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Existence and Uniqueness of Fair Rate Allocations in
Lossy Wireless Networks

Vijay G. Subramanian, Ken R. Duffy, and Douglas J. Leith

Abstract—To extend established concepts of fair resource
allocation in wired networks to wireless networks, wired model
assumptions must be adapted to be relevant for wireless networks
as for example, in wireless networks losses due to environmental
conditions may occur even in the absence of queueing congestion.
Thus fundamental questions of the existence and uniqueness of
fair rate allocations must be reconsidered. We treat wireless
networks characterized by lossy channels, spatial channel reuse,
multiple routes and multiple frequencies. We establish the exis-
tence and uniqueness of utility fair and max-min fair solutions
and that, as loss rates decrease, fair allocations converge to the
loss-less ones.

Index Terms—Lossy networks, utility fairness, max-min fair-
ness, location of bottlenecks, convergence of fair solutions.

I. INTRODUCTION

THERE is considerable interest in achieving fair resource
allocation in multi-hop wireless networks. Most contem-

porary work focuses on identifying algorithms that enable
the discovery of max-min fair solutions, e.g. [1]–[6]. Some
of this work treats wireless-network specific features such as
frequency reuse at non-interfering distances. However, with
the notable exception of [9], the only works that we are aware
of that explicitly treat the lossy nature of wireless networks,
such as [7], [8], do so by assuming that losses are sufficiently
small that they can be ignored at each hop and tallied at
the receiver when calculating utility. This is equivalent to
assuming losses only occur at the receiver and we refer to
it as the last-link loss approximation. Here we consider the
case where losses can occur at any (and every) link and this
is reflected in the output of each link. We show that this can
yield significantly different fairness solutions to those given
by the last-link loss approximation.

There are two ways one could extend notions of the utility
of a flow to wireless networks. One is to make each flow’s
utility be a function of the bandwidth it receives at each link.
The other, which we adopt, is to define the utility of a flow
to be a function of its goodput at the receiver, so that a flow
gets no utility for data lost in transit. This ties in naturally
with max-min fairness, where it is clear that fair solutions
should be determined by their receive-rate. Starting from this
viewpoint, the mathematical framework we introduce enables
us to establish the fundamental questions of existence and
uniqueness of utility fair and max-min fair solutions for lossy
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networks that have multiple routes, resource reuse at non-
interfering distances and multiple transmit/receive antennas.
We prove that as loss rates converge to zero, the utility fair and
max-min fair solutions converge to their loss-less equivalents.
A by-product of our formulation enables us to deduce that
with the last-link loss approximation utility fair and max-min
fair solutions also converge to their loss-less equivalents. This
helps to justify that approximation in the presence of low
levels of loss, but we also demonstrate by example that it
can lead to inaccurate solutions.

We introduce a generalized notion of bottleneck links and
prove that max-min fair solutions can be characterized by (and
characterize) each flow’s bottlenecked links, but introduce an
example that demonstrates bottlenecked links do not neces-
sarily converge as loss rates tend to zero even though the
corresponding max-min fair solutions do. Through examples,
we show how the framework can be used to study the nature
of fair solutions in WiFi mesh networks with lossy links and
illustrate new phenomena in the fair solutions that occur in
wireless networks.

II. MODEL ASSUMPTIONS

Concepts of fair allocation of bandwidth in wired networks
date back to at least the early 1980s. A summary of early
developments can be found in [10], where the focus was
originally on max-min fairness. The introduction of the notion
of proportional fairness [11], which is equivalent to maximiz-
ing the sum of a concave utility function of the goodput of
each flow, was a major development. While max-min fairness
cannot be placed directly in that framework, it arises as the
limit of a sequence of the widely adopted (w, α) fair solutions
[12]. Fundamental assumptions in wired network frameworks
include: (1) flows are modeled as fluid; (2) each link has a
fixed capacity that can be allocated arbitrarily between flows;
(3) the output of a link is unchanged before becoming the input
to another link or departing the network; and (4) the medium
is point-to-point with no interaction between distinct links.
Some of these are appropriate for wireless networks, but others
need to be reconsidered. We adopt (1) and (2), but - roughly
speaking - adapt (3) and (4) to: (3’) links can be lossy (for
each link a proportion of every flow passing through it is lost);
and (4’) links may have joint constraints. (3’) corresponds
to losses due to environmental conditions and (4’) includes
multiple-access channels and primary interference constraints.
We define the goodput of a flow to be the rate received at its
destination and the goodput of the network to be the sum of
the goodputs of all flows.
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III. EXISTENCE, UNIQUENESS AND CONVERGENCE OF

