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Delay-Optimal Power and Precoder Adaptation for
Multi-stream MIMO Systems

Vincent K. N. Lau and Yan Chen

Abstract—In this paper, we consider delay-optimal MIMO
precoder and power allocation design for a MIMO Link in
wireless fading channels. There areL data streams spatially
multiplexed onto the MIMO link with heterogeneous packet
arrivals and delay requirements. The transmitter is assumed to
have knowledge of the channel state information (CSI) as well as
the joint queue state information (QSI) of theL buffers. UsingL-
dimensional Markov Decision Process (MDP), we obtain optimal
precoding and power allocation policies for general delay regime,
which consists of an online solution and an offline solution.The
online solution has negligible complexity but the offline solution
has worst case complexityO((N + 1)L) where N is the buffer
size. Usingstatic sorting of the L eigenchannels, we decompose
the MDP into L independent 1-dimensional subproblems and
obtained low complexity offline solution with linear complexity
order O(NL) and close-to-optimal performance.

I. I NTRODUCTION

Multiple Input Multiple Output (MIMO) communication is
well-known to boost the wireless spectral efficiency through
spatial multiplexing. Substantial performance gain couldbe
obtained by power and precoder adaptation according to the
channel state information is available at the transmitter (CSIT).
In [1], [2], a linear MIMO precoder design framework is
proposed to minimize the weighted sum of mean square errors
(MSE) assuming knowledge of perfect CSIT. In [3] and [4],
MIMO precoder design utilizing either limited feedback or
outdated CSIT is proposed. Yet, all these works assumed that
the transmitter has infinite buffer and the information flow
is delay insensitive, and focused on optimizing the physical
layer performance (such as capacity, throughtput or MSE). In
practice, it is very important to consider the delay performance
in addition to the conventional physical layer performancein
MIMO transceiver design.

A combined framework taking into account of both queue-
ing delay and physical layer performance is not trivial as
it involves both the queueing theory (to model the queue
dynamics) and information theory (to model the physical layer
dynamics). In [5], it is shown that naive water-filling (which is
optimal in information theoretical sense) is not always a good
strategy with respect to the delay performance. In general,
there are two approaches to deal with delay problems. The
first approach converts the delay constraint into average rate
constraint using tail probability at large delay regime and
solve the optimization problem using information theoretical
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formulation based on the rate constraint [6]–[8]. While this
approach allows potentially simple solution, the control policy
will be a function of CSIT only and such control will be
good only for large delay regime. In general, the delay-optimal
power and precoder adaptation will be a function of both the
CSI and the queue state information (QSI). In the second
approach, the problem of finding the optimal control policy
(to minimize delay) is cast into aMarkov Decision Problem
(MDP) or stochastic control problem [9]. Unfortunately, itis
well-known that there is no easy solution (e.g. value iteration
and policy iteration) to MDP in general, even for the simple
scenario like SISO channel [10], [11]. In [12], [13], the authors
showed that the longest queue highest possible rate (LQHPR)
policy is delay-optimal for symmetric multi-access fading
channels. Works considering delay sensitive scheduling can be
found in [14] and [15]. While all the above works addressed
different aspects of the delay sensitive resource allocation
problem, there are still some first order issues to be addressed.

• Low complexity optimal control policy for delay
sensitive resource allocation problem in general delay
regime Most of the existing works considered large
delay asymptotic solutions. However, practical operating
region for delay sensitive traffics are usually on the low
delay regime and the asymptotic simplifications cannot be
applied. Hence, it is important to obtain low complexity
control policy for general delay regime.

• Coupling among multiple delay-sensitive heteroge-
neous data streamsMost of the above works considered
single stream wireless link only [16]. While [12], [13]
considered multi-user systems, the framework applies
to situations with symmetric (homogeneous users) only
and cannot be extended to situations with heterogeneous
users. When we have heterogeneous data streams, the
problem will be difficult as the optimal policy will
generally be coupled with the joint queue state of all
the heterogeneous streams. The general solution involves
solving multi-dimensional MDP with exponential order
of complexity w.r.t. the number of streams.

In this paper, we shall attempt to address the above issues
for the delay-sensitive multi-stream MIMO power and pre-
coder adaptation design. Specifically, we consider anNt×Nr

MIMO link with L ≤ min{Nt, Nr} spatially multiplexed het-
erogeneous data streams (with different delay requirements).
This represents an important scenario where a multi-antenna
terminal receiving data from multiple application streams(with
different delay requirements) simultaneously through a MIMO
link from the base station. The transmitter is assumed to
have knowledge of both the CSI and the QSI. UsingL-
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Fig. 1. Top level system model.

dimensional MDP formulation on the embedded markov chain,
we derive an optimal control policy to minimize the weighted
average delays of theL application streams for general delay
regime. The optimal policy consists of an online procedure
and an offline procedure. The online procedure has negligible
complexity but the offline procedure could be quite complex
for largeL. Usingstatic eigenchannel mapping, we decompose
the L-dimensional MDP problems intoL one-dimensional
MDP subproblems and obtain a low complexity solution
with worst case complexity ofO(NL) but close-to-optimal
performance.

The paper is organized as follows. In Section II, we shall
elaborate the system model, physical layer model as well as the
queue model. In Section III, we formulate the delay-sensitive
precoder and power adaptation design as an MDP. In Section
IV, we derive the low complexity optimal control policy. In
Section V, we elaborate the extensions when the CSIT is
outdated. Section VI illustrates the delay performance of the
proposed algorithm by simulations. Finally, we conclude with
a brief summary of results in Section VII.

