.

For general fading channels, the rate would be adaptive to
the received power, which is not uniform in a near-far scenario.
Therefore, the proposed scheme needs to monitor the received
power of all active users [7] to perform rate optimization and
this will be investigated in future works.
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