FAIR SOLUTIONS

Utility fairness. Using the notation in [13], we represent a
network by a directed multigraph �G = (N , �E) with nodes N
and edges �E , and with a set P = {1, 2, · · · , P} representing
data flows. Nodes represent stations and an edge exists from
node a to node b if a can send data to b. Let N , E and P
denote the cardinality of the sets N , �E and P . Associated
with each flow p is a source node s(p), a destination node
d(p), and a single fixed route consisting of edges r(p) from
�E connecting s(p) to d(p) without a cycle. Multiple routes
are more likely to occur in wireless networks than in wired
networks due to the possibility of many non-overlapping
frequencies/channels being used in a single physical space.
There is no technical difficulty in having multiple flows taking
distinct routes between a source and destination pair and this
can be incorporated by defining the goodput of a single super-
flow to be the sum of the goodputs over sub-flows. For every
edge e along route r′ : P �→ 2�E \ ∅, where 2�E is the power-set
of �E and ∅ is the empty set, define the proximity g(r′, e) of
the edge to the destination by the number of edges (including
itself) to the end node of route r′. For edges that do not belong
to route r′ define g(r′, e) := ∞. Define a route r′-based order
≤r′ on the set of edges that make up route r′: for two links
e and f in r′ if g(r′, e) ≤ g(r′, f), define e ≤r′ f .

Let the maximum link-rate of each edge e ∈ �E be ce > 0
and define C to be the E × E matrix with diagonal entries
Ce,e = ce and Ce,e′ = 0 if e �= e′. To treat (3’), each edge
represents a (possibly) lossy link that drops a certain fraction
of the traffic being transmitted by each flow that traverses it.
For each edge e define qe ∈ (0, 1] to be the network-layer
throughput, i.e. the fraction of traffic that is not dropped at
edge e, and define q to be the corresponding E × 1 vector.
The rate successfully received from edge e is at most qece.
Define the E × P connectivity/routing matrix A(q) whose
(e, p)th element is Ae,p = 1/

∏
f∈�E:f≤r(p) e qf if e ∈ r(p)

and 0 if e /∈ r(p). If flow p has goodput 1, then its input to
edge e is rate Ae,p. The non-zero elements of A(q) are at least
1 because of the lossy nature of the links, whereas for loss-less
networks the elements of A take values in {0, 1} (e.g. [10],
[12], [14]). The last-link loss approximation is modeled by
replacing A(q) with a matrix A′(q) whose (e, p)th element is
A′(q)e,p = maxe′∈r(p) Ae′,p. The maximum over edges e′ of
Ae′,p identifies the greatest loss on the route of flow p in the
lossy network. The routing matrix A′, based on the last-link
loss approximation, has the effect that all losses occur at each
flow’s last link and nowhere else on its route.

As we have started with a directed multigraph, the routing
matrix corresponds to all links operating independently (e.g.
full duplex). To encompass the (4’) assumption and model
shared wireless links between multiple nodes, we introduce a
conflict matrix B = [IT , JT ]T where T denotes transpose,
I is the E × E identity and J is a ζ × E matrix with
{0, 1} entries where ζ ∈ {0, . . . , 2E − E − 1}, so that B
is a (E + ζ) × E matrix. I is the individual conflict matrix
and gives each link its individual capacity constraint. J is the
joint conflict matrix: if the links ei1 , . . . , eiK do not operate
independently, then we insert a row in J with entries 1 at

