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Delay-Optimal Power and Precoder Adaptation for
Multi-stream MIMO Systems

Vincent K. N. Lau and Yan Chen

Abstract—In this paper, we consider delay-optimal MIMO
precoder and power allocation design for a MIMO Link in
wireless fading channels. There areL data streams spatially
multiplexed onto the MIMO link with heterogeneous packet
arrivals and delay requirements. The transmitter is assumd to
have knowledge of the channel state information (CSI) as wehs
the joint queue state information (QSI) of the L buffers. Using L-
dimensional Markov Decision Process (MDP), we obtain optiral
precoding and power allocation policies for general delayegime,
which consists of an online solution and an offline solutionThe
online solution has negligible complexity but the offline sltion
has worst case complexityO((N + 1)*) where N is the buffer

formulation based on the rate constraint [6]-[8]. Whilesthi
approach allows potentially simple solution, the contrmaliqy

will be a function of CSIT only and such control will be
good only for large delay regime. In general, the delayropti
power and precoder adaptation will be a function of both the
CSI and the queue state information (QSI). In the second
approach, the problem of finding the optimal control policy
(to minimize delay) is cast into Markov Decision Problem
(MDP) or stochastic control problem [9]. Unfortunately,st
well-known that there is no easy solution (e.g. value iterat

size. Usingdtatic sorting of the L eigenchannels, we decompose and policy iteration) to MDP in general, even for the simple

the MDP into L independent 1-dimensional subproblems and
obtained low complexity offline solution with linear complexity
order O(NL) and close-to-optimal performance.

I. INTRODUCTION

Multiple Input Multiple Output (MIMO) communication is
well-known to boost the wireless spectral efficiency thitou
spatial multiplexing. Substantial performance gain cobéd

scenario like SISO channel [10], [11]. In [12], [13], the laoits
showed that the longest queue highest possible rate (LQHPR)
policy is delay-optimal for symmetric multi-access fading
channels. Works considering delay sensitive schedulingoea
found in [14] and [15]. While all the above works addressed
different aspects of the delay sensitive resource allonati
g;:)roblem, there are still some first order issues to be adelless

o Low complexity optimal control policy for delay
sensitive resource allocation problem in general delay

obtained by power and precoder adaptation according to the
channel state information is available at the transmi@SI7).

In [1], [2], a linear MIMO precoder design framework is
proposed to minimize the weighted sum of mean square errors
(MSE) assuming knowledge of perfect CSIT. In [3] and [4],
MIMO precoder design utilizing either limited feedback or
outdated CSIT is proposed. Yet, all these works assumed that
the transmitter has infinite buffer and the information flow e
is delay insensitive, and focused on optimizing the physica
layer performance (such as capacity, throughtput or MSE). |
practice, it is very important to consider the delay perfance

in addition to the conventional physical layer performairce
MIMO transceiver design.

A combined framework taking into account of both queue-
ing delay and physical layer performance is not trivial as
it involves both the queueing theory (to model the queue
dynamics) and information theory (to model the physicaélay
dynamics). In [5], it is shown that naive water-filling (whiés
optimal in information theoretical sense) is not always adjo
strategy with respect to the delay performance. In general
there are two approaches to deal with delay problems. TR)
first approach converts the delay constraint into average r.
constraint using tail probability at large delay regime an@I
solve the optimization problem using information thearatti

regime Most of the existing works considered large
delay asymptotic solutions. However, practical operating
region for delay sensitive traffics are usually on the low
delay regime and the asymptotic simplifications cannot be
applied. Hence, it is important to obtain low complexity
control policy for general delay regime.

Coupling among multiple delay-sensitive heteroge-
neous data streamsviost of the above works considered
single stream wireless link only [16]. While [12], [13]
considered multi-user systems, the framework applies
to situations with symmetric (homogeneous users) only
and cannot be extended to situations with heterogeneous
users. When we have heterogeneous data streams, the
problem will be difficult as the optimal policy will
generally be coupled with the joint queue state of all
the heterogeneous streams. The general solution involves
solving multi-dimensional MDP with exponential order
of complexity w.r.t. the number of streams.

'In this paper, we shall attempt to address the above issues
¥ the delay-sensitive multi-stream MIMO power and pre-
2oder adaptation design. Specifically, we consideNatx N,

IMO link with L < min{Ny, N,.} spatially multiplexed het-
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erogeneous data streams (with different delay requireshent
This represents an important scenario where a multi-aatenn
terminal receiving data from multiple application stregmih
different delay requirements) simultaneously through &Kl

link from the base station. The transmitter is assumed to
have knowledge of both the CSI and the QSI. Usihg
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P W state information (CSI) and € C"~ is a zero-mean circularly
symmetric complex Gaussian noise vector with normalized
covariancd. Both the transmitter and the receiver are assumed
to have perfect knowledge of the MIMO CS$IA.

