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The Impact of Hard-Decision Detection on the
Energy Efficiency of Phase and Frequency

Modulation
Mustafa Cenk Gursoy

Abstract— The central design challenge in next generation
wireless systems is to have these systems operate at high
bandwidths and provide high data rates while being cognizant
of the energy consumption levels especially in mobile applications.
Since communicating at very high data rates prohibits obtaining
high bit resolutions from the analog-to-digital (A/D) converters,
analysis of the energy efficiency under the assumption of
hard-decision detection is called for to accurately predict the
performance levels. In this paper, transmission over the additive
white Gaussian noise (AWGN) channel, and coherent and
noncoherent fading channels is considered, and the impact
of hard-decision detection on the energy efficiency of phase
and frequency modulations is investigated. Energy efficiency is
analyzed by studying the capacity of these modulation schemes
and the energy required to send one bit of information reliably
in the low signal-to-noise ratio (SNR) regime. The capacity
of hard-decision-detected phase and frequency modulations is
characterized at low SNR levels through closed-form expressions
for the first and second derivatives of the capacity at zero
SNR. Subsequently, bit energy requirements in the low-SNR
regime are identified. The increases in the bit energy incurred
by hard-decision detection and channel fading are quantified.
Moreover, practical design guidelines for the selection ofthe
constellation size are drawn from the analysis of the spectral
efficiency–bit energy tradeoff.

Index Terms: Bit energy, spectral efficiency, AWGN channel,
fading channels, phase-shift keying, frequency-shift keying, on-off
keying, hard-decision detection.

I. I NTRODUCTION

Energy efficiency is of paramount importance in many
communication systems and particularly in mobile wireless
systems due to the scarcity of energy resources. Energy
efficiency can be measured by the energy required to send
one information bit reliably. It is well-known that for Gaussian
channels subject to average power constraints, the minimum
received bit energy normalized by the noise spectral level
is Eb

N0 min
= −1.59 dB regardless of the availability of

channel side information (CSI) at the receiver (see e.g., [1]
– [5], and [8]). Golay [1] showed that this minimum bit
energy can be achieved in the additive white Gaussian noise
(AWGN) channel by pulse position modulation (PPM) with
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vanishing duty cycle when the receiver employs threshold
detection. Indeed, Turin [2] proved that any orthogonalM -
ary modulation scheme with envelope detection at the receiver
achieves the normalized bit energy of−1.59 dB in the AWGN
channel asM → ∞. It is further shown in [3] and [4]
thatM -ary orthogonal frequency-shift keying (FSK) achieves
this minimum bit energy asymptotically asM → ∞ also in
noncoherent fading channels where neither the receiver nor
the transmitter knows the fading coefficients. These studies
demonstrate the asymptotical high energy efficiency of or-
thogonal signaling even when the receiver performs hard-
decision detection. As also well-known by now in the digital
communications literature [23], these results are shown by
proving that the error probabilities of orthogonal signaling
can be made arbitrarily small asM → ∞ as long as the
normalized bit energy (or equivalentlySNR per bit) is greater
than −1.59 dB. As indicated by the unbounded growth of
M , the minimum bit energy is in general achieved at infinite
bandwidth or equivalently as the spectral efficiency (rate in
bits per second divided by bandwidth in Hertz) goes to zero.

Indeed for average power limited channels, the bit energy
required for reliable communication decreases monotonically
with increasing bandwidth [6], [8]. This is the fundamental
bandwidth-power tradeoff. Recently, Verdú [8] has offered a
more subtle analysis of the tradeoff of bit energy versus spec-
tral efficiency. In this work, the wideband slope, which is the
slope of the spectral efficiency curve at zero spectral efficiency,
has emerged as a new analysis tool to measure energy and
bandwidth efficiency in the low-power regime. It is shown that
if the receiver has perfect knowledge of the fading coefficients,
quaternary phase-shift keying (QPSK) is an optimally efficient
modulation scheme achieving both the minimum bit energy
of −1.59 dB and the optimal wideband slope in the lowSNR

regime. This indicates that besides orthogonal signaling,phase
modulation is also well-suited for energy efficient operation.
However, it should be noted that asymptotic efficiency of
QPSK holds under the assumption that the receiver performs
soft detection. Verdú [8] has also provided expressions for
the minimum bit energy and wideband slope of the quantized
QPSK. We note that phase modulation is a widely used
technique for information transmission, and the performance
of coded phase modulation has been of interest in the research
community since the 1960s. One of the early works was
conducted in [10] where the capacity and error exponents of a
continuous-phase modulated system, in which the transmitted
phase can assume any value in[−π, π), is studied. More recent
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studies include [4], [9], and [11]–[14].
As discussed above, high energy efficiency requires opera-

tion in the wideband regime in which the spectral efficiencies
are low. This is is achieved by either decreasing the data
rates or increasing the bandwidth. If the system has large
bandwidth, then the data rates are high. For instance, if the
total signal power isP = 1 mW and the bandwidth is
B = 1 GHz, then the capacity of the AWGN channel is
C = B log2