II. SYSTEM MODELS

In this section, we shall elaborate the system model, physi-
cal layer model as well as the underlying queueing model. Fig.
1 illustrates the top level system model whereL application
streams are spatially multiplexed and delivered to a multi-
antenna terminal (withNr antennas) from a multi-antenna
source (withNt antennas). TheseL application streams may
have different source arrival rates and delay requirements1.

A. MIMO Physical Layer Model

We consider the use of MIMO linear transceivers, composed
of a linear precoder at the transmitter (represented by a
matrix P ∈ CNt×L) and a linear equalizer at the receiver
(represented by a matrixW ∈ C

Nr×L). The transmitted
vector x ∈ CNt is given by x = Ps where s ∈ CL is
the normalized data symbols from theL application streams
with E

(
ssH

)
= I, and the total average transmitted power

should satisfyE
[
‖x‖2

]
= Tr

(
PPH

)
. Similarly, the estimated

received symbols (corresponding to the equalizer outputs)is
given by ŝ = WHy wherey ∈ CNr is the channel outputs,
i.e. y = Hx + z. HereH ∈ CNr×Nt is the MIMO channel

1This corresponds to the scenario where the multi-antenna terminal may be
running different applications simultaneously.

state information (CSI) andz ∈ CNr is a zero-mean circularly
symmetric complex Gaussian noise vector with normalized
covarianceI. Both the transmitter and the receiver are assumed
to have perfect knowledge of the MIMO CSIH2.

As a result, the equivalent channel (with precoder, MIMO
channel and the equalizer) for theL data stream iŝs =
WHHPs + WHz and the SINR of the i-th data stream
is SINRi(P) = |wH

i Hpi|2/wH
i Aiwi, where Ai =∑

j 6=i Hpjp
H
j HH+I and{pi} denotes thei-th column of the

precoding matrixP. For sufficiently high SINR, the symbol
error probability (SEP) of QAM constellation is [17]:

Pe(H) ≤ κ1Q

(√
3SINRi

2Ri − 1

)
≤ κ1

2
exp

(
3SINRi

2(2Ri − 1)

)

for some constantκ1. Hence, given a sufficiently small target
SEP ǫ, the data rateRi (bits per symbol) of thei-th data
stream is related to theSINRi(P) as Ri = log2(1 +
α(ǫ)SINRi(P)), whereα(ǫ) is some constant depending on
the target SEPǫ. Since the receiver has perfect CSIR and the
data rate is an increasing function ofSINRi, it is shown
that for any precoderP, Wiener filterW = (HPPHHH +
I)−1HP can simultaneously maximize{SINR1, .., SINRL}
[18]. As a result, the conditional average SINR of thei-th
data stream after Wiener filtering is given bySINRi(P) =
pH
i HHA−1

i Hpi. Define theinstantaneous MSEmatrix as

E(P) = E
[
(ŝ− s)(ŝ− s)H

]
=
(
I+PHHHHP

)−1
. (1)

Note that the diagonal elements ofE contains the instanta-
neous MSEs of theL data streams. Using matrix inversion
lemma [19], it can be shown thatSINRi(P) = E−1

ii (P)− 1.
Hence, the supported data rate at the target SEPǫ given by
Ri = log2

(
1 + α(ǫ)(Eii

−1(P) − 1)
)
.

B. Queue Model, System States and Control Policy

In this paper, the time dimension is partitioned intoschedul-
ing slots(each slot hasτ channel uses) and we assume that the
CSIH remains quasi-static3 within a scheduling slot and i.i.d.
between scheduling slots. There areL buffers (each of length
N ) at the transmitter for theL application streams respectively.
For simplicity, we assume theL application sources follow
Poisson arrival with mean arrival rates(λ1, .., λL) (number
of packets per channel use). The packet length of thel-th
data source,Nl, follows exponential distribution with mean
packet sizeNl (bits per packet). The transmitter is assumed
to have knowledge of the QSI of theL buffers. Specifically,
the QSI at timet is denoted byQ(t) =

(
Q1(t), . . . , QL(t) ∈

{0, . . . , N}L
)

whereQl(t) is the number of packets in the
l − th buffer at time t. As a result, theobserved system
state at the transmitter,χ = (H,Q), consists of both the
CSIT and the joint QSI. Given an observed system state
realizationχ, the transmitter may adjust the transmit power

2We elaborate the case when the CSIT is outdated in section V.
3This assumption is realistic for pedestrian mobility userswhere the channel

coherence time is around 50 ms but typical frame duration is less than 5ms
in next generation wireless systems such as WiMAX.
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and precoding matrixP according to astationary precoding
policy4 π = {P(χ)} defined below.