As a result, the equivalent channel (with precoder, MIMO
channel and the equalizer) for the data stream is =
WHHPs + W#z and the SINR of the i-th data stream
is SINRZ(P) = |Wf{le|2/WﬁAZW“ where A, =
Z#i HpjprH+I and{p;} denotes the-th column of the
Fo 1 Too level del precoding matrixP. For sufficiently high SINR, the symbol
'0- 1. Top level system model. error probability (SEP) of QAM constellation is [17]:

AN AQ

A
2N %(Q)

A

N “@Q

npxL

dimensional MDP formulation on the embedded markov chain, P.(H) < x1Q ( w> < o exp (%)
we derive an optimal control policy to minimize the weighted 2% =1 2 2(2% -1)

average delays of thé application streams for general delaBfor some constant;. Hence, given a sufficiently small target

regime. The optimal policy consists of an online procedu Pe, the data rateR; (bits per symbol) of thei-th data

and an offline procedure. The online procedure has ne@igil% ream is related to th&INR:(P) as B, — logy(1 +
7 1 2

complexity but the offline procedure could be quite compleé(e)SINR‘(P)) wherea(e) is some constant depending on
for large L. Usingstatic eigenchannel mappinge decompose . '

. . . . ! the target SER. Since the receiver has perfect CSIR and the
the L-dimensional MDP problems intd, one-dimensional ... -0 is an increasing function STNR;, it is shown
MDP subproblems and obtain a low complexity squtiog1at for any precodeP, Wiener filter W — (fIPPHHH "
with worst case complexity o (N L) but close-to-optimal T)~'HP can simultane;)usly maximiZ&SINR,, .., SINR.}

performance. 8]. As a result, the conditional average SINR of thth

The paper is organized as follows. In Sectioh Il, we sh - I
: ata stream after Wiener filtering is given BYNR;(P) =
elaborate the system model, physical layer model as weleas t pryrn gi1sg (P)

gueue model. In Sectidnlll, we formulate the delay-sevesiti pr HTA, Hp;. Define theinstantaneous MSnatrix as
precoder and power adaptation design as an MDP. In SectiorE(P) —E[E-9s)E-9)"] =1+ PHHHHP)—l_ 1)
V] we derive the low complexity optimal control policy. In
Section[¥, we elaborate the extensions when the CSIT Nipte that the diagonal elements Bf contains the instanta-
outdated. Section VI illustrates the delay performancehef tneous MSEs of thd. data streams. Using matrix inversion
proposed algorithm by simulations. Finally, we concludéwi lemma [19], it can be shown th&/ N R;(P) = E;;'(P) — 1.
a brief summary of results in Sectién VII. Hence, the supported data rate at the target SERen by
R; =1log, (1 + a(e)(Ey; ' (P) — 1)),
Il. SYSTEM MODELS

In this section, we shall elaborate the system model, phyg‘_— Queue Model, System States and Control Policy
cal layer model as well as the underlying queueing model. Fig
illustrates the top level system model whereapplication  In this paper, the time dimension is partitioned istthedul-
streams are spatially multiplexed and delivered to a muliRgd slots(each slot has channel uses) and we assume that the
antenna terminal (W|ch\7T antennas) from a mu|ti-antennaCS| H remains quaSi'StaEONithin a SChedU”ng slot and i.i.d.
source (withN; antennas). Thesg application streams may between scheduling slots. There dréuffers (each of length

have different source arrival rates and delay requiredients V) at the transmitter for thé application streams respectively.
For simplicity, we assume thé& application sources follow

. Poisson arrival with mean arrival ratés;,..,Ar) (number
A. MIMO Physical Layer Model of packets per channel use). The packet length ofithe
We consider the use of MIMO linear transceivers, composedta sourceN;, follows exponential distribution with mean
of a linear precoder at the transmitter (represented bypacket sizelV; (bits per packet). The transmitter is assumed
matrix P € C"**') and a linear equalizer at the receivefo have knowledge of the QSI of the buffers. Specifically,
(represented by a matri® < CN~*L). The transmitted the QSI at timet is denoted byQ(t) = (@1(t),...,QL(t) €
vectorx € CM is given byx = Ps wheres € C" is  {0,..., N}-) where,(t) is the number of packets in the
the normalized data symbols from tieapplication streams | — ¢; buffer at time¢. As a result, theobserved system
with E (ss”) = I, and the total average transmitted powestate at the transmittery = (EL, Q), consists of both the
should satisfyE [||x||*] = Tr (PP¥). Similarly, the estimated CSIT and the joint QSI. Given an observed system state
received symbols (corresponding to the equalizer outpsts)realizationy, the transmitter may adjust the transmit power
given bys = Wy wherey € CV- is the channel outputs,
i.e.y = Hx + z. HereH € CV~*M is the MIMO channel 2w elaborate the case when the CSIT is outdated in seclion V.
3This assumption is realistic for pedestrian mobility usenere the channel

1This corresponds to the scenario where the multi-antermairtal may be  coherence time is around 50 ms but typical frame duratiorss than 5ms
running different applications simultaneously. in next generation wireless systems such as WiMAX.