(

1 + P
N0B

)

≈ 27.9 Gbits/s1. If the bandwidth is
increased toB = 10 GHz, the capacity becomes 245.7 Gbits/s.
Similarly, high rates are also achieved in fading channels
when the available bandwidth is large. For instance, in current
practical applications, wideband CDMA and ultrawideband
systems offer high data rate services by using large bandwidths
[27]. Additionally, operating at high bandwidths and providing
high data rates while conserving the energy in mobile applica-
tions are the key features of next generation wireless systems
which have the goal of offering mobile multimedia access. For
instance, one of the features of fourth generation (4G) systems
will be the ability to support multimedia services at low
transmission cost [27, Chap. 23, available online]. On the other
hand, at these very high transmission rates, obtaining highbit
resolutions from A/D converters may either be not possible or
prohibitively expensive. Therefore, in such cases, the perfor-
mance of soft detection will be a loose upper bound on the
actual system performance, and analysis under the assumption
of hard-decision detection will provide more faithful results.
Moreover, even if the data rates are not high, hard-decision
detection of the received signals might be preferred when
reduction in the computational burden is required [23]. Such a
requirement, for instance, may be enforced in sensor networks
that consist of low-cost, low-power, small-sized sensor nodes
[15]. Therefore, it is timely and practically relevant to study
the energy efficiency of phase and frequency modulations in
the wideband regime when the receiver performs hard-decision
detection.

The contributions of this paper are the following:
1) We obtain closed-form expressions for the first and

second derivatives at zeroSNR of the hard-decision-
detected PSK capacity for arbitrary modulation sizeM .

2) We find the bit energy required at zero spectral efficiency
and wideband slope when PSK is employed at the
transmitter. The analysis is initially performed for non-
coherent fading channels, and subsequently specialized
to the AWGN and coherent fading channels. We quantify
the increase in the bit energy requirements due to hard-
decision detection and channel fading.

3) We study the energy efficiency of hard-decision-detected
on-off frequency-shift keying (OOFSK) modulation
which is a general orthogonal signaling scheme that
combines orthogonal FSK and on-off keying (OOK)
and introduces peakedness in both time and frequency.
We show that the bit energy requirements grow without
bound with decreasingSNR if the peakedness in both
time and frequency is limited. We identify the impact
upon the energy efficiency of the number of orthogonal

1We have assumed thatN0 = 4× 10−21 W/Hz [24].

frequencies,M , and the duty cycle of OOK. We prove
a sufficient condition on how fast the duty cycle has
to vanish with decreasingSNR in order to approach the
fundamental bit energy limit of−1.59dB.

The organization of the rest of the paper is as follows.
In Section II, we describe the channel model. The energy
efficiency of phase modulation is investigated in Section III.
M -ary OOFSK modulation and its special caseM -ary FSK
modulation are considered in Section IV. Section V includes
our conclusions.

II. CHANNEL MODEL

We consider the following channel model

rk = hksxk
+ nk k = 1, 2, 3 . . . (1)

wherexk is the discrete input,sxk
is the transmitted signal

when the input isxk, and rk is the received signal during
the thekth symbol duration.hk is the channel gain.hk is a
fixed constant in unfaded AWGN channels, while in flat fading
channels,hk denotes the fading coefficient.{nk} is a sequence
of independent and identically distributed (i.i.d.) zero-mean
circularly symmetric Gaussian random vectors with covariance
matrix E{nn†} = N0I whereI denotes the identity matrix.
We assume that the system has an average energy constraint
of E{‖sxk

‖2} ≤ E ∀k.
At the transmitter, ifM -ary PSK modulation is employed

for transmission, the discrete input,xk, takes values from
{1, . . . ,M}. If xk = m, then the transmitted signal in the
kth symbol duration is

sxk
= sm =

√
Eejθm (2)

where θm = 2π(m−1)
M for m = 1, . . . ,M, is one of the

M phases available in the constellation. In the case of PSK
modulation, sincesxk

is a one-dimensional complex point,
we opted to not use the boldface representation. Accordingly,
the outputrk and the noisenk are one complex-dimensional
points. The receiver is assumed to perform hard-decision
detection. Therefore, each received signalrk is mapped to one
of the points in the constellation set{

√
Eej2π(m−1)/M ,m =

1, . . . ,M} before going through the decoder. We assume that
maximum likelihood decision rule is used at the detector.

