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Abstract—The log-normal probability distribution has been
commonly used in wireless communications to model the shad-
owing and, recently, the small-scale fading for indoor ultra-
wideband (UWB) communications. In this paper, a tight closed-
form approximation of the ergodic capacity over log-normal
fading channels is derived. This expression can be easily used to
evaluate and compare the ergodic capacities of communication
systems operating over log-normal fading channels. We also uti-
lize this expression to show that the capacity of a multi-antennas
UWB system operating over the IEEE 802.15.3a channel can be
improved mainly through receive diversity.

Index Terms—Log-normal distribution, fading channels, er-
godic capacity, closed-form, hyperbolic functions.

I. INTRODUCTION

THE log-normal distribution has long been used predom-
inantly in communications to model the effect of shad-

owing due to large obstructions [1], i.e., medium-scale fading.
Recently, the log-normal distribution has been applied to
describe the small-scale fading in the IEEE 802.15.3a channel
model [2], for indoor ultra-wideband (UWB) communications
[3]. More generally, the amplitude distribution of slowly
varying communication channels, e.g., indoor environments,
tends to be log-normal [4].

Channel capacity and probability of error are common
metrics used to evaluate the performance of communication
systems. The calculations of channel capacity and probability
of error over typical fading channels, such as Rayleigh, Rician,
Nakagami, and Hoyt, have attracted considerable research
interests over the past decade [5]–[11]. The error probability
of communication systems operating over log-normal fading
channels was commonly expressed using a computable for-
mula in [8] until an accurate closed-form approximation was
derived in [12]. As for the capacity, it was first upper and
lower bounded in [13]. These two bounds are closed-form
expressions but unfortunately are loose for low signal-to-noise
ratio (SNR) values. Recently in [4], an accurate computable
formula, which is the truncation of an infinite alternating
series and is not a closed-form expression, was proposed
for evaluating the capacity of log-normal fading channels.
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This formula was refined in [14] and a new closed-form
approximation of the capacity was also derived in [14].

In this paper, we propose a tight closed-form approximation
of the ergodic capacity over log-normal fading channels,
relying on the system model introduced in Section II. In
Section III, we first derive a very tight closed-form ap-
proximation of the conventional integral formulation of the
ergodic capacity [13] for low dB spread values; we then show
that this expression is the greatest lower bound (GLB) on
the ergodic capacity in terms of dB spread for any SNR
values. In Section IV, we design a parametric function that
best fits the difference between the exact ergodic capacity
and its GLB, by using a heuristic curve fitting method [9]–
[12], [15]. We obtain a tight closed-form approximation of
the ergodic capacity, which is a function of the system
SNR and the dB spread of the log-normal fading channel,
by minimizing this difference. Numerical results show that
our closed-form approximation differs from the conventional
integral formulation of the ergodic capacity [13] by less than
0.01 nats/s/Hz for any SNR and dB spread values lying in the
range of interest for wireless communications. Our expression
is more simplified than the computable formula proposed
in [4] and [14], but with similar accuracy, and is far more
accurate than the closed-form approximation derived in [14],
as it is evidently shown in Section IV. In Section V, we
use our expression to interpret the behavior of the capacity
at high SNRs and we provide a criterion to easily compare
the capacities of any two systems operating over log-normal
fading channels. We also utilize this expression to compute
the ergodic capacities of single-input single-output (SISO)
and multiple-input multiple-output (MIMO) UWB systems
operating over the IEEE 802.15.3a channel, and show that
multi-antennas UWB systems can mainly benefit from receive
diversity to increase their capacities. Finally, conclusions are
drawn in Section VI. Some preliminary results of this work
have been presented in [16].