Definition 1: (Stationary Precoding and Power Control
Policy) A stationary transmit power and precoding policy
π : {0, .., N}L×CNr×Nt → CNt×L is defined as the mapping
from the currently observed system stateχ = (Q,H) to a lin-
ear precoderπ(χ) = P(χ)5. The set of all feasible stationary
policies is defined asP =

{
π : Tr

(
E
[
π(χ)πH (χ)|Q

] )
>

0, ∀ Q ∈ {0, 1, 2, .., N}L
}

.
Since the packet length is exponentially distributed with

mean packet lengthNi, the packet service time follows
exponential distribution with conditional mean service rate
(conditioned on system stateχ) [packets per channel use]

µi(χ) =
1

Ni

log2

(
1 + α(ǫ)(E−1

ii − 1)
)
. (2)

The overall delay dynamics of theL-stream multiplexed
MIMO system can be modeled byL M/M/1 queues as
illustrated in Fig. 1. TheL queues are coupled together via
the precoding policyP and the transmit power constraint. We
shall derive an optimal stationary precoding policy to minimize
the average delays of theL spatially multiplexed data streams
subject to average transmit power constraint. Specifically, the
average delay (in packets) of thei-th data stream is given by

T i(π)
∆
= lim sup

M

1

M
E

[
M∑

m=1

Qi,m

]
, ∀i ∈ {1, ..., L} (3)

whereQi,m = Qi(mτ) is the QSI of thei-th buffer observed
at t = mτ . The average transmit power constraint is given by:

Ptx(π)
∆
= lim sup

M

1

M
E

[
M∑

m=1

Tr
(
π(χm)πH(χm)

)
]
≤ P0 (4)

where π(χm) denotes the precoder applied att = mτ .
Note that the transmitter may adjust the precoding and power
control actions only at the beginning of scheduling slots
and the control action remains unchanged in between the
scheduling slots. The average delay is related to the transmit
power via the packet service rates{µ1(χ), ..., µL(χ)}. The
delay optimization problem can be formally written as:

Problem 1: (Delay Optimal Policy) For some β =
(β1, β2, ..., βL) (such thatβi > 0 for all i), we seek to find a
stationary policyπ ∈ P that minimizes

Jπ
β (χ0) =

L∑

i=1

βiT i(π) + γPtx(π). (5)

whereχ0 denotes the initial system state. The positive weight-
ing factorsβ indicate the relative importance of buffer delay
among theL data streams and for each givenβ, the solution to
(5) corresponds to a point on the Pareto optimal delay tradeoff
boundary. The constantγ > 0 is the Lagrange multiplier for
the average transmit power constraint in (4).

4It is shown [9] that for finite state MDP, stationary and history independent
policy is optimal. Hence, there is no loss of generality to consider policy that
is function of current system state only.

5Note that since a linear precoderP can be decomposed intoUPΣPVP

whereUP and VP are unitary matrices (denoting the precoding actions)
and ΣP is a diagonal matrix (denoting the power allocation action), we
shall represent both the precoding and power allocation actions by a single
precoding matrixπ(χ).

III. M ARKOV DECISION PROBLEM FORMULATION

In this section, we shall formulate the delay minimization
problem as Markov Decision Process and discuss the optimal-
ity condition. We shall first introduce the embedded Markov
chain and the induced reward random sequence.

A. Embedded Markov Chain and MDP Formulation

Recall that{Q(t)} is the continuous time random process
(denoting the joint queue state of theL data streams) and
{Qm} is the corresponding induced discrete time random
process (denoting the joint queue states at observation epochs
{0, τ, 2τ, ....}) with Qm = Q(mτ). The problem of finding
the optimal control policyπ to minimize system delay in
Problem 1 is in general quite tedious even for obtaining
numerical solutions. To obtain simple solution, we consider
the case where the scheduling slot duration (or frame duration)
τ is substantially smaller than the average packet interarrival
time as well as average packet service time (τ ≪ 1

λ
andτ ≪

1
µi(χ)

)6. Suppose the system state at them−th observation
epoch isχm = {Hm,Qm} . At the (m+ 1)−th observation
epocht = (m+1)τ , one of the following events may happen:
1) packet arrival from thei-th data source with probability
p
(i)
q,q+1 = λiτ ; 2) Packet departure from thei-th data buffer

with probability p(i)q,q−1 = µi(Qm)τ = EH[µi(χm)|Qm]τ ; 3)

No change in thei-th buffer state with probabilityp(i)q,q =

1 − p
(i)
q,q−1 − p

(i)
q,q+1.7 Therefore, theembedded discrete time

random variables{Qm} is an irreducible Markov chain
induced by a stationary policyπ ∈ P . In addition, given a
stationary policyP , the Markov chain{Qm} depends onπ
via the conditional averagepacket service rateµi(Qm) only.
On the other hand, since the CSIT{Hm} is i.i.d. between any
two observation epochs, the optimization objective function
(average cost per stage)Jπ

β (χ0) evaluated at the discrete time
observation epochs can be expressed as:

Jπ
β (χ0) = lim sup

M

1

M

M∑

m=1

EQ [g(Qm, π(Qm))] (6)

where g(Qm, π(Qm)) =

L∑

i=1

βiQi,m + γTr
[
π(Qm))

]
(7)

π(Qm) = EH

[
π(χm)πH(χm)|Qm

]
. (8)

Given a stationary policyπ, the Markov chain{Qm} induces
a random sequence of reward functions{g(Qm, π(Qm))}
depending on the chosen policyπ ∈ P . From (7), the evolution
of the random sequence of reward function{g(Qm, π(Qm))}
depends onπ ∈ P via the conditional average transmit power
cost Tr

[
π(Qm)πH(Qm)

]
only. Hence, the delay-optimization

problem in Problem 1 could be completely characterized by
a multi-dimensional infinite horizonMarkov Decision Process
(MDP) with partial system stateQ, per-stage reward function
g(Q, π(Q)), and the conditional average precoding action

6This is a mild assumption which could be justified in many applications.
For example, in WiMAX, a frame duration is around 2ms while the target
queueing delay for video streaming is around 200ms or more.