each eik
and 0 at all other positions. Due to the insertion of

this row, these links will experience a joint constraint such as
a shared wireless resource. There are at most 2E − E − 1
rows in the joint conflict matrix as it includes all subsets
of the links apart from the E individual link constraints and
the empty-set. We say that a flow p is involved in a conflict
i ∈ {1, . . . , E+ζ} and write p ∈ i if for at least one e ∈ r(pi)
we have that Bi,e = 1. As we will see in Section IV, the
joint conflict matrix enables us to treat situations such as in
WiFi networks where a single wireless resource is shared by
two or more distinct nodes, while retaining an individual loss
rate and distinct link rate for each pair of stations. We also
introduce an (E + ζ) × 1 degrees of freedom vector D with
non-negative entries that will represent either MIMO gains or
the availability of multiple radio resources at each conflict.

Denote by xp ≥ 0 the goodput of flow p, i.e. the received
rate at the flow’s destination d(p), and x the corresponding
P × 1 vector. With these quantities defined, the network
places restrictions on possible goodputs through the following
constraint:

BC−1A(q)x ≤ D (goodput constraint). (1)

With I denoting the E×E identity matrix and 1 denoting the
E × 1 vector with all entries equal to 1, for a wired network
B = I and D = 1 so that each link is directional and there are
no joint conflicts. Moreover q = 1, so that links are loss-less.
The key observation for existence and uniqueness of utility
fair solutions is that even if B �= I and D �= 1 and q < 1
(entry-wise), equation (1) is still a linear constraint set. The
set of goodput rate vectors x that satisfy equation (1) is called
the rate region and is denoted by X (C,q) ⊂ �P . It is clear
that A(q) ≥ A(1) and that X (C,q) ⊆ X (C,1). Note that
A(q)e,p ≤ A′(q)e,p for each link e ∈ �E and flow p ∈ P . The
consequence of this is that the rate region for the last-link loss
approximation is necessarily smaller than that for the real lossy
network. Defining a utility function U : �P �→ [−∞,∞) of
the goodput x, the fair allocation is an optimizer in the solution
of the following optimization problem:

sup
x∈X (C,q)

U(x). (2)

The following proposition follows from the linearity of the
constraints in equation (1) [15].

Proposition 1 (Existence and uniqueness of Utility Fair solu-
tions). If U is a strictly concave function, then the optimization
in (2) has a unique optimizer.

We relate the arguments in the solution of the optimization
(2) for q ≤ 1 to the loss-less case by proving a continuity
property of the optimal solutions to (2) as q approaches 1. This
is a consequence of showing that a stronger property holds: a
type of set convergence [15] for the regions X (C,q). Define
the Pompeiu-Hausdorff distance [15] between two non-empty
closed sets D, E ⊂ �P as d∞(D, E) := supx∈�P |dD(x) −
dE(x)|, where dD(x) := infy∈D d(y,x) and d(·, ·) is the
usual Euclidean metric on �P . This metric is a well estab-
lished measure of distance between closed sets and is widely
used in the consideration of the convergence of optimization
problems. The following theorem establishes our convergence
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result for utility fair solutions. Its proof can be found in the
Appendix.

Theorem 1 (Convergence of utility fair solutions). Con-
sider a sequence of link loss rates {1 − q

(k)
e }∞k=1

such that limk→∞ q
(k)
e = 1 for each link e ∈ �E .

Then the rate regions in the lossy networks converge to
the rate region in the corresponding loss-less network,
limk→∞ d∞(X (C,q(k)),X (C,1)) = 0 and utility fair so-
lutions converge to the corresponding loss-less utility fair
solutions.

This theorem also holds with the last-link loss approxima-
tion in force. However, in Section IV we present an example
where loss rates are not small that will illustrate the failure of
the last-link loss approximation.