II. SYSTEM MODEL FOR LOG-NORMAL FADING

CHANNEL CAPACITY

In wireless communications, medium-scale fading is usually
modeled as a multiplicative and slowly time-varying random
process. Accordingly, the received signal r(t) is given by [1]

r(t) =
√

εs(t)h(t) + n(t), (1)

where ε is the average transmitted signal energy, s(t) is the
transmitted signal, h(t) is the random process that charac-
terizes medium-scale fading, and n(t) is an additive white
Gaussian noise (AWGN) process with a double-sided variance
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of N0/2. Medium-scale fading is considered as log-normally
distributed for any values of t. In a slow-varying environ-
ment, h(t) can be considered constant over multiple symbol
periods such that h(t) = β is a log-normally distributed
random variable (RV). As far as indoor UWB communication
is concerned, the multipath attenuation factors of the IEEE
802.15.3a channel model [2] are log-normally distributed, and
the received signal r(t) can be expressed as in (1) with
h(t) =

∑
k Gkδ(t − τk) [17], [18], where δ(t) denotes the

Dirac delta function, τk is the k-th time delay, Gk =βkejθk is
the k-th multipath attenuation factor, βk is a log-normal RV,
and θk∈{0, π} is an uniformly distributed RV [2].

The ergodic capacity of a log-normal fading channel is
expressed as follows [13]

Ce = E[ln(1 + γα)] = 2λ

∫ +∞

0

ln(1 + γα)p(α)dα, (2)

where γ = ε/N0 is the average SNR, λ = 1
2 if

the capacity is expressed in nats/s/Hz or λ = 1
2 ln(2)

if the capacity is expressed in bits/s/Hz, and p(α) =
1

α
√

2πσα
exp

(
− 1

2 [(ln (α) − mα)/σα]2
)

is the probability
density function of a log-normally distributed RV α, where mα

and σα are the mean and standard deviation of ln (α), respec-
tively. Concerning medium-scale fading, α = β2, where β2

is log-normally distributed since β is log-normally distributed
too. In the case of indoor UWB channel, α � ∑

k β2
k , as

shown in [17] and [18]. According to the results in [19]–[21]
and the novel method recently proposed in [22], the sum of
log-normal RVs can be well-approximated by an equivalent
log-normal RV for a wide range of dB spread values. Thus,
the ergodic capacity formula in (2) can be applied to both
medium-scale fading and indoor UWB channel.

In wireless communications, parameters (my, σy) are in-
troduced to characterize a log-normal distribution, where
my = κmα, σy = κσα and κ = 10/ ln (10) [19]. The
parameter σy , known as the dB spread, is between 6 and 12
dB for medium-scale fading [19], between 3 and 5 dB for the
SISO indoor UWB channel [2], and between 1 and 4 dB for
the MIMO indoor UWB channel as computed in Tables 5.1
and 5.2 of [23]. Without loss of generality, its range of values
can be aggregated as σy ∈ [1, 12] dB for most communication
systems operating over log-normal fading channels. Applying
the change of variables x = ln (α)−mα√

2σα
in p(α), Ce in (2) is

rewritten as

Ce = λ

∫ +∞

−∞
ln
(
1 + e(

1
κ (

√
2σyx+my+γdB))

) 2√
π

e−x2
dx,

(3)
where γdB = κ ln(γ). Notice in (3) that my offsets the SNR
value γdB and these two terms can be aggregated as γ̂dB =
γdB + my. The expression in (3) can then be re-expressed by
using the hyperbolic function cosh(u) = (eu + e−u)/2, as
follows,

Ce =λ

∫ +∞

−∞

[
ln(2) +

γ̂dB

2κ
+ ln

(
cosh

(√
2σyx + γ̂dB

2κ

))

+
√

2σyx

2κ

]
2√
π

e−x2
dx.

(4)

Also, knowing that
∫ +∞
−∞ xe−x2

dx = 0 and
∫ +∞
0

e−x2
dx =√

π/2, (4) can be simplified as

Ce = λ

[
2 ln(2) +

γ̂dB

κ
+
∫ +∞

−∞
f(x)g(x)dx

]
, (5)

where f(x) = ln
(
cosh

(√
2σyx+γ̂dB

2κ

))
, and g(x) = 2√

π
e−x2

.