7Sinceτ is small, the probability of multiple packet arrivals or departures
among theL data sources is negligible and hencep

(i)
q,p = 0 for |p− q| > 1.



4

 

1, 1

0, 1

1, 0

0, 0

1, 2

0, 2 0, N

1, N

N, 1N, 0 N, 2 N, N

. .
 .

. .
 .

. .
 .

. .
 .

1λ τ

1λ τ

1λ τ

2λ τ 2λ τ 2λ τ

. . .

. . .

. . .

2( ,1)Nµ 2( ,2)Nµ 2( ,3)Nµ

.  .  .

2 11− −λ τ λ τ

2 1

1

1

(1,0)

− −
−

λ τ λ τ
µ τ

2

1

1

( ,0)

−
− N

λ τ
µ τ

2

1 1

1 (1, )

(1, )

−
− −

N

N

µ τ
λ τ µ τ

1 21 (0, )− − Nλ τ µ τ

1

2

1 ( , )

( , )

−
−

N N

N N

µ τ
µ τ

1(1,1)µ

1(2,1)µ

1( ,1)Nµ

2 1

2

1

1

( ,2)

( ,2)

− −
−
−

N

N

λ τ λ τ
µ τ
µ τ

Fig. 2. State transition diagram forL−dimension Markov chain{Qm} with
N states each dimension.L = 2 for illustration.

π(Q). The state transition probability of the embedded MDP
Pr[Qm+1|Qm, π(Qm)] is illustrated in Fig. 2.

B. Bellman Condition and Optimal Precoding Structure

In general, the sequence of average costs
{E[g(Qm, π(Qm))]} of the infinite horizon MDP under
a chosen stationary policyπ ∈ P may not converge at all.
Since the induced Markov chain{Qm} is irreducible for
any stationary policyπ ∈ P , the limit of long run average
costJπ

β (χ0) converges and is independent of the initial state
χ0. For the infinite horizon MDP described by Fig. 2, the
optimizing policy can be obtained by solving theBellman
equation[9] recursively w.r.t.(θ, {V (q1, .., qL)}) as below:

θ+V (q1, .., qL) = inf
π∈P

{g(q1, ..., qL, π(q1, .., qL))

+τ
L∑

i=1

λiV (q1, .., (qi + 1)V

N , .., qL)

+τ
L∑

i=1

µi(q1, .., qL)V (q1, .., [qi − 1]+, .., qL)

+V (q1, .., qL)

(
1−

L∑

i=1

τλi −
L∑

i=1

τµi(q1, .., qL)

)}
(9)

for all (q1, .., qL) ∈ {0, 1, .., N}L wherexV

y = min{x, y}.
If there is a (θ, {V (q1, .., qL)}) satisfying (9), thenθ =
infπ∈P Jπ

β is the optimal average reward per stage. Further-
more, since the induced Markov chain{Qm} is irreducible
for any stationary policyπ ∈ P , the solution to (9) is unique.

Note that solution to (9) is still very complex due to the
following. Firstly, it involvesL-dimensional recursions and as
a result, brute-force solutions have exponential order of com-
plexity w.r.t. L. Secondly, each step of the recursion involves
optimization w.r.t. matrix precoderπ(χ). In the following, we
shall utilize the underlying structure to deduce the optimal
precoding structure forπ(χ) first.

Given any QSIQ andV (Q), let π(Q) = {P = π(Q,H) ∈
CNt×L : ∀ H ∈ CNr×Nt} be the set of all precoding
actions per any possible CSIT realization (given a certain
QSI realizationQ). The optimization in the RHS of (9) is
equivalent to the following form:

min
π(Q)

EH

[
G
(
d
(
E(P)

)
,P
)]

(10)

whered(A) denotes the diagonal elements of matrixA and

G(d1, .., dL,P) =

τ

N

L∑

i=1

(
V (q1, .., [qi − 1]+, ..qL)− V (q1, .., qL)

)

× log2
(
1 + α(ǫ)(d−1

i

(
E(P)

)
− 1)

)
+ γTr

[
PPH

]
. (11)

Note thatd(E(P)) is related to the precoding matrixπ(H,Q)
according to (1) and (2). Since the optimization variables
in (11) involve the set of actionsπ(Q) for all CSIT re-
alizations, the problem can be decomposed into solving
minP G(d(E(P)),P) for each CSIT and QSI realization. To
derive the optimal solution, we first have the following lemma.

Lemma 1: If (θ, {V (q1, .., qL)}) is a solution to the Bell-
man equation (9), thenV (q1, .., qL) is a monotonically non-
decreasing function in all theL arguments.

As a result of Lemma 1,G(d1, .., dL;P) is a Schur-concave
function in (d1, .., dL) and the optimal transmit precoder
matrix is summarized in the following theorem.

Theorem 1:(Optimal Precoding Matrix) For any realiza-
tion of system stateχ(QSIQ, CSITH), the optimal precoding
actionπ(χ) = P w.r.t. (10) is given by:

π(χ) = P = UΣp (12)

whereU ∈ CNt×L is a unitary matrix consisting ofL eigen-
vectors ofHHH corresponding to theL largest eigenvalues
andΣp = diag{√p1, . . . ,

√
pL} is a diagonal matrix contain-

ing the power allocations over theL spatial channels. Note that
the L largest eigenvalues{ξ1, .., ξL} are sorted in the same
order asηi = V (q1, . . . , qL)− V (q1, . . . , [qi − 1]+, . . . , qL).