In [21], we have introduced the on-off frequency-shift key-
ing (OOFSK) modulation by overlaying frequency-shift keying
(FSK) on on-off keying (OOK). InM -ary OOFSK modulation,
the transmitter either sends no signal with probability1−ν or
sends one ofM orthogonal FSK signals each with probability
ν/M . Hence,ν ∈ (0, 1] can be seen as the duty cycle of the
transmission. In this case, the discrete input takes valuesfrom
xk ∈ {0, 1, 2, . . . ,M}. If xk = 0, then there is no transmission
and the geometric representation of the transmitted signalis
theM -complex dimensional vectors0 = (0, 0, . . . , 0). On the
other hand, ifxk = m 6= 0, an FSK signal is sent and the
geometric representation is given by

sxk
= sm = (sm,1, sm,2, . . . , sm,M ) m = 1, 2, . . . ,M, (3)

where sm,m =
√

E/ν ejθm and sm,i = 0 for i 6= m. The
phasesθm can be arbitrary. Note that inM -ary OOFSK

2



modulation, we haveM + 1 possible input signals including
the no signal transmission. Therefore, no signal transmission
being a part of the modulation also conveys a message to
the receiver. While FSK signals have energyE/ν, the average
energy of OOFSK modulation isE . Hence, the peak-to-average
power ratio of signaling is1/ν. In the OOFSK transmission
and reception model, the received signalrk and noisenk are
alsoM -dimensional. It is assumed that the receiver performs
energy detection on the received vectorrk. Finally, note
that OOFSK is a general orthogonal signaling format and
specializes to regular orthogonal FSK ifν = 1, and to OOK
if M = 1 andν 6= 1.

We remark that in both PSK and OOFSK cases, the channel,
after hard-decision detection, can be regarded as a discrete
channel with finitely many inputs and outputs. Henceforth,
capacity and achievable rate expressions throughout the paper
will be obtained considering these discrete channels.

III. E NERGY EFFICIENCY OFPHASE MODULATION

A. Noncoherent Rician Fading Channels

In this section, we study the performance of phase modu-
lated signals when they are hard-decision detected. We initially
consider transmission of PSK signals over noncoherent Rician
channels in which neither receiver nor transmitter knows the
fading coefficients. Results for this channel are subsequently
specialized to obtain the performance results of PSK in un-
faded AWGN channels and coherent fading channels. Hence,
we first assume that the fading coefficients{hk}, whose
realizations are unknown at the transmitter and receiver due
to the noncoherence assumption, are i.i.d. proper complex
Gaussian random variables with meanE{hk} = d 6= 0 and
varianceE{|hk − d|2} = γ2. We further assume that the
channel statistics, and henced andγ2, are known both at the
transmitter and receiver. Note thatd 6= 0 is required because
phase cannot be used to transmit information in a noncoherent
Rayleigh fading channel whered = 0.

In the noncoherent Rician channel model, the conditional
probability density function (pdf) of the channel output given
the input is a conditionally complex Gaussian pdf and is given
by2

fr|sm(r|sm) =
1

π(γ2|sm|2 +N0)
e
− |r−dsm|2

γ2|sm|2+N0 . (4)

Recall that{sm =
√
Eejθm} are the PSK signals and hence

|sm| =
√
E for all m = 1, . . . ,M . Due to this constant

magnitude property, it can be easily shown that the maximum
likelihood detector selectssk as the transmitted signal if3

Re(rs∗k) > Re(rs∗i ) ∀i 6= k (5)

wheres∗k is the complex conjugate ofsk, and Re() denotes the
operation that selects the real part. We denote the signal atthe
output of the detector byy and assume thaty ∈ {1, . . . ,M}.
Note thaty = l for l = 1, . . . ,M means that the detected

2Since the channel is memoryless, we henceforth, without loss of generality,
drop the time indexk in the equations for the sake of simplification.