III. APPROXIMATING THE INTEGRAL OF f(x)g(x) IN (5)

Using the integration by parts defined as∫ b

a f(x)g(x)dx = [f(x)G(x)]ba − ∫ b

a
df(x)

dx G(x)dx, with
df(x)

dx = σy√
2κ

tanh
(√

2σyx+γ̂dB

2κ

)
and G(x) = erf(x),

and since
∫ +∞
−∞f(x)g(x)dx = lim

s→+∞

∫ s

−s

f(x)g(x)dx =

lim
s→+∞

∫ s

0

[f(−x) + f(x)]g(x)dx, the ergodic capacity in (5)

can be re-expressed as

Ce = lim
s→+∞λ

{
2 ln(2) +

γ̂dB

κ
+
[(

f(−x) + f(x)
)

G(x)
]s

0

−
∫ s

0

(
df(−x)

dx
+

df(x)
dx

)
G(x)dx

}
.

(6)
Knowing that G(0) = 0, lim

s→+∞G(s) = 1, and

lim
s→+∞

(
f(−s) + f(s)

)
=−2 ln(2) +

2σy√
2κ

lim
s→+∞

∫ s

0

dx,

Ce = lim
s→+∞ λ

{
γ̂dB

κ
+

σy√
2κ

[∫ s

0

2dx +
∫ s

0

erf(x)

×
1∑

i=0

(−1)i tanh

(
(−1)i+1

√
2σyx + γ̂dB

2κ

)
dx

]}
,

=
λγ̂dB

κ
+

λσy√
2κ

lim
s→+∞

∫ s

0

h(x)dx

=
λγ̂dB

κ
+

λσy√
2κ

∫ +∞

0

h(x)dx,

(7)

where h(x) =
(
tanh

(−√
2σyx+γ̂dB

2κ

)
− tanh

(√
2σyx+γ̂dB

2κ

))
× erf(x)+2, and erf(x) is the error function. Over the interval
[0, +∞), the function erf(x) can be well-approximated by
tanh(ax), with a ∈ [1.13, 1.32]. The functions erf(x) and
tanh(ax) differ on average by less than 5% for this range of a
values. Substituting erf(x) by tanh(ax) in h(x) and knowing
that tanh(x) = 1−2/[exp (2x)+1] = −1+2/[exp (−2x)+1],
Ce in (7) can be approximated as

Ce � λγ̂dB

κ
+

λ
√

2σy

κ

∫ +∞

0

[(
1 − 2

e2ax + 1

)
×
(
−1 +

1∑
i=0

1

e
1
κ (

√
2σyx+(−1)iγ̂dB) + 1

)
+ 1

]
dx.

(8)

Applying the change of variable u = ex in (8) and a number
of simplifications, we obtain

Ce � 2λ

[(
1 +

σy√
2aκ

)
ln(2) +

γ̂dB

2κ
+ ln

(
cosh

(
γ̂dB

2κ

))]
−2

√
2λσy

κ

∫ +∞

1

(
du

q(a, σy, γ̂dB, u)
+

du

q(a, σy,−γ̂dB, u)

)
,

(9)
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Fig. 1. Approximation error of C0
e against Ce in nats/s/Hz.

where q(a, σy, γ̂dB, u) = e
γ̂dB
κ u

2aκ+
√

2σy
κ +1 + u2a+1 +

e
γ̂dB
κ u

√
2σy
κ +1 + u is a polynomial. The integral part in

(9) can then be solved by expanding the rational functions
1/q(a, σy,±γ̂dB, u) into partial fractions. As long as the roots
of q(a, σy,±γ̂dB, u) are known, the expression in (9) will be a
generic and accurate closed-form approximation of the ergodic
capacity.