All the proofs are omitted for lack of space and interested
readers can refer to our full version in [20] for details. In
general, the delay-optimal precoding and power allocation
actions should be a function of both CSIT and QSI. From
Theorem 1, the optimal precoding matrixU seems to be a
function of CSITH only. However, this is not the case as
the ordering of theL largest eigenvalues{ξ1, .., ξL} has to be
sorted in the same order as{ηi} whereηi = V (q1, .., qL) −
V (q1, .., [qi−1]+, ..qL) is a function of the QSIQ. Hence, the
precoding matrixU is indeed a function of both the CSIT and
QSI (implicitly) and it’s because of this sorting requirement
of the eigenvalues that makes the MDP analysis of theL data
streams coupled together.

Remark 1:Note that from Theorem 1, the delay-optimal
precoder has the MIMO-channel diagonalizing structure and
as a result, the subsequent delay-optimization and solutions
can be applied to general L-parallel channels such as OFDM
systems as well.

C. Optimal Power Allocation Policy

Using the precoder structure given by Theorem 1, the condi-
tional average MSE becomesd[E] = [(1 + p1ξ1)

−1, . . . , (1 +
pLξL)

−1]. Hence, the conditional average service rate becomes

µi(Q) =
1

Ni

log2
(
1 + α(ǫ)piξi

)
. (13)
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Therefore, without loss of generality, we shall consider opti-
mization w.r.t. the power allocation policyϕ defined as:

Definition 2: (Power Allocation Policy) A power allocation
policy ϕ : {0, .., N}L×CNr×Nt → RL

+ is defined as the map-
ping from the currently observed system stateχ = (Q,H) to a
power allocation vectorϕ(χ) = (p1, .., pL) whereϕi(χ) = pi
gives the power allocation to thei-th data stream. Furthermore,
ϕ(q1, .., qL) = {(p1, .., pL) = ϕ(H,Q = (q1, .., qL)) : H ∈
CNr×Nt} denotes the set of power allocation actions for all
CSIT realizations at a given QSIQ = (q1, ..., qL).

The Bellman equation in (9) can thus be written as:

L∑

i=1

λiδVi(q1, .., (qi + 1)ΛN , .., qL) +

L∑

i=1

βiqi

−φ(δV1(q1, .., qL), . . . , δVL(q1, .., qL)= θ, (14)

for qi = 0, .., N (and the initial condition can be set
as V (0, .., 0) = 0). δVi(q1, .., qL)

∆
= τ(V (q1, .., qi, .., qL) −

V (q1, .., [qi − 1]+, .., qL)), andφ(η1, ..., ηL) is defined as

supEH

[
L∑

i=1

(
ηi

Ni

log2
(
1 + α(ǫ)pi(H)ξ[i]

)
− γpi(H)

)]
,

The supremum is taken w.r.tpi(H), . . . , pL(H) and {ξ[i]}
denotes theL largest eigenvalues ofHHH sorted in the same
order as{η1, .., ηL}. Using standard optimization technique,
the optimizing power allocation policy forφ(η1, ..., ηL) is
given by the standard water-filling solution:

p∗i (H, η1, .., ηL) =

(
ηi

Niγ
− 1

α(ǫ)ξ[i]

)+

. (15)

Hence, the Bellman equation in (14) can be solved using
policy iteration [9] in an offline manner. Once the solution of
the Bellman equation in (14) is determined, the optimal power
allocation (given a CSIT and QSI realization) is given by
ϕ∗
i (H,Q) = p∗i (H, δV1(Q), ..., δVL(Q)) as defined in (15).

Using the optimal power allocation policyϕ∗, the embedded
Markov chain{Qm} is ergodic andtime reversibleand the
steady state distributionΩϕ∗

= {ω∗(q1, ..., qL)} of the queue
length process evolving under the optimal policyϕ∗

i can
be obtained by solving theL-dimensionaldetailed balance
equations and the average delay of theith data stream is further
given byT i(ϕ

∗) =
∑

q1,..,qL
qiω

∗(q1, .., qL).
As a final step, we shall determine the Lagrange multiplierγ

by substituting (15) into (4) so as to satisfy the overall average
transmit power constraintP0.

P0 =
∑

q1,..,qL

L∑

i=1

EH

[(
δVi(Q)

γNi

− 1

α(ǫ)ξ[i]

)+

|Q
]
ω∗(Q).(16)

D. Summary of the Optimal Solution

In this section, we shall summarize the major results derived
for delay-optimal performance. The optimal precoding and
power allocation policy consists of an online procedure and
an offline procedure. They are summarized below.

Offline Procedure

• Determination of Bellman Solution: For a givenγ, de-
termineθ∗(γ), {V ∗(q1, .., qL; γ)} by solving the system
of equations according to (14).

• Transmit Power constraint: Determineγ that satisfies
the transmit power constraint in (16).8

The outputs of the offline procedure areγ(P0), θ∗(γ(P0)) and
{δV ∗

i (q1, .., qL)}, which shall be used in the online procedure.
Online Procedure

• Step 1) SVD of CSIT:Given the current CSITH, obtain
the largestL eigenvalues(ξ1 ≤ ξ2 ≤ ... ≤ ξL) of the
matrix HHH and the corresponding eigenvectors.