and precoding matri¥> according to astationary precoding [1l. M ARKOV DECISION PROBLEM FORMULATION

policy] = = {P(x)} defined below. In this section, we shall formulate the delay minimization
Definition 1. (Stationary Precoding and Power Control - roplem as Markov Decision Process and discuss the optimal-
Policy) A stationary transmit power and precoding policyty condition. We shall first introduce the embedded Markov

m:{0,.., N} x CNNe — CNex s defined as the mappingchain and the induced reward random sequence.
from the currently observed system stgte- (Q, H) to a lin-

ear precoderr(y) = P(x)B. The set of all feasible stationary . .
policies is defined a9 — {F : Tr(IE [W(X)WH(XHQD S A. Embedded Markov Chain and MDP Formulation

0,¥Y Qe {0,1,2, __,N}L}, Recall that{Q(t)} is the continuous time random process
Since the packet length is exponentially distributed wittfdenoting the joint queue state of the data streams) and

mean packet lengthV;, the packet service time follows{Qm} is the corresponding induced discrete time random
exponential distribution with conditional mean serviceera process (denoting the joint queue states at observatiochepo
(conditioned on system statg [packets per channel use]  {0,7,27,....}) with Q,, = Q(m7). The problem of finding
1 the optimal control policyr to minimize system delay in

pi(x) = ~ 108 (1+Oé(€)(E£1 - 1))- (2) Problem[d is in general quite tedious even for obtaining

‘ , , numerical solutions. To obtain simple solution, we conside
The overall delay dynamics of thé-stream multiplexed o case where the scheduling slot duration (or frame durgti

_MIMO sys_tem_ can be modeled by A/M/1 queues as +is substantially smaller than the average packet inteedrri
illustrated in Fig.[lL. Thel. queues are coupled together Vigime as well as average packet service time«( L andr <
the precoding policyP and the transmit power constraint. We 1 A

hall deri imal . di ¥ A £ ﬁ Suppose the system state at the-th observation
shall derive an optima statlonqry precoding policy to mmiize epoch isxm — {Hy, Qm} . At the (m + 1)—th observation
the average delays of the spatially multiplexed data streams

; ! . o epocht = (m+1)7, one of the following events may happen:
subject to average transmit power constraint. Specificilly 1) packet(arrival) from the-th data source with probability

average delay (in packets) of tii¢h data stream is given by 1(11,21+1 — A7 2) Packet departure from theth data buffer

_ [ M i ilitvp®  — — , .
Tim2timsup—E |3 Qo |, Vie{l,.,L} @ W0 ProObabiltypy, s =7m(Qu)7 = Enlui ()| Qul7: 3)
M M oot No change in thei-th buffer state with probabilityg,, =

(%) (1) . ]
whereQ; ., = Q;(mr) is the QS| of thei-th buffer observed 1 — Pgq-1 — pq,q+1lj Therefore, theembedded discrete time

att = mr. The average transmit power constraint is given bjandom variables{Q,,} is an irreducible Markov chain
induced by a stationary policy € P. In addition, given a

stationary policyP, the Markov chain{Q,,} depends onr
via the conditional averageacket service rat@;(Q,,) only.
On the other hand, since the CS{H,,,} is i.i.d. between any

where 7(x.,) denotes the precoder applied at= m7. . opceration epochs, the optimization objective fuorcti
Note that the transmitter may adjust the precoding and povg

<P (4
M

— (AL 1 [ H
P, (m)=lim sup ME ZTF(W(Xm)W (Xm))

Uerage cost per stagd evaluated at the discrete time
control actions only at the beginning of scheduling slot g b 92} (xo)

. . . bservation epochs can be expressed as:
and the control action remains unchanged in between the

scheduling slots. The average delay is related to the tiansm ] _
power via the packet service ratég(x), ..., u(x)}. The J5(x0) = hnﬁuloﬁ > Eq[9(Qum, T(Qmn)))(6)
delay optimization problem can be formally written as: . m=1

Problem 1: (Delay Optimal Policy) For some 8 = _ _
(B1, B2, ..., Bz) (such thats; > 0 for all i), we seek to find a where g(Qm, 7(Qm)) = Zﬁi@ivm +T[F(Qm)] ()
stationary policyr € P that minimizes =l

M

L ﬁ(Qm) = Eg [W(Xm)WH(Xm”Qm} . (8)
J5(x0) = ZﬂiTi(ﬂ') + Py (). (5) Given a stationary policyt, the Markov chain{Q,,} induces
i=1 a random sequence of reward functiofig(Q.,7(Qm))}

wherey, denotes the initial system state. The positive weightepending on the chosen polieye P. From [T), the evolution
ing factorsg indicate the relative importance of buffer delayf the random sequence of reward functign{Q..., 7(Q..)) }
among thel data streams and for each givénthe solution to depends onr € P via the conditional average transmit power
(5 corresponds to a point on the Pareto optimal delay tfadeocost T{E(Qm)fH(Qm)} only. Hence, the delay-optimization
boundary. The constant > 0 is the Lagrange multiplier for problem in Probleni]l could be completely characterized by
the average transmit power constraint[ih (4). a multi-dimensional infinite horizoMarkov Decision Process
(MDP) with partial system stat€), per-stage reward function

s - . . e ) !
It is shown [9] that for finite state MDP, stationary and higtmdependent g(Q,f(Q)), and the conditional average precodlng action

policy is optimal. Hence, there is no loss of generality tasider policy that

is function of current system state only. o ) ) ) S o
5Note that since a linear precodBY can be decomposed inld p=pV p 5This is a m‘|Id a;sumptlon which cou_ld bg justified in many_mambns.