Max-min fairness. A vector x̄(C,q) is max-min fair on the
set X (C,q) if and only if for all x ∈ X (C,q) there exists
p ∈ P such that xp > x̄p =⇒ ∃o ∈ P \ {p} such that xo <
x̄o ≤ x̄p [10]. Max-min fairness does not correspond to the
solution of (2) for any utility function, but arises as the limit
of particular utility fair solutions. The (w, α) fair solution [12]
uses the family of utility functions given for w > 0, α ≥ 0
and x > 0 by

Uw,α(x) =

{
wx1−α/(1 − α) if α �= 1;
w log(x) if α = 1

(3)

where we define Uw,α(0) := 0 if α ∈ [0, 1) and Uw,α(0) :=
−∞ if α ≥ 1. For this family of strictly increasing utility
functions we denote the unique maximizer of equation (2)
as x∗(w, α,C,q), where w = (w1, . . . , wP )T and α =
(α1, . . . , αP )T . Lemma 3 in [12] proves that max-min fair
solutions arise as the limiting solution as α → ∞. As our
network goodput constraints (1) are still linear, we can apply
that lemma to see that the solutions x∗(1, α1,C,q) converge
to x̄(C,q) as α → ∞.

Proposition 2 (Existence and uniqueness of Max-Min Fair
solutions). With goodput constraints given by equation (1),
there exists a unique max-min fair solution.

This max-min fair solution is unique by Theorem 1 of [14].
The following establishes that max-min fair solutions have the
same convergence property as error rates tend to zero as utility
fairness.

Corollary 1 (Convergence of max-min fair solutions). As loss-
rates tend to zero, max-min fair solutions converge to the loss-
less max-min fair solution.

As with Proposition 1 and Theorem 1, Proposition 2 and
Corollary 1 continue to hold with the last-link approximation
in lieu of the full lossy links formulation. This corollary
is surprising as the original definition of max-min fairness
[10] is in terms of bottlenecked links. For a sequence of
networks with decreasing loss rates, in the next section we
give examples where the location of these bottlenecked links
do not converge, even though the max-min fair solutions do.
First, however, we identify a suitable generalized definition of
bottlenecked links that is appropriate in the present framework.

In the loss-less case, max-min fairness can, equivalently, be
defined in terms of bottlenecked links [10]: given a feasible

goodput rate vector x ∈ X (C,q), a link e is a bottlenecked
link with respect to x for a flow p with link e along its route if∑

p∈P:e∈r(p) xp = ce and xp ≥ xp′ for all flows p′ with link e
along their routes. A feasible goodput rate vector x ∈ X (C,q)
is then max-min fair if and only if each flow has a bottlenecked
link with respect to x (e.g. [10] pg. 527). This definition
yields a procedure called the water-filling algorithm to identify
the max-min fair solution. The algorithm operates as follows:
starting from the all zero goodput rate vector every flow’s rate
is increased until a first set of link constraints become active,
i.e., bottlenecked for the flows that pass through these links.
Only the rates of flows not passing through the bottlenecked
links are increased further until another set of link constraints
become active/bottlenecked. This procedure is repeated until
all the flows pass through at least one bottlenecked link. The
loss-less water-filling algorithm always identifies the max-min
fair solution due to the coordinate convexity of the goodput
rate region [14].

With lossy links we need to generalize the definition of a
bottleneck link given above since each flow has a (potentially)
different rate at the ingress and egress of each link along the
routes that it traverses. Given a feasible goodput rate vector
x ∈ X (C,q), we say that a conflict i ∈ {1, . . . , E + ζ} is a
bottlenecked conflict with respect to x for a flow p with at least
one link in that conflict if (BC−1A(q)x)i = Di and xp ≥ xp′

for all flows p′ at least one link in conflict i. That is, a conflict
is a bottleneck conflict for a flow if the capacity constraint
is met at that conflict and if no other flow involved in that
conflict has higher goodput. The following Theorem, whose
proof can be found in the Appendix, proves that bottlenecked
conflicts provide a characterization of max-min fair solutions
for networks with lossy links.

Theorem 2 (Bottlenecked conflict representation of lossy
max-min fair solutions). For a network with or without lossy
links, a feasible goodput rate vector x ∈ X (C,q) is max-min
fair if and only if each flow has a bottlenecked conflict with
respect to x.

Due to Theorem 2 and the coordinate convexity of the
goodput rate region, the obvious generalization of the water-
filling algorithm necessarily identifies the unique lossy max-
min fair solution.