In the case of low σy values, i.e., σy � κ/
√

2,

q(a, σy, γ̂dB, u) �
(
e

γ̂dB
κ + 1

)
u(u2a + 1), and∫ +∞

1
1

q(a,γ̂dB,u)du = ln(2)/
[
2a
(
e

γ̂dB
κ + 1

)]
. Using this

result in (9) and applying some simplifications, a closed-form
approximation of Ce for low σy values is given by

Ce � C0
e = 2λ

[
γ̂dB

2κ
+ ln

(
2 cosh

(
γ̂dB

2κ

))]
. (10)

The accuracy of our proposed approximation C0
e is measured,

as in [14], by using the metric ΔC0
e = |Ce − C0

e |, where
ΔC0

e represents the approximation error between C0
e and Ce in

nats/s/Hz. As depicted in Fig. 1, where ΔC0
e is plotted against

σy and γ̂dB, C0
e is accurate for low σy values, i.e., σy ≤2 dB,

regardless of γ̂dB, and for σy ∈ [0.01, 20] dB with high γ̂dB

values, i.e., γ̂dB≥30 dB. The accuracy of C0
e increases as σy

gets lower. Moreover, for any x∈R, σy ≥0 and γ̂dB ∈ R, the
inequalities f(x) ≥ f(0) ≥ 0 and g(x) ≥ 0 hold. Therefore,
f(x)g(x) ≥ f(0)g(x),

∫ +∞
−∞ f(x)g(x)dx ≥ ∫ +∞

−∞ f(0)g(x)dx,

equivalently Ce ≥ λ
[
2 ln(2) + γ̂dB

κ +
∫ +∞
−∞ f(0)g(x)dx

]
=

C0
e , and then it implies that C0

e is a lower bound of Ce. Fur-
thermore, Ce = C0

e for σy = 0, thus, C0
e = inf{σy ≥ 0 : Ce},

i.e., C0
e is the GLB of the ergodic capacity over log-normal

fading channels in terms of dB spread for any γ̂dB values.

IV. A GENERIC CLOSED-FORM APPROXIMATION OF THE

ERGODIC CAPACITY

The closed-form expression in (10) is a tight approximation
of Ce regardless of γ̂dB for σy ∈ [0, 2] dB, as depicted in
Fig. 1, but is less accurate for higher practical values of
dB spread. Using (10), here we derive a generic closed-form
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Fig. 2. Comparison of ln(ΔC0
e ) and ln(φ(σy , γ̂dB)) for various σy values.

approximation of the ergodic capacity which is tight regardless
of γ̂dB for dB spread values lying in the range of [0.01, 12]
dB.

Knowing that C0
e is the GLB of Ce, we aim to obtain

a function φ(σy , γ̂dB) that tightly estimates the difference
between Ce and C0

e , i.e., ΔC0
e � φ(σy , γ̂dB). In the heuristic

curve fitting method proposed in [15], a parametric function is
designed in terms of elementary functions and three indepen-
dent parameters to solve a curve fitting problem. In this paper,
we use this curve fitting method to design the parametric
function φ(σy , γ̂dB) that tightly fits ΔC0

e for σy ∈ [0.01, 12]
dB and a large range of γ̂dB values. We first numerically
evaluated ln(ΔC0

e ) for different values of σy and collected
the obtained curves in Fig. 2. It can be noticed that ln(ΔC0

e )
presents the feature of an even function with a unique max-
imum occurring at γ̂dB = 0 dB, denoted by ln(ΔC0

e (0)). In
addition, this function decreases linearly as |γ̂dB| increases. In
the effort to obtain the function that best fits these curves,
the curve fitting method leads to the parametric function
ln(φ(σy , γ̂dB)) = ln(ΔC0

e (0)) − η1 ln
(
cosh

(
γ̂dB
η2

))
, which

provides a satisfying approximation for any of the ln(ΔC0
e )