• Step 2) Optimal Precoder and Data Stream Index
Assignment: The optimal precoderP = UΣp where
Σp = diag{√p1, ..,

√
pL} and U ∈ CNt×L contains

the L eigenvectors obtained in Step 1 as columns. The
ordering of theL eigenvalues (as well as the corre-
sponding eigenvectors) are sorted in the same order as
δV ∗

1 (Q), ..., δV ∗
L (Q) for the given QSIQ9.

• Step 3) Optimal Power Allocation: Based on the
precoder and data stream index association in step
2, the power allocation is given byϕ∗(H,Q) =
P ∗(H, δV1(Q), ..., δVL(Q)) as defined in (15).

IV. L OW COMPLEXITY SOLUTION

While the solution derived in the previous section is optimal
and the solution to the Bellman equation (14) can be carried
out in an offline manner, the complexity involved is huge as
it involves solving for exponentially large (w.r.t.L) number
of variables (worst case complexity ofO((N + 1)L)). In this
section, we propose a low complexity suboptimal solution as
an alternative, which has a worst case complexity ofO(NL)
in the offline procedure but close-to-optimal performance.

A. Decomposition of the MDP

Using the optimal unitary precoding solutionU in Theo-
rem 1, the Bellman Equation is coupled among theL data
streams due to the sorting requirement of the eigenvalues
according toδV1(Q), .., δVL(Q). In order to obtain simple
solution, we consider astatic sorting arrangement for the
L largest eigenvaluesξ1, .., ξL. Specifically, we shall sort
the L eigenvalues in the same ordering asβ1, .., βL (which
represents the relative importance of theL data stream).
While this is suboptimal in strict sense, the proposedstatic
sorting schemewill not cause too much performance loss
especially for highly asymmetric cases (β1 ≫ β2 ≫ ...βL)
or highly symmetric caseβ1 ≈ β2 ≈ ... ≈ βL. Using static
sorting schemeand given a stationary power control policy,
ϕ = (ϕ1, .., ϕL), the MDP state transition probability as
depicted in Fig. 2 is decomposable among theL data streams.

8For simplicity, in our simulation, we avoid using root-finding algorithms
to calculateγ, but calculate the correspondingP0 for each givenγ by (16).

9For example, letL = 3. Given the current QSIQ = (q1, q2, q3), assume
δV ∗

1 (q1, q2, q3) = 2.0, δV ∗

2 (q1, q2, q3) = 3.0, δV ∗

3 (q1, q2, q3) = 1.5.
Then the largest eigenvalueξ[1] should be associated with the 2nd data stream.
The next largest eigenvalueξ[2] should be associated with the 1st data stream
and the smallest eigenvalueξ[3] should be associated with the 3rd data stream.
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The average cost per stage in (6) underϕ = (ϕ1, .., ϕL) can
be decomposed asJϕ

β =
∑L

i=1 J
ϕi

β,i where

Jϕ
β,i = lim

M→∞

1

M

M∑

m=1

gi(Qi,m, ϕi(Qi,m)), (17)

gi(Qi,m, ϕi(Qi,m)) = βiQi,m + γϕi(Qi,m), (18)

ϕi(Qi,m) = E [ϕi(χm)|Qi,m] (19)

Hence, the original ”minimal average cost per stage” problem
J∗
β = infϕ Jϕ

β can be decomposed intoL individual sub-
problemsJ∗

β,i = infϕi
Jϕi

β,i for i = 1, .., L. Consider thei-th
subproblem, the Bellman equation is given by:

θi+Vi(q) = inf
ϕi(q)

{
gi(q, ϕi(q)) + τλiVi((q + 1)V

N )

+τµi(q)Vi([q − 1]+) + Vi(q)(1 − τλi − τµi(q)
}

(20)

for all q ∈ {0, 1, .., N}, in which µi(q) is given by

µi(q) =
1

N
E [log2(1 + α(ǫ)ϕi(χi)ξi)|Qi,m = q] , (21)

whereξi is the i-th eigenvalue ofHHH (sorted in the same
order as{β1, .., βL}) and ϕi(q) = {pi = ϕi(H, Qi = q) :
H ∈ CNr×Nt} denotes the set of power allocation actions
for all CSIT realizations at a given QSIQi = q. Since
the embedded Markov chain{Qi,m} is irreducible, there is
a unique solution(θi, Vi(0), ..., Vi(N)) satisfying (20) and
θi = J∗

β,i. We shall derive a low complexity optimal solution
for the Bellman equation (20) in the next subsection.

B. Solution to the decoupled Bellman Equation

Without loss of generality, we shall consider thei-th MDP
problem. LetδVi(q) = τ(Vi(q)−Vi(q−1)) for q = 1, 2, .., N .
The Bellman equation in (20) can be expressed recursively in
terms of{δVi(q)} as follows:

λiδVi(q + 1) = θi + φ̃i(δVi(q))− βiq (22)

for q = 0, 1, . . . , N − 1 with two boundary conditions that
δVi(0) = 0 andβiN = φ̃i(δVi(N)) + θi, where

φ̃i(y) = sup
{p(H)}

EH

[
y

Ni

log2
(
1 + α(ǫ)p(H)ξi

)
− γp(H)

]
.