where Up and Vp are unitary matrices (denoting the precoding actiondjor example, in WiMAX, a frame duration is around 2ms while tiarget

and =p is a diagonal matrix (denoting the power allocation actiomp dueueing delay for video streaming is around 200ms or more.

shall represent both the precoding and power allocatioirectoy a single ' Sincer is small, the probability of multiple packet arrivals or @efures

precoding matrixr(x). among theL data sources is negligible and her)ﬁf,ég, =0for|p—gq| > 1.



1-Apr =T dot dot Dot 1-Mr - (ON)

whered(A) denotes the diagonal elements of mattixand

Qo G
|
) - lANY a g(dl,..,dL,P) =
=M7 - (N r L
i g =3 (Vi g =10 00) = Viar, o an)
AT i=1
R . : x logy (1 + a(e)(d; ' (E(P)) — 1)) +4Tr[PPH]. (11)
1-A1 " ° -(N,2)r _° _ NY "
waihor{ ”1(“'1’ A Dt r Note thatd(E(P)) is related to the precoding matriXH, Q)
’@ ﬁ@‘@ S according to [(IL) and[{2). Since the optimization variables
PR £(N.2) 1(N.3) in (IT) involve the set of actiong(Q) for all CSIT re-

alizations, the problem can be decomposed into solving
Fig. 2. State transition diagram fdr—dimension Markov chaifQm} with  inp G(d(E(P)),P) for each CSIT and QSI realization. To
NV states each dimensioi. = 2 for illustration. derive the optimal solution, we first have the following leem

7(Q). The state transition probability of the embedded MDP Lemma 1:1f (6,{V(q1,..,qz)}) is a solution to the Bell-

Pr[Qum+1|Qm, T(Q.y)] is illustrated in Fig[R. man equation[{9), the (q1, .., qr) is a monotonically non-
decreasing function in all thé arguments.
B. Bellman Condition and Optimal Precoding Structure As a result of Lemmal1G(ds, .., d; P) is a Schur-concave

In  general, the sequence of average Cosftgnct_iop in (dl,..,_dL) .and the optimal transmit precoder
(Elg(Qn. 7(Q,))]} of the infinite horizon MDP under Malix is summarized in the following theorem. _
a chosen stationary policy € P may not converge at all. _ 1heorem 1:(Optimal Precoding Matrix) For any realiza-
Since the induced Markov chaifiQ,,} is irreducible for 10N Of system statg(QSIQ, CSITH), the optimal precoding

any stationary policyr € P, the limit of long run average action@(x) = P w.r.t. (10) is given by:

cost JE(Xo) converges gnd is independe_nt of the initial state m(x) =P =UY, (12)
Xo. For the infinite horizon MDP described by Fig. 2, the

optimizing policy can be obtained by solving tiBellman whereU € CY+*L is a unitary matrix consisting of eigen-
equation[9] recursively w.r.t.(8, {V (q1,..,qz)}) as below:  vectors of H¥H corresponding to the. largest eigenvalues
andX, = diag{\/p1,...,+/pr} IS a diagonal matrix contain-

0+Viar, - qu) = f {g(aqr, ... az, (a1, -, qr)) ing the power allocations over tHespatial channels. Note that

L the L largest eigenvalue$sy, .., &} are sorted in the same
+TZ)\1'V(Q17 e (@i + VAN, - qL) order asn; = V(q,-..,qr) = Vg, .-, (e = 1, ... qr).

i=1 All the proofs are omitted for lack of space and interested

L readers can refer to our full version in [20] for details. In
+7 Y S Fi(@r - )V (@ [ = 1 an) general, the delay-optimal precoding and power allocation

i=1 actions should be a function of both CSIT and QSI. From

Hi function of CSITH only. However, this is not the case as
the ordering of the. largest eigenvalueg, .., &1} has to be

for all (¢1,..,q.) € {0,1,.., N} wherezp , = min{z,y}. sorted in the same order ds;} wheren; = V(qi,..,qz) —

If there is a (0,{V(q1,..,qr)}) satisfying [9), thend = V(q,..,[g:—1]",..qz) is a function of the QSQ. Hence, the

infrep Jj is the optimal average reward per stage. Furthgsrecoding matriXU is indeed a function of both the CSIT and

more, since the induced Markov cha{,,} is irreducible QSI (implicitly) and it's because of this sorting requireme

for any stationary policyr € P, the solution to[(9) is unique. of the eigenvalues that makes the MDP analysis offitdata

Note that solution to[{9) is still very complex due to th&treams coupled together.

following. Firstly, it involvesL-dimensional recursions and as  Remark 1:Note that from Theorerfil1, the delay-optimal

a result, brute-force solutions have exponential orderooic precoder has the MIMO-channel diagonalizing structure and

plexity w.r.t. L. Secondly, each step of the recursion involvess a result, the subsequent delay-optimization and soktio

optimization w.r.t. matrix precodet(x). In the following, we can be applied to general L-parallel channels such as OFDM
shall utilize the underlying structure to deduce the optimgystems as well.

precoding structure for () first.