curves, as illustrated in Fig. 2, for σy = 0.01, 0.1, 1, 10
dB, η1 = 2.01, 2.01, 2.02, 4.2, and η2 = 8.71, 8.71, 8.79, 19,
respectively. The parameters ln(ΔC0

e (0)), η1 and η2 clearly
depend on the value of σy , and their values increase as σy

increases, as illustrated in Figs. 1 and 2.
Consequently, we obtain that

φ(σy , γ̂dB) =
η0

2κ
e
−η1 ln

(
cosh

(
γ̂dB

2κη2

))
(11)

is an appropriate choice of a parametric function, with
η0, η1, η2 ≥ 0, in order to tightly approximate ΔC0

e . The
tightness of φ(σy , γ̂dB) can be controlled by adjusting the
parameters η0, η1 and η2. We minimize the following mean
squared error (MSE) equation for tightly approximating Ce in
(5) by C0

e + φ(σy , γ̂dB)

1
2N + 1

N∑
γdB=−N

|ΔC0
e − φ(σy , γ̂dB)|2 ≤ ε0, (12)
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Fig. 3. Comparison of Ce, and Ĉe vs. γdB, for various σy values, and
my = −σ2

y/2κ.

where ε0 � 1. Using (12), we have obtained η0, η1, and
η2, for σy ∈ [0.01, 12] dB with an increment step of 0.1 dB,
N = 100 and ε0 = 5 × 10−6, then interpolated the resulting
values for each and every one of the parameters, i.e., η0, η1

and η2, in the range of σy ∈ [0.01, 6) for UWB systems and
in the range of σy ∈ [6, 12] for other conventional wireless
systems. The results are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η0 =(−1.0658×10−4σ3
y − 0.0019047σ2

y

+0.083954σy − 0.0004047)σy/
√

2, σy ∈ [0.01, 6) dB,

=(8.7552× 10−5σ3
y − 0.0043629σ2

y

+0.093625σy − 0.011684)σy/
√

2, σy ∈ [6, 12] dB,

η1 = −0.0160σ2
y + 0.3180σy + 1.6580, σy ∈ [0.01, 6) dB,

=−0.0080σ2
y + 0.2200σy + 1.9580, σy ∈ [6, 12] dB,

η2 =(0.045σy + 0.385) ln (10), σy ∈ [0.01, 12] dB,

such that η0 ∈ [3.7 × 10−7, 5.3869], η1 ∈ [1.658, 3.446], and
η2 ∈ [0.8865, 2.1299].

Finally, by adding (10) and (11) together and by using the
values of η0, η1 and η2 provided above, we obtain a tight and
generic closed-form approximation of the ergodic capacity as
follows, Ce �

Ĉe =2λ

⎡⎣ln
(
2 cosh

(
γ̂dB

2κ

))
+

1
2κ

⎛⎝γ̂dB+
η0

coshη1
(

γ̂dB
2κη2

)
⎞⎠⎤⎦ ,

(13)
which differs from Ce in (5) by less than 2 × 10−4 nats/s/Hz
for σy ∈ [0.01, 6) dB and 8× 10−3 nats/s/Hz for σy ∈ [6, 12]
dB, regardless of γ̂dB.

In Figs. 3 and 4, we compare our closed-form
approximation Ĉe in (13) with the closed-form approximation

C̃e =
[
1 + 2 exp

(
γ̂dB

κ + σ2
y

2κ2

)
+ exp

(
2
(

γ̂dB

κ + σ2
y

κ2

))]− 1
2

×
(

1 + exp
(

γ̂dB

κ + σ2
y

2κ2

)2
)