3The decision rule is obtained when we assume, without loss ofgenerality,
that d = |d|.

signal is
√
Eej2π(l−1)/M . Under the decision rule (5), the

decision region fory = l is the two-dimensional region

Dl =

{

r = |r|ejθ : (2l− 3)π

M
≤ θ <

(2l − 1)π

M

}

(6)

for l = 1, 2, . . . ,M . With hard-decision detection at the
receiver, the resulting channel is a symmetric, discrete, mem-
oryless channel with inputx ∈ {1, . . . ,M} and outputy ∈
{1, . . . ,M}. The transition probabilities are given by

Pl,m = P (y = l|x = m) (7)

= P

(

(2l − 3)π

M
≤ θ <

(2l − 1)π

M
|x = m

)

(8)

=

∫
(2l−1)π

M

(2l−3)π
M

fθ|sm(θ|sm) dθ (9)

wherefθ|sm(θ|sm) is the conditional probability density func-
tion of the phase of the received signal given that the input
is x = m, and hence the transmitted signal issm. It is well-
known that the capacity of this symmetric channel is achieved
by equiprobable inputs and the resulting capacity expression
[25] is4

CM,nc(SNR) = logM −H(y|x = 1) (10)

= logM +

M
∑

l=1

Pl,1 logPl,1 (11)

where SNR = E
N0

, H(·) is the entropy function, andPl,1 =
P (y = l|x = 1). In order to evaluate the capacity of general
M -ary PSK transmission with a hard-decision detector, the
transition probabilities

Pl,1 = P (y = l|x = 1) =

∫

(2l−1)π
M

(2l−3)π
M

fθ|s1(θ|s1) dθ (12)

should be computed. Starting from (4) and noting that the
conditional joint magnitude and phase distribution is given by

f|r|,θ|s1(|r|, θ|s1) =
|r|

π(γ2|s1|2 +N0)
e
− |r|2+|d|2|s1|2−2|r||d||s1| cos θ

γ2|s1|2+N0

(13)

where, without loss of generality, we have assumed thatd =
|d|, we can easily find that forθ ∈ [0, 2π), fθ|s1(θ|s1) is given
by (14) on the next page whereQ(x) =

∫∞
x

1√
2π
e−t

2/2 dt is
the GaussianQ-function5. Sincefθ|s1 is rather complicated,
closed-form capacity expressions in terms ofQ-functions are
available only for the special cases ofM = 2 and 4:

C2,nc(SNR) = log 2− h

(

Q

(

√

2|d|2SNR

γ2SNR+ 1

))

, and (15)

C4,nc(SNR) = 2C2,nc

(SNR

2

)

(16)

whereh(x) = −x logx − (1 − x) log(1 − x) is the binary

4Throughout the paper,log is used to denote the logarithm to the basee,
i.e., the natural logarithm. Additionally, the subscript ”nc” in CM,nc signifies
the noncoherent channel.

5See also [9] and references therein for a similar formula of the phase
probability density function derived for the AWGN channel.
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fθ|s1(θ|s1) =
1

2π
e
− |d|2SNR

γ2SNR+1 +

√

|d|2SNR

π(γ2SNR+ 1)
cos θ e

− |d|2SNR
γ2SNR+1

sin2 θ

(

1−Q

(

√

2
|d|2SNR

γ2SNR+ 1
cos2 θ

))

(14)

entropy function. For the other cases, the channel capacitycan
only be found through numerical integration and computation.

On the other hand, the behavior of the capacity in the low-
SNR regime can be accurately predicted through the second-
order Taylor series expansion of the capacity6:

CM,nc(SNR) = ĊM,nc(0)SNR+ C̈M,nc(0)
SNR2

2
+ o(SNR2)

where ĊM,nc(0) and C̈M,nc(0) denote the first and sec-
ond derivatives, respectively, of the channel capacity (in
nats/symbol) with respect toSNR at SNR= 0. In the following
result, we provide closed-form expressions for these deriva-
tives. Note that the wideband regime in whichSNR per unit
bandwidth is small can equivalently be regarded as the low-
SNR regime.

Theorem 1: The first and second derivatives ofCM,nc(SNR)
in nats per symbol atSNR= 0 are given by

ĊM,nc(0) =

{

2|d|2
π M = 2

M2|d|2
4π sin2 π

M M ≥ 3
, and

C̈M,nc(0) =



















8
3π

(

1
π − 1

)

|d|4 − 4|d|2γ2

π M = 2
∞ M = 3
4
3π

(

1
π − 1

)

|d|4 − 4|d|2γ2

π M = 4

ψ(M)|d|4 − |d|2γ2

2π M2 sin2 π
M M ≥ 5

(17)

respectively, where

ψ(M) =
M2

16π2

(

(2 − π) sin2
2π

M
+ (M2 − 4π) sin4

π

M

− 2M sin2
π

M
sin

2π

M

)

. (18)

Proof : See Appendix A.
The derivative expressions in (17) are in closed-form and

can be computed easily. Therefore, the low-SNRapproximation
of the capacity ofM -ary PSK can be readily obtained from

CM,nc(SNR) ≈ ĊM,nc(0)SNR+ C̈M,nc(0)
SNR2

2
.