IV. EXAMPLES

In the examples we assume that all flows have the same
(w, α) = (1, 1) utility function (3), commonly called propor-
tional fairness. Max-min fair solutions were obtained by the
generalized water-filling procedure.

Example 1, Bottlenecked Conflicts and Continuity of Max-
Min Fair Solutions:

Consider the three flow, two link network in Figure 1, where
we assume that c2 = 1. For this network, the matrices in
equation (1) are B = I and D = 1, and

A(q) =
(

1/(q1q2) 1/q1 0
1/q2 0 1/q2

)
.

Since Flows 2 and 3 pass through only one link each, they
will be bottlenecked only on those conflicts. However, the
bottlenecked conflicts for Flow 1 can change depending on
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Fig. 1. Three flow, two link bottlenecked network example. Used to illustrate
lack of convergence of bottlenecked conflicts despite the convergence of max-
min fair solutions proved in Corollary 1. Also demonstrates the asymmetry
in max-min fair solutions that is induced by lossy links.
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Fig. 2. Network in Figure 1. Continuity of max-min fair solutions.

the loss rates of links 1 and 2 and the capacity of link 1. For
a max-min fair solution, define β ∈ {{1}, {2}, {1, 2}} to be
the bottlenecked conflicts for Flow 1. Then we have that

β =

⎧⎪⎨
⎪⎩
{1} if 2q1c1

1+q2
< 1;

{2} if 2q1c1
1+q2

> 1;
{1, 2} otherwise.

For the loss-less max-min fair solution with q1 = 1, q2 = 1
and c1 = 1, the bottlenecked conflicts for Flow 1 are β =
{1, 2}. Consider a sequence of loss rates converging to 0,
{q(n)

1 , q
(n)
2 } such that q

(n)
1 = q

(n)
2 = 1 − 1/n, then β(n) is

always equal to {1}. Even though the max-min fair solutions
are converging by Corollary 1, the bottlenecked conflicts for
Flow 1 are not. Similarly, if the sequence of loss rates are
q
(n)
1 = 1− 1/n and q

(n)
2 = 1− 3/n then β(n) = {2} for all n

and if for (even) n = 2m we have q
(n)
1 = q

(n)
2 = 1−1/m and

for (odd) n = 2m + 1 we have q
(n)
1 = 1 − 1/m and q

(n)
2 =

1−3/m, then sequence of Flow 1’s bottlenecked conflicts β(n)

oscillates between {1} and {2}. Despite the convergence of
max-min fair solutions, the location of bottlenecked conflicts
need not converge.

This example also demonstrates that even though the loss-
less max-min solution is symmetric in its goodputs, the lossy
max-min fair solutions need not be. With c1 = 1, assume the
link error rates are equal on all links (q = q1) and examine
the behavior of the max-min fair solutions as q → 1. From the
solutions in Figure 2 it is clear that the max-min fair solutions
are converging to the loss-less max-min fair solution as q ↑ 1.
The lossy solutions exhibit an asymmetry not seen in the loss-
less case, whereby flow 3 is favored and gets more goodput.

Node A Node B Node C

Flow 1

Link 1, c1, q1 Link 2, c2, q2

Flow 2

Fig. 3. Two flow, two link network example illustrates a failing of the
last-link loss approximation.

It can be understood as follows: for the max-min fair solution
the input rates are chosen so that flows 1 and 2 achieve the
same goodput, but as Flow 1 experiences loss before sharing
a link with flow 3, flow 3 can take up the additional left-over
capacity and so gets higher goodput. This is a consequence of
the location of the bottlenecked conflict for Flow 1.

Example 2, Failure of the last-link loss approximation:
With the topology in Figure 3, set c1 = c2 = 1. We consider

the situation where losses occur on link 1, so that q1 = q and
q2 = 1. The last-link loss approximation effectively assumes
that for Flow 1 q1 = 1 and q2 = q, while for Flow 2 q2 = 1.
For this network, the matrices in equation (1) are B = I and
D = 1, the identity. The routing matrix for the real network,
A(q), and with last-link loss approximation, A′(q) are defined
by

A(q) =
(

1/q 0
1 1

)
and A′(q) =

(
1/q 0
1/q 1

)
.