, the computable formula Ce ={∑8
k=1 ak

[
erfcx

(
kσy√

2κ
+ γ̂dB√

2σy

)
+ erfcx

(
kσy√

2κ
− γ̂dB√

2σy

)]}
×0.5e

− γ̂2
dB

2σ2
y + σy√

2πκ
e
− γ̂2

dB
2σ2

y + γ̂dB
2κ erfc

(
− γ̂dB√

2σy

)
, which have
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Fig. 4. Comparison of Ĉe, Ce, and C̃e vs. γdB, for various σy values, and
my = −σ2
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both been recently proposed in [14], and Ce in (5) as
functions of γ̂dB, for various σy values, and my = −σ2

y/2κ.
Figure 3 exhibits a highly tight fitness between Ce and Ĉe

for any dB spread value, hence, it indicates graphically the
accuracy of our proposed closed-form approximation in (13).
Figure 4 depicts that our proposed closed-form approximation
is far more tight than C̃e, especially for low SNR values and
medium to high σy values. It also shows that our closed-form
provides the same degree of accuracy as the formula Ce, but
with a more simplified expression. Notice that the accuracy
of our closed-form expression Ĉe can be improved for lower
ε0 values by appropriate choices of the parameters η0, η1 and
η2 in (12).

V. APPLICATIONS OF Ĉe

A. Capacity of the log-normal fading channel at high SNRs

Our closed-form expression in (13) can be used to interpret
the behavior of the ergodic capacity Ce at high SNRs. As-
suming in (13) that γ̂dB 	 2κη2, it implies that the term

1/ coshη1
(

γ̂dB
2κη2

)
is equivalent to e

−η1

(
γ̂dB

2κη2
−ln(2)

)
, which

goes towards zero as γ̂dB increases since η1, η2, and κ are
positive constants. Therefore, Ce � Ĉe � C0

e in (10) at high

SNRs. Moreover, knowing that the term ln
(
2 cosh

(
γ̂dB
2κ

))
in

(10) is equivalent to γ̂dB
2κ for γ̂dB 	 2κ, the ergodic capacity of

a log-normal fading channel can be simplified at high SNRs
as follows

Ce � 2λ

κ
(γdB + my) . (14)

Thus, the capacity is a linear function of the SNR at high
SNRs, which is consistent with the result obtained in [24].
Also, notice that for my = 0, this capacity is equal to the
capacity of an AWGN channel, i.e., 2λ ln(1 + exp(γdB/κ))
[25], at high SNRs.
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Fig. 5. Ergodic capacity of SISO-UWB systems for different channel
scenarios and various combining methods.

B. Capacities of SISO and MIMO-UWB systems over the
IEEE 802.15.3a channel model

Our closed-form expression in (13) can also be used to cal-
culate effectively and accurately the ergodic capacity of com-
munication systems over log-normal fading channels. Here,
we provide some results concerning the ergodic capacities
of SISO and MIMO-UWB systems operating over the IEEE
802.15.3a channel.

In a MIMO-UWB system, assuming perfect channel es-
timation and accurate timing synchronization, the receiver
output SNR associated with equal gain combining (EGC)
and maximum ratio combining (MRC) can be expressed as
γ = γα, with α defined as follows [23]

α =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎝Nr−1∑
ρ=0

Nt−1∑
n=0

Nf−1∑
f=0

|βρ,n,f |
⎞⎠2

/(NrN
2
t Nf) , for EGC,

Nr−1∑
ρ=0

Nt−1∑
n=0

Nf−1∑
f=0

β2
ρ,n,f/Nt , for MRC,

(15)
respectively, where Nr is the number of receive antennas, Nt

is the number of transmit antennas, and Nf is the number of
multipath over each receive-transmit antenna pairs.