To solve the Bellman equation in (22), we can first choose
a testing valueθ and for each stream and obtain a se-
quence{δVi(1, θ), . . . , δVi(N, θ)} inductively from (22) for
q = 0, 1, ..., N − 1. Define fi(θ)

∆
= [φ̃i(δVi(N, θ)) + θ]/βi,

the tuple (θ, δVi(1, θ), ..., δVi(N, θ)) is a solution to the
Bellman equation in (22) if and only iffi(θ) = N . Since
fi(θ) is continuous, strictly increasing inθ, there exists a
uniqueθ∗i = f−1

i (N) so thatfi(θ∗i ) = N . Correspondingly,
(θ∗i , δVi(1, θ

∗
i ), ..., δVi(N, θ∗i )) is the unique solution satisfy-

ing the Bellman equation in (22) andθ∗i can be obtained
easily by one-dimensional bisection method. Furthermore,
using standard optimization techniques, the optimal power
allocation policy (for a given QSIQi = q) is given by

p∗i (H, q) =

(
1

γ̃i
− 1

α(ǫ)ξi

)+

(23)

for q = 1, 2, ..., N andp∗i (H, 0) = 0.
Remark 2: In equation (23), the power allocation solution

depends on the QSI only via the equivalent water-levelγ̃i
−1 =

δVi(q, θ
∗
i )/γNi. For larger queue size, the equivalent water-

level γ̃i
−1is increased. This result is also consistent with the

asymptotic delay-optimal solution for point-to-point single-
stream system in [10].

Using the optimal power allocation policyϕ∗
i (q) for q =

0, 1, 2, ..., N , the embedded Markov chain{Qi,m} of the i-
th data stream is ergodic and time reversible. The steady
state distributionΩ(ϕ∗

i ) = (ω0(ϕ
∗
i ), ω1(ϕ

∗
i ), .., ωN (ϕ∗

i )) of
the queue lengths under the optimal policyϕ∗

i can be obtained
by solving theL one-dimensionaldetailed balance equations
for all q = 0, 1, .., N − 1 combined with

∑N

q=0 ωq(ϕ
∗
i ) = 1.

As a final step for the power allocation policy, we have to
determine the common Lagrange multiplierγ among theL
data streams to satisfy the overall average power constraint

P0 =

L∑

i=1

EH

[
N∑

q=0

ωq(ϕ
∗
i )

(
δVi(q, θ

∗
i )

γNi

− 1

α(ǫ)ξi

)+
]
.(24)

C. Summary of the Low Complexity Solution

The low complexity precoding and power allocation policy
also consists of an online procedure and an offline procedure,
which are summarized below.

Offline Procedure

• Step 1) Determination of Bellman Solutions:For i =
1, .., L and aγ, determine{θ∗1(γ), .., θ∗L(γ)} as well as
{δV1(q, θ

∗
1(γ)), ..., δVL(q, θ

∗
L(γ))} according to (22).

• Step 2) Transmit Power Constraint: Solve for γ that
satisfies the transmit power constraint in (24) using one
dimensional root-finding numerical algorithm.

The offline complexity is only ofO(NL). The outputs of
the offline procedure includeγ(P0), θ∗1(γ(P0)), ..., θ

∗
L(γ(P0))

as well as{δV1(q, θ
∗
1(γ(P0))), ..., δVL(q, θ

∗
L(γ(P0)))}. These

shall provide inputs to the online procedure.
Online Procedure

• Step 1) SVD on CSIT:Given the current CSITH, obtain
the largestL eigenvalues(ξ1 ≤ ξ2 ≤ ... ≤ ξL) of the
matrix HHH and the corresponding eigenvectors.

• Step 2) Precoder and Data Stream Mapping:
The optimal precoderP = UΣp where Σp =
diag{√p1, ..,

√
pL} and U ∈ CNt×L contains theL

eigenvectors obtained in Step 1 as columns. TheL largest
eigenvalues are sorted in the same order as{β1, ..., βL}.

• Step 3) Optimal Power Allocation: Based on the
precoder and data stream index association in step 2,
the power allocation of thei-th data stream is given by
ϕ∗
i (H,Q) = p∗i (H, qi) according to (23).

V. EXTENSIONS TOOUTDATED CSIT

When the CSIT is outdated, there will be spatial interference
between the spatial streams of the MIMO channels, which
further complicates the precoder design. We shall first define
the MIMO physical layer model with CSIT error and extend
our delay-optimal formulation and results thereafter.
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A. MIMO Physical Layer Model with CSIT Error

Consider the case where the CSIT error is due to the
estimation noise on the reverse link pilot in a TDD system, the
MMSE estimator of the CSIT̂H at the transmitter is given by
Ĥ = H + ∆H [21], where∆H ∼ CN (0, σ2

eI)
10. Moreover,

E[∆HHĤ] = 0 due to the orthogonality principle of MMSE.
Hence,σ2

e is a parameter which represents the CSIT quality11.
Following similar methods in Section II, we shall extend

the MIMO physical layer model to accommodate the ef-
fect of the outdated CSIT. Specifically, the conditional av-
erage SINR of the i-th stream is given bySINRi(P) =