Given any QSIQ andV , letm ={P=7n(Q,H) € . . .
CNexL . vy% Kg (CNTX(]\(Z?i be t(h%)set{ of all(grecc))ding C. Optimal Power Allocation Policy
actions per any possible CSIT realization (given a certain Using the precoder structure given by Theofém 1, the condi-
QSI realizationQ). The optimization in the RHS of19) is tional average MSE becomeSE] = [(1+ p1&1) 71, ..., (1 +
equivalent to the following form: pr€1) ). Hence, the conditional average service rate becomes

o Theorem[], the optimal precoding matiX seems to be a
+V(C]1a--7QL) <1 - E T)\i - E T (C]h 7qL)>} (9)

i=1 =1

i iy {g (d(E(P)),P)] (10) Q) = <= ot (1 + a(0pi&). (13)



Therefore, without loss of generality, we shall consideti-op « Determination of Bellman Solution: For a giverry, de-

mization w.r.t. the power allocation poligy defined as: termine6* (), {V*(q1, ..,qr;)} by solving the system
Definition 2: (Power Allocation Policy) A power allocation of equations according to (1L4).

policy ¢ : {0, .., N}2 x CN-*Ne — RE is defined as the map- « Transmit Power constraint: Determiney that satisfies

ping from the currently observed system state: (Q, H) to a the transmit power constraint itﬂl@).

power allocation vectop(x) = (p1...,pr) Wherep;(x) =pi  The outputs of the offline procedure ayreP,), 8*(v(P,)) and
gives the power allocation to thieth data stream. Furthermore,{gvi*(ql’ ..,qz)}, which shall be used in the online procedure.
elqr,-,q0) = {(p1, ,pL) = ¢(H,Q = (q1,-.q.)) : HE€  Online Procedure

N, XN H H
C } denotes the set of power allocation actions for all . Step 1) SVD of CSIT: Given the current CSIH, obtain

CSTI; reBaI:Izatlons at ? gw.?&gQﬂ :t(r?h b qL).'tt _ the largestL eigenvalueg¢; < & < ... < &) of the
e Bellman equation irL{9) can thus be written as: matrix H? H and the corresponding eigenvectors.

L L o Step 2) Optimal Precoder and Data Stream Index

Z/\idvi(ql,.., (¢ + VAN, -, qL) +Zﬁiqi Assignment: The optimal precodeP = UX, where

i=1 i=1 ¥, = diag{\/p1,...,/pr} and U € CN+*L contains
—¢(0Vi(q1; - qr), -+, 0Vi(qu, -, qr)= 0, (14) the L eigenvectors obtained in Step 1 as columns. The

o - ordering of the L eigenvalues (as well as the corre-
for ¢i = 0,..N (and the |n|t|aAI condition can be set  gonding eigenvectors) are sorted in the same order as
as V(0,..,0) = 0). 6Vi(qr,..q) =7(V(q1, -, G5, qr) — SV (Q), ..., 6V (Q) for the given QSIQE.
Vg, [ei =117, ..,qr)), and(n1, ..., n) is defined as . Step 3) Optimal Power Allocation: Based on the

I precoder and data stream index association in step
i . D — s 2, the power allocation is given by*(H,Q) =
sup Eg lZ} (N. logy (1 + a(e)ps(H)Epy) m(H))] : P (L SVA(Q). ... 6V, (Q)) as defined in(ZI5),

K2

The supremum is taken w.rg;(H),...,pr(H) and {{;}

denotes the. largest eigenvalues & H sorted in the same IV. L ow COMPLEXITY SOLUTION

order as{,..,7,}. Using standard optimization technique, yhile the solution derived in the previous section is optima
the optimizing power allocation policy fop(n:,...,7L) 1S and the solution to the Bellman equatiénl(14) can be carried

given by the standard water-filling solution: out in an offline manner, the complexity involved is huge as
‘ 1 + it involves solving for exponentially large (w.r.L.) number
pi(H,n1, ., nL) = <_77—l — ) . (15) of variables (worst case complexity 6f((N + 1)%)). In this
Ny ae)ép

section, we propose a low complexity suboptimal solution as

Hence, the Bellman equation il {14) can be solved usif alternative, which has a worst case complexity)¢fV L)
policy iteration[9] in an offline manner. Once the solution ofin the offline procedure but close-to-optimal performance.
the Bellman equation i (14) is determined, the optimal powe
allocation (given a CSIT and QSI realization) is given b i
o5(H, Q) = p:(H,0V1(Q), ... 0V.(Q)) as defined in[{I5). A Decomposition of the MDP
Using the optimal power allocation poliey*, the embedded Using the optimal unitary precoding solutidd in Theo-
Markov chain{Q,.} is ergodic andime reversibleand the rem[l, the Bellman Equation is coupled among thedata
steady state distributioR®” = {w*(q1,...,q.)} of the queue Streams due to the sorting requirement of the eigenvalues
length process evolving under the optimal poligy can according todV1(Q),...6V.(Q). In order to obtain simple
be obtained by solving thé.-dimensionaldetailed balance solution, we consider atatic sorting arrangement for the
equations and the average delay ofdtedata stream is further L largest eigenvalues,, .., (.. Specifically, we shall sort
given by T;(p*) = qu o qiw*(q1, .., qr). the L eigenvalues in the same ordering @s .., 3 (which