As explained in [19]–[22], the sum of independent or corre-
lated log-normal RVs can be well-approximated by an equiv-
alent log-normal RV. Thus, the effect of the log-normal fading
channel upon any communication system can be modeled by
using an equivalent log-normal RV. For instance, it has been
shown in [23] that the effect of several independent log-normal
multipath attenuation factors of the IEEE 802.15.3a channel
model can be appropriately combined into an equivalent log-
normal RV. Numerical values of the mean mα and standard
deviation σα of the equivalent log-normal RV α have been
obtained considering either MRC or EGC, various numbers
of multipath, and different numbers of transmit antennas, in
Tables 4.2, 4.3, 5.1 and 5.2 of [23]. These values have been
first derived by using a theoretical approach and then verified
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Fig. 6. Ergodic capacity of MIMO-UWB systems for different channel
scenarios and various numbers of transmit and receive antennas.

through simulations.
Inserting the values of mα and σα from the Tables 4.2, 4.3

of [23] in (13), the ergodic capacity of a SISO-UWB system
over various channel scenarios of the IEEE 802.15.3a channel
model, i.e., CM1-4 [2], is plotted in Fig. 5, by applying
either EGC or MRC, for Nf = 20, Nt = 1, and Nr = 1.
The results show that MRC provides an extra 0.2 nats/s/Hz
capacity improvement compared to EGC, and the capacity
over the line-of-sight (LOS) channel CM1 is 1.2 nats/s/Hz
higher than that over the worst non-LOS channel scenario
CM4. Notice also that all the curves tend to be parallel at high
SNRs, which is consistent with the result in (14). Therefore,
the ergodic capacity difference between any two systems A
and B operating over a log-normal fading channel is constant
at high SNRs and can be given by

ΔCA,B
e = 2λ|mA

α − mB
α |, (16)

where mA
α and mB

α are the mean values of the RVs αA and
αB for systems A and B, respectively.

In Fig. 6, the ergodic capacity of a MIMO-UWB system
over various channel scenarios, i.e., CM2-4, is plotted against
the number of antenna elements n which is considered at the
transmitter or at the receiver, by applying MRC with Nf = 20,
and for γdB = 10 dB. Using (15) and the same method as in
[23], we have obtained values of mα and σα for the different
antenna configurations considered in Fig. 6 beforehand. The
results show that if the number of receive antennas is equal to
one, Nr = 1, increasing the number of transmit antennas has a
very limited effect on the capacity, which then saturates very
fast. On the other hand, if the number of transmit antennas is
equal to one, Nt = 1, the capacity increases in a logarithm
way with the number of receive antennas. These results are in
line with those obtained for a MIMO Rayleigh-fading channel
[25]. However, if the number of transmit antennas is equal to
the number of receive antennas the capacity still increases in a
logarithm way with the number of receive antennas. This result
is very different from the MIMO Rayleigh-fading channel
[25], where it is well-known that the capacity increases lin-
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early with the number of transmit/receive antennas, i.e., when
n = Nt = Nr. As it has been indicated in [23], increasing the
number of transmit antennas over the IEEE 802.15.3a channel
has a limited impact on the performance improvement in terms
of bit error probability. A SNR gain of about 3 to 4 dB can
be observed when using one received antenna and two instead
of one transmit antenna over CM2. This gain is marginal
compared to the 25 dB gain obtained in the MIMO Rayleigh-
fading case. Thus, it can be concluded that mainly receive
diversity can be used to increase the capacity of MIMO-UWB
systems operating over the IEEE 802.15.3a channel.

VI. CONCLUSION

A tight closed-form approximation of the ergodic capac-
ity for wireless communication systems operating over log-
normal fading channels has been derived. Its accuracy has been
maintained by finding values of parameters η0, η1 and η2 that
minimize a MSE criterion, and has been shown experimentally
for practical SNR and dB spread values. Our expression has
been used to interpret the behavior of the ergodic capacity
of log-normal fading channels at high SNRs, as well as to
provide a simple criterion for comparing the capacities of
systems operating over log-normal fading channels. Finally, its
application in evaluating the ergodic capacities of SISO and
MIMO-UWB systems over the IEEE 802.15.3a channel model
has been presented, and it has been shown that multi-antennas
UWB systems can mainly benefit from receive diversity to
increase their capacities over the IEEE 802.15.3a channel.
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