Both the max-min fair and proportionally fair solutions can
be determined explicitly for this network and they coincide.
For the real network, with A(q) the max-min fair and pro-
portionally fair solution is x1 = min (1/2, q) and x2 =
max (1/2, 1− q), while for the last-link loss approximation,
with A′(q), x1 = x2 = q/(1+ q). These solutions are plotted
in Figure 4. It can be seen that the solutions converge to the
loss-less ones when q → 1, as anticipated by Theorem 1 and
Corollary 1. However, the solutions diverge for q < 1. Indeed
for q < 1, the rate region with the last-link loss approximation
in force is smaller than the real rate region, leading to a
smaller network goodput and highly divergent solutions when
q < 1/2. This indicates a typical, simple situation in which the
last-link loss approximation is inappropriate in the presence of
non-zero losses.

Example 3, a WiFi network: Here we show how the model
framework can be used to model a network where links have
joint constraints, as conveyed by (4’). We consider a WiFi
network where links are coupled through a shared wireless
resource and discuss the well reported performance anomaly
of wireless networks employing the IEEE 802.11 Distributed
Co-ordination Function (DCF) [16]. When one station has a
low link rate to the Access Point (AP), say, 1 Mbps, and others
have a higher link rate to the AP, say, 11 Mbps, then the
bandwidth allocation attained by the operation of the 802.11
DCF is such that all flows get less than 1 Mbps. We show that
this anomaly arises as a consequence of that protocol enforcing
max-min fairness and that MIMO gains can overcome it.

Consider the network depicted in Figure 5. Although each
flow has its own link with its own loss rate, the links are
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Fig. 4. Network in Figure 3. Difference in max-min fair and proportionally
solutions based on loss at first link and last-link loss approximation.

Fig. 5. WiFi network with three flows on three coupled links. Illustrates
construction of conflict matrix and the enforcement of max-min fairness by
IEEE 802.11

coupled by the IEEE 802.11 DCF [17]. As links share the
wireless resource the Joint Conflict Matrix J has a single row
with every entry equal to 1. The conflict and routing matrices
are:

B =

⎛
⎜⎜⎝

1 0 0
0 1 0
0 0 1
1 1 1

⎞
⎟⎟⎠ and A(q) =

⎛
⎝1/q1 0 0

0 1/q2 0
0 0 1/q3

⎞
⎠ .

Consider the following degrees of freedom vector that corre-
sponds to each station having a single receive antenna, but
the access point having d ∈ {1, 2, . . .} transmit antennas:
DT = (1 1 1 d).

With q1 = q2 = q3 = 1 so that links are not lossy, d = 1
so that all stations only have one transmitter and receiver,
and C1 = C2 = 11 Mbps and C3 = 1 Mbps, the goodput
rate region must satisfy x1/11 + x2/11 + x3 ≤ 1. The max-
min fair solution is readily identified to be x1 = x2 = x3 =
11/13 Mbps. While the detailed operation of the IEEE 802.11
DCF is quite complex for unsaturated stations [18], at a high
level it gives each station an approximately equal chance of
winning the medium for a packet transmission so that it too
would give rise to the same solution and to the reported 802.11
performance anomaly.

One solution to this anomaly is to use the TXOP func-
tionality of the 802.11e protocol. Alternatively, it is suffi-
cient to have d = 2, corresponding to a two-transmitter
MIMO gain at the access point. The new constraints give
x1/11+x2/11+x3 ≤ 2, so that by the water-filling algorithm,
x3 = 1 Mbps and x1 = x2 = 11/2 Mbps. Thus the station
with the low rate link does not throttle the goodput of the
stations with the high rate links in the presence of MIMO
gains.

V. CONCLUSIONS

We present a natural extension of the notions of utility
fairness and max-min fairness from wired networks to their
wireless counterpart. We prove the existence and uniqueness
of solutions. We show that as loss rates converge to zero, fair
solutions in systems with loss converge to the corresponding
solution in the loss-less network. We extend the definition
of bottlenecked links to bottlenecked conflicts and prove that
max-min fairness can be defined in terms of these bottlenecked
conflicts. Through examples, we demonstrate that even though
max-min fair solutions converge as loss rates tend to zero, the
location of bottlenecked conflicts may not.