E

[
|wH

i Hpi|2/wH
i Aiwi

∣∣∣Ĥ
]
. Hence, the conditional SER

(conditioned on the CSITĤ) of QAM constellation and
the associated data rate of the i-th streamRi are given

by Pe(Ĥ) ≤ κ1Q

(√
3SINRi

2Ri−1

)
≤ κ1

2 exp
(

3SINRi

2(2Ri−1)

)
and

Ri = log2(1 + α(ǫ)SINRi(P)), respectively. Combining the
definition in (1) and the matrix inversion lemma [19], we may
express the conditional average SINR of thei-th stream as

SINRi(P) = E

[
E−1

ii (P)− 1|Ĥ
]
≥ E

[
Eii(P)|Ĥ

]−1

− 1

where the last step results from Jensen’s inequality. Hence,
we have a lower bound for the average supported data rate
(conditioned onĤ) at the target SERǫ given by Ri ≥
log2

(
1 + α(ǫ)(Eii

−1
(P) − 1)

)
, whereEii = E

[
Eii|Ĥ

]
.

B. Extension of the Formulation and Results

The delay optimization problem formulation in (5) can be
easily extended for outdated CSIT by modifying the system
state variableχ = (Ĥ,Q). Theorem 1 can be extended as

Corollary 1: For any realization of system stateχ(Ĥ, Q),
the optimal precoding actionπ(χ) = P w.r.t. (10) is given by:

π(χ) = P = UΣp (25)

where U ∈ CNt×L is a unitary matrix consisting ofL
eigenvectors of̂HHĤ + NrI corresponding to theL largest
eigenvalues andΣp = diag{√p1, . . . ,

√
pL} is a diagonal

matrix containing the power allocations over theL spatial
channels. Note that theL largest eigenvalues{ξ1, .., ξL}
are sorted in the same order asηi = V (q1, . . . , qL) −
V (q1, . . . , [qi − 1]+, . . . , qL).

Using the precoder structure given by Corollary 1, the con-
ditional average MSE becomesd[E] = [(1+p1ξ1)

−1, . . . , (1+
pLξL)

−1] [19]: and hence, the conditional average service

rate µi becomesµi(Q) = E
Ĥ

[
1
Ni

log2 (1 + α(ǫ)piξi)
]
. As

a result, all the subsequent formulation and solutions can be
applied by replacingH with Ĥ as the estimated CSIT.

10For detailed error model, please refer to our full version [20]
11We assume that the receiver has perfect knowledge of CSIR fordetection

and decoding. This is because that in practice, a relativelystrong forward link
pilot channel is available from the base station to the receivers, so that the
CSIR estimation error is insignificant relative to that of the CSIT.
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Fig. 3. Comparison of the average delay under optimal and lowcomplexity
solutions under perfect CSIT.Nt = Nr = 2, β1 = 1, β2 = 10.
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Fig. 4. Average delay of the proposed low-complexity solution for different
(Nt, Nr) configurations under perfect CSIT.β1 = 1, β2 = 10.

VI. N UMERICAL RESULTS AND DISCUSSIONS

In this section, we evaluate the proposed solutions to the
delay sensitive precoder and power adaptation design via
numerical simulations. Two data streams are considered with
weights β1, β2 in (5), respectively. The mean packet size
and mean arrival rate for the two streams are the same, i.e.
N1 = N2 = 200 bits per packet andλ1 = λ2 = 0.02 packets
per channel use timeτ . The buffer size isN = 4 for each
stream12. The scheduling time unitτ and the target SERǫ are
fixed at5ms and1%, respectively.

Fig. 3 compares the average delay of the two data streams
under the optimal and low complexity solutions for a2-by-2
MIMO system. As we can see from the figure, both of our
proposed solutions show full support of heterogeneous delay-
sensitive services. Furthermore, the low complexity solution
has close-to-optimal performance with a worst case complexity
of only O(NL), which indicates its practical significance.

Fig. 4 depicts the average delay of the two streams of

12This implies that the delay for a packet is at most four packets. Since we
are considering delay-sensitive applications, this can bea valid assumption.
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Fig. 5. Sum average delay of the proposed low complexity scheme and two
baseline schemes, given different values of CSIT error varianceσ2

e , β1 =
β2 = 1, Nt = Nr = 2.

the proposed low-complexity solution under different con-
figurations of transmit and receive antennas. In Fig. 5, we
set β1 = β2 = 1 and compare the sum average delay of
the proposed scheme for a2-by-2 MIMO system with two
basedlines: 1) theRound-Robin scheme, i.e. the two streams
are serviced in TDMA fashion with equally allocated time
slots; 2) theCSIT only scheme, i.e. the precoder and power
adaptation for the two streams are designed purely based on
the outdated CSIT. Above10dB gain can be achieved by
the proposed scheme over the two baselines. The figure also
suggests that spatial multiplexing may not help effectively
without adapting to both the CSI and the QSI, and theCSIT
only schemeis much more sensitive than the proposed scheme
w.r.t. the CSIT quality. This illustrates the robustness ofour
proposed scheme to CSIT errors.

VII. SUMMARY

We considered delay sensitive MIMO system withL het-
erogeneous data streams spatially multiplexed together. The
design of precoding policy achieving Pareto optimal delay
tradeoff is fomulated into anL-dimensional MDP problem. A
low complexity solution with worst case complexityO(NL)
is proposed by decomposing the original problem intoL one-
dimensional subproblems based on static sorting. Numerical
results verify the advantages of taking both QSI and CSIT
error into dynamic precoder design.
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