As a final step, we shall determine the Lagrange multiplierreépresents the relative importance of tiie data stream).
by substituting[(Z5) intd{4) so as to satisfy the overallrage While this is suboptimal in strict sense, the proposeatic
transmit power constrain,. sorting schemewill not cause too much performance loss

. especially for highly asymmetric cases; (> 32 > ...01)
=S Y Ex (5Vz(Q) o1 or highly symmetric casg, ~ 3, ~ ... ~ . Using static
q1,.-,9r =1 v

+
N, Q(E)E[i]) |Q] w (Q16) sorting schemand given a stationary power control policy,
’ ¢ = (¢1,.,1), the MDP state transition probability as
depicted in Fig[R is decomposable among thdata streams.

D. Summary of the Optimal Solution
. . . . . 8For simplicity, in our simulation, we avoid using root-fingi algorithms
In this section, we shall summarize the major results ddrive, calculatey, but calculate the correspondinig, for each giverry by (I8).
for delay-optimal performance. The optimal precoding and®For example, let. = 3. Given the current QSQ = (q1, g2, ¢3), assume

power allocation policy consists of an online procedure afdr (41,92,93) = 2.0,6V5"(q1,92,93) = 3.0,6V3"(q1,42,93) = 1.5.

i d Th ized bel Then the largest eigenvalig;; should be associated with the 2nd data stream.
an ofiline procedure. €y are summarized below. The next largest eigenvalug,) should be associated with the 1st data stream

Offline Procedure and the smallest eigenvalgey) should be associated with the 3rd data stream.



The average cost per stage [ (6) ungder (p1,..,0) can forg=1,2,....N andp;(H,0) = 0.
be decomposed ag; = Zle J;f} where Remark 2:In equation [(ZB), the power allocation solution
o depends on the QS| only via the equivalent water-leyel =
. 1 — §Vi(q,07)/vN;. For larger queue size, the equivalent water-
L . . . . X \4, Y, ) y
i =, m M mz_:l 9(Qim: Bi(Qiom)); A7 level 7 is increased. This result is also consistent with the
_ B _ asymptotic delay-optimal solution for point-to-point gie-
9i(Qi.m, i(Qim)) = BiQim +70i(Qim),  (18)  stream system in [10].
?i(Qi,m) = E [pi (xm)|Qi,m (19) Using the optimal power allocation policy; (q) for ¢ =
o ( _)_ o m) ] 0,1,2,..., N, the embedded Markov chaif);,,} of the i-
Hence, the original "minimal average cost per stage” pmwbleth data stream is ergodic and time reversible. The steady
Ji = mfg,*J;’ can bewdecomposed intb |nd|y|dual ;ub- state distributionQ(¢*) = (wo(e!), w1(e?),..,wn(er)) of
problems.J; ; = inf,, Jg% for i =1, .., L. Consider thei-th  the queue lengths under the optimal poligycan be obtained
subproblem, the Bellman equation is given by: by solving the’ one-dimensionatietailed balance equations
_ — forall ¢ =0,1,..,N —1 combined with} ", w,(¢}) = 1.
0i+Vi(g) = inf 19i(¢,%:(q)) + TAVi((g +1 T =0 "1d \F
(@) wlﬁq) {g (@.2:(@) +7 (lg+Daw) As a final step for the power aIIocatloﬁ policy, we have to

+715 (Q)Vi(Jg — 1) + Vilg) (1 — 7 — TE(CI)}(ZO) determine the common Lagrange multipligramong theL

) ] o data streams to satisfy the overall average power constrain
for all ¢ € {0,1,.., N}, in which;(q) is given by

e[Sy o (Vi) 1T
File) = B logy (1 + a0 ()6 =dl. @1) P =2 Bn l;wﬂ%)( o —a@g.) ](24)

X2

where¢; is thei-th eigenvalue oI H (sorted in the same
order as{f1,..,0.}) and v;(q) = {pi = ¢:(H,Q; = ¢q) : C. Summary of the Low Complexity Solution

N, XN, i i . . . .
H ¢ Cx7t} denotes the set of power allocation actions the jow complexity precoding and power allocation policy

for all CSIT realizations at a given QSD; = ¢. SinCé 454 consists of an online procedure and an offline procedure
the embedded Markov chaifQ; ..} is irreducible, there is which are summarized below.

a unique solution(¢;, Vi(0), ..., V;(N)) satisfying [20) and  filine Procedure

0 = J5.i. We shall de_rlve a IOV.V complexity optlmgl solution « Step 1) Determination of Bellman Solutions:For i =

for the Bellman equatiod (20) in the next subsection. 1,.. L and av, determine{0:(+), .. 0% ()} as well as
g ey ) 1 sy YL

{6Vi(q, 07 (7)), .-, 6VL(gq, 07 (7))} according to[(2R).