APPENDIX

Proof of Theorem 1: Let {q(k)}∞k=1 be such that
limk→∞ q(k) = 1, which implies limk→∞ mine∈�E q

(k)
e = 1.

For every 0 < ε < 1 there exists a Kε such that 1 ≥
mine∈�E q

(k)
e ≥ (1 − ε)1/|�E| for all k ≥ Kε, which ensures

that 1 ≥ minA∈2�E\∅
∏

e∈A⊆�E q
(k)
e ≥ 1 − ε for all k ≥ Kε.

This implies that X (C(1 − ε),1) ⊆ X (C,q(k)) ⊆ X (C,1)
for all k ≥ Kε.

The Pompeiu-Hausdorff distance between X (C(1 − ε),1)
and X (C,1) is (pg. 117 [15])

d∞(X (C(1 − ε),1),X (C,1))
= sup

x∈X (C,1)\X (C(1−ε),1)

d∞(X (C(1 − ε),1), {x})

≤ sup
x∈X (C,1)

d((1 − ε)x,x) = ε sup
x∈X (C,1)

‖x‖.

Thus for all k ≥ Kε we have

d∞(X (C,q(k)),X (C,1))
≤ d∞(X (C(1 − ε),1),X (C,1))
≤ ε sup

x∈X (C,1)

‖x‖.

Therefore limk→∞ d∞(X (C,q(k)),X (C,1)) = 0 proving the
first part of the theorem.

Define the indicator function of a convex set D ∈ �P

to be δ(x|D) = 0 if x ∈ D and +∞ otherwise. We have
shown that δ(·|X (C,q(k))) epi-converges [15, Section 7.B]
to δ(·|X (C,1)). Let γ(x) be a continuous, convex function
that is level-bounded (i.e. {γ(x) ≤ η} is a bounded set for all
η ∈ �). Then γ(x)+δ(x|X (C,q(k))) epi-converges to γ(x)+
δ(x|X (C,1)). Since each of these functions are level-bounded
from [15, Theorem 7.33] infx γ(x) + δ(x|X (C,q(k))) con-
verges to infx γ(x) + δ(x|X (C,1)) and arg infx γ(x) +
δ(x|X (C,q(k))) converges to arg infx γ(x) + δ(x|X (C,1)).
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Defining γ(x) = −U(x) if xp ≥ 0 for each p ∈ P and +∞
if xp < 0 for any p ∈ P , γ(x) satisfies the conditions above,
proving the second part of the theorem.

Proof of Corollary 1: The corollary follows from inter-
changing the order of limits.

Proof of Theorem 2: The “if” direction is proved by arriving
at a contradiction. Suppose that x ∈ X (C,q) is max-min fair
and assume that there exists a flow p with no bottlenecked
conflict. It then follows that for each conflict i ∈ {1, . . . , E +
ζ} such that p ∈ i and (BC−1A(q)x)i = Di, there must
exist a flow pi �= p ∈ i such that xpi > xp. Therefore for
every conflict i along the route of flow p we can define the
following non-zero quantity

δi =

⎛
⎝∑

e∈r(pi), Bi,e=1
Ae,pi

ce∑
e∈r(p), Bi,e=1

Ae,p

ce

⎞
⎠ (xpi − xp)

if (BC−1A(q)x)i = Di and

δi = (Di − (BC−1A(q)x)i)/

⎛
⎝ ∑

e∈r(p), Bi,e=1

Ae,p

ce

⎞
⎠

otherwise. By increasing xp by δ := mini:xp∈i δi, the min-
imum over all conflicts involving p, and decreasing xpi by
xpi − xp at every conflict j along the route of p such that
(BC−1A(q)x)j = Dj , we arrive at a new feasible goodput
rate vector where we increase the rate of flow p without
decreasing the rate of any flow p′ with xp′ ≤ xp. This
contradicts the max-min fairness of x.

The proof in the “only if” direction follows directly from
the definition of a bottlenecked conflict.
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