The following corollary provides the asymptotic behavior as
M → ∞. In this asymptotic regime, the transmitted signal is
the continuous phase which can take any value in[−π, π).

Corollary 1: In the limit asM → ∞, the first and second
derivatives of the capacity at zeroSNR converge to

lim
M→∞

ĊM,nc(0) =
π|d|2
4

and (19)

lim
M→∞

C̈M,nc(0) =
(π2 − 8π + 8)|d|4

16
− |d|2γ2π

2
. (20)

In the low-power regime, the tradeoff between bit energy
and spectral efficiency is a key measure of performance [8].
The normalized energy per bit can be obtained fromEb

N0
=

6It can be easily seen from the smoothness and boundedness offθ|s1 in
(14) thatCM,nc(SNR) is continuous and differentiable in SNR.

SNRlog 2
C(SNR) whereC(SNR) is the channel capacity in nats/symbol.

The maximum achievable spectral efficiency in bits/s/Hz is
given by C

(

Eb

N0

)

= C(SNR) log2 e bits/s/Hz if we, without
loss of generality, assume that one symbol occupies a 1s×
1Hz time-frequency slot. Two important notions regarding the
spectral-efficiency/bit-energy tradeoff in the low power regime
are the bit-energy required at zero spectral efficiency and
wideband slope, given by

Eb
N0

∣

∣

∣

∣

C=0

=
log 2

Ċ(0)
, andS0 =

2(Ċ(0))2

−C̈(0)
, (21)

respectively. The wideband slope,S0, provides the slope
of the spectral efficiency curveC(Eb/N0) at zero spectral

efficiency [8]. Therefore,Eb

N0

∣

∣

∣

C=0
and S0 constitute a linear

approximation of the spectral efficiency curve in the low-SNR

regime, i.e.,

C

(

Eb
N0

)

=
S0

10 log10 2

(

Eb
N0

∣

∣

∣

∣

dB

− Eb
N0

∣

∣

∣

∣

C=0,dB

)

+ ǫ (22)

where Eb

N0

∣

∣

∣

dB
= 10 log10

Eb

N0
and ǫ = o

(

Eb

N0
− Eb

N0

∣

∣

∣

C=0

)

,
and characterize the spectral-efficiency/bit-energy tradeoff at
low spectral efficiencies. Hence, these quantities enable us
to analyze the energy efficiency and investigate the interac-
tions between spectral and energy efficiencies in the low-SNR

regime. Depending only oṅC(0) and C̈(0), the bit energy at
zero spectral efficiency and wideband slope achieved byM -
ary PSK signals can be readily obtained by using the formulas
in (17). Note that in the noncoherent Rician fading channel,
the received bit energy is

Erb,nc
N0

=
(|d|2 + γ2)SNRlog 2

CM,nc(SNR)
.

Corollary 2: The received bit energy at zero spectral effi-
ciency and wideband slope achieved byM -ary PSK signaling
in the noncoherent Rician fading channel are given by

Erb,nc
N0

∣

∣

∣

∣

C=0

=

{ π
2

(

1 + 1
K

)

log 2 M = 2
4π

M2 sin2 π
M

(

1 + 1
K

)

log 2 M ≥ 3

and

S0,nc =























3
π−1+ 3π

2K

M = 2

0 M = 3
6

π−1+ 3π
K

M = 4
M4

8π2 sin4 π
M

−ψ(M)+ 1
2πK

M2 sin2 π
M

M ≥ 5

,

(23)

respectively, whereψ(M) is given in (18), andK = |d|2
γ2 is

the Rician factor.

As it will be evident in numerical results, generally the
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Fig. 1. Spectral efficiencyC(Eb/N0) vs. bit energyEb/N0 for hard-decision
detectedM -ary PSK withM = 2, 3, 4, 8, 10, 16, 32, 1024 and soft-detected
QPSK in the noncoherent Rician fading channel with Rician factor K =
|d|2

γ2 = 1.