B. Solution to the decoupled Bellman Equation « Step 2) Transmit Power Constraint: Solve for~ that
Without loss of generality, we shall consider théh MDP satisfies the transmit power constraint [nl(24) using one
problem. LetoV;(q) = 7(Vi(¢q) —Vi(¢—1)) for¢g=1,2, .., N. dimensional root-finding numerical algorithm.
The Bellman equation i (20) can be expressed recursively inThe offline complexity is only of?(NL). The outputs of
terms of{dVi(q)} as follows: the offline procedure include(P,), 65 (v(Fo)), ..., 05 (v(Fo))
51 a0 Tst _ as well as{oVi(q, 0% (v(Po))), .-, 0VL(q, 05 (v(Po)))}. These
AidVilg +1) = 0+ ¢:i(9Vil)) — Big (22) shall provide inputs to the online proceéure.
for ¢ = 0,1,...,N — 1 with two boundary conditions that Online Procedure
6V;(0) = 0 and B;N = ¢;(6Vi(N)) + 0;, where « Step 1) SVD on CSIT:Given the current CSIH, obtain
~ y the largestL eigenvalueg¢; < & < ... < &) of the
¢i(y) = sup En N logy (1 + a(e)p(F)&;) — vp(H) | . matrix H? H and the corresponding eigenvectors.
{p(H)} ! o« Step 2) Precoder and Data Stream Mapping:
To solve the Bellman equation if_(22), we can first choose The optimal precoderP = UX, where ¥, =
a testing valued and for each stream and obtain a se- diag{\/p1,.,/pr} and U € CNexL contains thel
quence{dV;(1,6),...,0V;(NV,0)} inductively from [22) for eigenvectors obtained in Step 1 as columns. Thargest
g =0,1,....,N — 1. Define f;(6) 2 [¢:(0Vi(N,0)) + 6]/ i, eigenvalues are sorted in the same orde{/s..., 5. }.
the tuple (9,6V;(1,0),...,6V;(N,6)) is a solution to the o Step 3) Optimal Power Allocation: Based on the
Bellman equation in[(22) if and only if;(#) = N. Since precoder and data stream index association in step 2,
fi(9) is continuous, strictly increasing ifi, there exists a the power allocation of the-th data stream is given by
uniqued; = f;'(N) so thatf;(6;) = N. Correspondingly, i (H,Q) = pi(H, ¢;) according to[(28B).
(0r,0Vi(1,07),...,0Vi(N,67)) is the unique solution satisfy-
ing the Bellman equation iN((22) an@§’ can be obtained V. EXTENSIONS TOOUTDATED CSIT

easily by one-dimensional bisection method. Furthermore, . . -
using standard optimization techniques, the optimal powerWhen the CSIT is outdated, there will be spatial interfeeenc

: : . N between the spatial streams of the MIMO channels, which
allocation policy (for a given QSE; = g is given by further complicates the precoder design. We shall first defin
“H. q) — 1 1 + (23) the MIMO physical layer model with CSIT error and extend

pi(H,q) = ﬁ B ale)é; our delay-optimal formulation and results thereafter.



A. MIMO Physical Layer Model with CSIT Error

T
stream 1, optimal
stream 1, low complexity

— - — - stream 2, optimal B
— - — stream 2, low complexity

Consider the case where the CSIT error is due to the
estimation noise on the reverse link pilot in a TDD systers, th
MMSE estimator of the CSI'H at the transmitter is given by
H = H + AH [21], where AH ~ CA/(0, 02T}, Moreover,
E[AHH] = 0 due to the orthogonality principle of MMSE.
Hence,o? is a parameter which represents the CSIT qt@lity

Average delay (in packets)
/

Following similar methods in Sectidn] Il, we shall extend ’ S
the MIMO physical layer model to accommodate the ef- 15} ) ~ ~
fect of the outdated CSIT. Specifically, the conditional av- T S~
erage SINR of the i-th stream is given W§INR;(P) = 1 T ™
IE“leHpiP/w{IAiwi IA{} Hence, the conditional SER os ‘ ‘ ‘ -
(conditioned on the CSITH) of QAM constellation and ’ ° Tma“ivsefagepowefz%mﬁ) ® *

the associated data rate of the i-th stredth are given
Fig. 3. Comparison of the average delay under optimal andclomplexity

by P.(H) < s1@Q ( 351?{5\1}?) < % exXp (23(511%11\[_1%17)) and  solutions under perfect CSITV; = N, =2, 81 = 1, B2 = 10.
R; =log,(1 + a(e)SIN R;(P)), respectively. Combining the

definition in [1) and the matrix inversion lemma [19], we may 4
express the conditional average SINR of thih stream as

stream 1, 2 by 2
— — —stream1,4by2
2by4 — - —stream 1, 2 by 4 |
stream 1, 4 by 4
stream 2, 2 by 2
2by2 — — —stream 2, 4 by 2|1
— — stream2,2by4
stream 2, 4 by 4