Er
b,nc

N0

∣

∣

∣

C=0
is the minimum bit energy required for reliable

transmission whenM 6= 3. On the other hand, the minimum
bit energy is achieved at a nonzero spectral efficiency when
M = 3. Note that this behavior is not exhibited when 3-
PSK signals are soft-detected [9]. Hence, this result is tightly
linked to correct-detection and error probabilities whichare in
general functions of the distances in the signal constellation.
Note further that at sufficiently lowSNRs, 3-PSK performs
worse than 2-PSK (i.e., BPSK), indicating that the decrease
in the signal distance from2

√
E in 2-PSK to

√
3E in 3-PSK

has a more dominating effect in the low-SNR regime than the
increase in the constellation sizeM from 2 to 3.

Figure 1 plots the spectral efficiency curves as a function of
the bit energy for hard-decision detected PSK with different
constellation sizes in the noncoherent Rician fading channel
with Rician factorK = 1. As observed in this figure, the
information-theoretic analysis conducted in this paper provides
several practical design guidelines. We note that although
hard-decision detected 2-PSK and 4-PSK achieve the same
minimum bit energy of 3.38 dB at zero spectral efficiency,
4-PSK is more efficient at low but nonzero spectral efficiency
values due to its wideband slope being twice that of 2-PSK.
In the range of spectral efficiency values considered in the
figure, 3-PSK performs worse than both 2-PSK and 4-PSK.
3-PSK achieves its minimum bit energy of 4.039 dB at 0.0101
bits/s/Hz. Operation below this level of spectral efficiency
should be avoided as it only increases the energy requirements.
We further observe that increasing the constellation size to
8 provides much improvement over 4-PSK. 8-PSK achieves
a minimum bit energy of2.692 dB. Note from (23) that
Er

b,nc

N0

∣

∣

∣

C=0
is inversely proportional toM2 sin2 π

M for M ≥ 3.
Here, we see two competing factors. AsM increases, the term
M2 increases and tends to decrease the bit energy requirement
while the termsin2 π

M decreases due to a decrease in the

minimum distance, which is proportional tosin π
M in M -PSK

constellation. Hence, when we increaseM from 4 to 8,M2

is the dominant term and we note significant gains. AsM is
further increased,sin2 π

M acts more strongly to offset the gains
from M2 and we see diminishing returns. For instance, there
is little to be gained by increasing the constellation size more
than 32 as 32-PSK achieves a minimum bit energy of2.482
dB and the minimum bit energy asM → ∞ is 2.468 dB. We
find that the wideband slopes of hard-decision detected PSK
with M = 8,10,16,32, and 1024 are 0.571, 0.584, 0.599, 0.607,
and 0.609, respectively. The similarity of the wideband slope
values is also apparent in the figure. Note that the wideband
slope of 3-PSK, as predicted, is 0.

For comparison, the spectral efficiency of soft-detected
QPSK is also provided in Fig. 1. It has been shown in [13]
that under the peak constraint|xi|2 ≤ E , the bit energy
required at zero spectral efficiency and wideband slope in the
noncoherent Rician fading channel with Rician factorK are
Eb

N0

∣

∣

∣

C=0
=
(

1 + 1
K

)

log 2 and S0 = 2K2

(1+K)2 , respectively. It
is also proven that soft-detected QPSK is optimally efficient
achieving these values. Note that whenK = 1, the bit energy
at zero spectral efficiency is 1.418 dB which is also observed
in Fig. 1. Note that even asM → ∞, hard-decision detection
presents a loss of 2.468 - 1.418 = 1.05 dB in the minimum
bit energy.

B. AWGN Channels

Note that the noncoherent Rician fading channel, in which
we haveE{hk} = d andE{|hk−d|2} = γ2, specializes to the
AWGN channel if we assumeγ2 = 0. With this assumption,
the fading coefficients become deterministic, i.e.,hk = d, and
the channel model is nowrk = dsxk

+ nk where the channel
gain isd. Note also that when we haveγ2 = 0, (4) becomes
the conditional density function of the output given the input
in the AWGN channel. Moreover, the maximum likelihood
decision rule and decision regions for the AWGN channel are
the same as in (5) and (6), respectively. Assuming further that
d = 1 leads to the standard unfaded Gaussian channel with
unit channel gain, i.e., the input-output relation becomesrk =
sxk

+ nk. Based on the above observations, we immediately
have the following Corollary.

Corollary 3: For the AWGN channel with channel gain
d, the first and second derivatives of the PSK capacity at
SNR= 0 are given by the expressions in (17) if we letγ2 = 0.
Furthermore, the bit energy,E

r
b

N0

∣

∣

∣

C=0
= |d|2SNRlog 2

CM (SNR)

∣

∣

∣

C=0
, and

wideband slope expressions are obtained if we letγ2 = 0 and
henceK → ∞ in the formulas in (23).