(23

w
T

SINR;(P)=E [Efl(P) - 1|ﬁ} >E [Eii(P)|ﬁTl 1

N
5
T
s

where the last step results from Jensen’s inequality. Hence
we have a lower bound for the average supported data rate
(conditioned onH) at the target SER: given by R; >

logs (1+ a(e)(By ' (P) — 1)), whereE;, = E {E|IA{} .

N
T

Average delay (in packets)

=
u
T

S T
stream 2 TiTaT S

10 15 20
The delay optimization problem formulation il (5) can be Total Average Power F, (18)
easily extended for outdated CSIT by modifying the system
; — (A Fig. 4. Average delay of the proposed low-complexity solutfor different
state variabley (H’ Q). Theorenﬂl can be eXtenged as (N¢, Ny) configurations under perfect CSIF; = 1, 82 = 10.
Corollary 1: For any realization of system staidH, Q),
the optimal precoding action(y) = P w.r.t. (10) is given by:

B. Extension of the Formulation and Results

0.5

V1. NUMERICAL RESULTS AND DISCUSSIONS
m(x) =P = U, (25)

In this section, we evaluate the proposed solutions to the
where U € CN:*L js a unitary matrix consisting of., delay sensitive precoder and power adaptation design via
eigenvectors of i H + N, I corresponding to thd largest numerical simulations. Two data streams are considere wit
eigenvalues an®, = diag{,/p1,...,/Pr} is a diagonal weights 81, 32 in (B), respectively. The mean packet size
matrix containing the power allocations over tliespatial and mean arrival rate for the two streams are the same, i.e.
channels. Note that the. largest eigenvalueq¢y,..,&,} N1 = N2 = 200 bits per packet and; = \; = 0.02 packets
are sorted in the same order @ = V(q,...,q.) — Per channel use time. The buffer size isNV = 4 for each
Vg, — 17, ... qL)- strearld. The scheduling time unit and the target SER are

Using the precoder structure given by Corollty 1, the cofixed atsms and1%, respectively.
ditional average MSE becomd$E] = [(14p1£1) 7, ..., (1+ Fig.[3 compares the average delay of the two data streams
prér)~' [19]: and hence, the conditional average servidénder the optimal and low complexity solutions foR&y-2
rate 77, becomesi(Q) = Eg {; log, (1 + a(e)pi&)}. As MIMO system. As we can see from the figure, both of our
a result, all the subsequent forjr\ﬁulation and solutions @an %roposed solutions show full support of heterogeneouydela

applied by replacingd with H as the estimated CSIT. sensitive services. Furthermore, thg low complexity $_mtut
has close-to-optimal performance with a worst case conitglex

of only O(N L), which indicates its practical significance.

10, i i . .
For detailed error model, please refer to our full versiod] [2 Fig. | depICtS the average delay of the two streams of

11we assume that the receiver has perfect knowledge of CSIBetection
and decoding. This is because that in practice, a relatstegng forward link
pilot channel is available from the base station to the wersj so that the  12This implies that the delay for a packet is at most four packBince we
CSIR estimation error is insignificant relative to that o t8SIT. are considering delay-sensitive applications, this cama balid assumption.
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[12]

Fig. 5. Sum average delay of the proposed low complexity reehand two [13]
baseline schemes, given different values of CSIT erroranafjcrg, B1 =
B2 =1, Nt = Np = 2. [14]

the proposed low-complexity solution under different cor
figurations of transmit and receive antennas. In Eig. 5, we
setf; = B = 1 and compare the sum average delay %6l
the proposed scheme for 22by-2 MIMO system with two
basedlines: 1) th®ound-Robin schemee. the two streams
are serviced in TDMA fashion with equally allocated timél7]
slots; 2) theCSIT only schemed.e. the precoder and power
adaptation for the two streams are designed purely based[m
the outdated CSIT. Abové0dB gain can be achieved by
the proposed scheme over the two baselines. The figure aish
suggests that spatial multiplexing may not help effecjivef2o]
without adapting to both the CSI and the QSI, and @& T

only schemés much more sensitive than the proposed scheme
w.r.t. the CSIT quality. This illustrates the robustnessoaf [21)
proposed scheme to CSIT errors.

VIl. SUMMARY

We considered delay sensitive MIMO system withhet-
erogeneous data streams spatially multiplexed togethes. T
design of precoding policy achieving Pareto optimal delay
tradeoff is fomulated into a-dimensional MDP problem. A
low complexity solution with worst case complexi€9(N L)
is proposed by decomposing the original problem ihtone-
dimensional subproblems based on static sorting. Nurreric
results verify the advantages of taking both QSI and CSI
error into dynamic precoder design.
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