Remark: We should note that the first derivative of the
capacity of PSK in the AWGN channel has previously been
given in [7] through the bit energy expressions. In addition,
Verdú in [8] has provided the second derivative expressionfor
the special case ofM = 4.

Fig. 2 plots the spectral efficiency curves as a function
of the bit energy for hard-decision detectedM -ary PSK for
various values ofM and soft-detected QPSK in the AWGN
channel. Conclusions similar to those given for Fig. 1 also
apply for Fig. 2. The main difference between the figures is
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Fig. 2. Spectral efficiencyC(Eb/N0) vs. bit energyEb/N0 for hard-decision
detectedM -ary PSK withM = 2, 3, 4, 8, 10, 16, 32, 1024 and soft detected
QPSK in the AWGN channel.

that substantially lower bit energies are needed in the AWGN
channel. For instance, 2- and 4-PSK now achieve a minimum
bit energy of 0.369 dB while 8-PSK attains−0.318 dB. As
M → ∞, the minimum bit energy goes to−0.542 dB. We
note that higher energy requirements in the noncoherent Rician
channel is due to fading and not knowing the channel.

C. Coherent Fading Channels

In coherent fading channels, the fading coefficients{hk}
are assumed to be perfectly known at the receiver. We assume
that no such knowledge is available at the transmitter. The
only requirements on the fading coefficients are that their
variations are ergodic and they have finite second moments.
Hence, independence of the random variables{hk} is no
longer imposed. Due to the presence of receiver channel side
information (CSI), maximum likelihood detection is the scaled
nearest point detection. In this case, the average capacityis

CM,c(SNR) = logM +

M
∑

l=1

Eh{Pl,1,h logPl,1,h} (24)

where

Pl,1,h = P (y = l|x = 1, h) =

∫

(2l−1)π
M

(2l−3)π
M

fθ|s1,h(θ|s1, h) dθ

andfθ|s1,h(θ|s1, h) is given in (25) on the next page with the
definition SNR = E/N0. Note that if we assumeγ2 = 0 and
replaced by the random channel gainhk in the noncoherent
Rician fading channel, we obtain the model for coherent fading
channels. Hence, similarly as in Section III-B, results for
coherent channels can be obtained easily by specializing those
for the noncoherent Rician channel. Since we are interested
in the average capacity (24), expressions will involve the
expected values of the random gainh. Hence, we have the
following Corollary to Theorem 1.

Corollary 4: The first and second derivatives ofCM,c(SNR)
in nats per symbol atSNR = 0 are obtained by assuming in
(17) γ2 = 0, replacingd by h, and taking the expectation of
the terms that involveh. The resulting expressions are

ĊM,c(0) =

{ 2
πE{|h|2} M = 2
M2

4π sin2 π
ME{|h|2} M ≥ 3

,

and

C̈M,c(0) =















8
3π

(

1
π − 1

)

E{|h|4} M = 2
∞ M = 3
4
3π

(

1
π − 1

)

E{|h|4} M = 4
ψ(M)E{|h|4} M ≥ 5

(26)

respectively, whereψ(M) is given in (18).
Note that the first and second derivatives of the capacity

at zero SNR are essentially equal to the scaled versions of
those obtained in the AWGN channel withd = 1. The scale
factors areE{|h|2} and E{|h|4} for the first and second
derivatives, respectively. In the coherent fading case, wecan
define the received bit energy as

Er
b,c

N0
= E{|h|2}SNRlog 2

CM (SNR) since
E{|h|2}SNR is the average received signal-to-noise ratio. It
immediately follows from Corollary 4 thatErb /N0|C=0 in the
coherent fading channel is the same as that in the AWGN
channel. On the other hand, the wideband slope is scaled by
(E{|h|2})2/E{|h|4}. Fig. 3 plots the spectral efficiency curves
as a function of bit energy for hard-decision detectedM -ary
PSK and soft detected QPSK in the coherent Rayleigh fading
channel. Comparison of Fig. 2 and Fig. 3 reveals that the bit
energy levels required at zero spectral efficiency are indeed the
same for both cases. However, the presence of fading induces
a performance penalty by reducing the wideband slope with
a factor ofE{|h|2}2/E{|h|4} = 1/2. Therefore, at low but
nonzero spectral efficiencies, the same bit energy as in the
AWGN channel can be achieved at the cost of reduced spectral
efficiency.

IV. ENERGY EFFICIENCY OFORTHOGONAL SIGNALING

As discussed in Section I, orthogonal signaling is optimally
energy efficient in the infinite bandwidth regime even if the
receiver performs hard-decision detection. For instance,PPM
with vanishing duty cycle orM -ary FSK asM → ∞ achieves
the minimum bit energy of−1.59 dB. In this section, we
analyze the non-asymptotic energy efficiency of orthogonal
signaling. We consider on-off FSK (OOFSK) modulation
in which FSK is combined with on-off keying (or equiva-
lently PPM) and peakedness is introduced in both time and
frequency. The study of OOFSK modulation enables us to
provide a general unified analysis of orthogonal signaling as
OOFSK can be reduced to OOK and FSK with the appropriate
choice of parameters.

A. OOFSK Modulation

1) AWGN Channels: In this section, we consider the trans-
mission of OOFSK signals. We again assume that the received
signal is hard-decision detected at the receiver. In [20] and
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fθ|s1,h(θ|s1, h) =
1

2π
e−|h|2SNR+

√

|h|2SNR

π
cos θ e−|h|2SNRsin2 θ

(

1−Q(
√

2|h|2SNRcos2 θ)
)

(25)
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Fig. 3. Spectral efficiencyC(Eb/N0) vs. bit energyEb/N0 for hard-decision
detectedM -ary PSK withM = 2, 3, 4, 8, 10, 16, 32, 1024 and soft detected
QPSK in the coherent Rayleigh fading channel.

[22], maximum a posteriori probability (MAP) detection rule
for OOFSK modulation is identified and the error probability
expressions are obtained. We initially consider the AWGN
channel as the results for this channel will immediately imply
similar conclusions for fading channels. The optimal detection
rule in the AWGN channel is given by the following:si for
i 6= 0 is detected if

|ri|2 > |rj |2 ∀j 6= i and |ri|2 > τ (27)

where τ =

{

[I−1
0 (ξ)]2

4α2 ξ ≥ 1
0 ξ < 1

, ξ = M(1−ν) eα2

ν , and

α2 = SNR
ν . Above, ri is the ith component of the received

vector r. s0 is detected if |ri|2 < τ ∀i. Note that since
s0 = (0, . . . , 0), detection ofs0 is essentially the detection
of no transmission. Note further that the detection rule in
(27) together with the rule fors0 can be regarded as energy
detection. After detection, the channel can now be seen as
a discrete channel withM + 1 inputs andM + 1 outputs.
From the error probability analysis in [20] and [22], we have
the expressions in (28) through (31) on the next page for
the transition probabilities in the AWGN channel. In these
expressions,Q1(·, ·) is the MarcumQ-function [16], andI−1

0

is the functional inverse of the zeroth order modified Bessel
function of the first kind. The rates achieved by theM -
ary OOFSK modulation with duty cycleν and equiprobable
FSK signals is given by (33) on the next page. IfM -ary
OOFSK signals have a symbol duration ofT , the bandwidth
requirement isMT and the spectral efficiency is given by
IM (SNR,ν)

T
M
T

= IM (SNR,ν)
M bits/s/Hz.

It is shown in [21] that in the AWGN channel, the first

derivative of the capacity of soft-detected OOFSK is zero at
SNR= 0. For the sake of completeness, we provide this result
below.

Theorem 2: The first derivative of the capacity at zeroSNR

achieved by soft-detectedM -ary OOFSK signaling with a
fixed duty factorν ∈ (0, 1] over the AWGN channel is zero,
and hence the bit energy required at zero spectral efficiency
is infinite.

Proof : See [21].
Since hard-decision detection does not increase the capacity,

we immediately have the following Corollary to Theorem 2.
Corollary 5: The first derivative at zeroSNR of the achiev-

able rates of hard-decision-detectedM -ary OOFSK transmis-
sion with a fixed duty factorν ∈ (0, 1] over the AWGN
channel is zero i.e.,̇IM (0, ν) = 0, and hence the bit energy
required at zero spectral efficiency is infinite, i.e.,

Eb
N0

∣

∣

∣

∣

I=0

=
log 2

İM (0, ν)
= ∞. (34)

On the other hand, we know from [1] and [8] that if the
duty cycleν vanishes simultaneously withSNR, the minimum
bit energy of−1.59 dB can be achieved. The following result
identifies the rate at whichν should decrease asSNR gets
smaller.

Theorem 3: Assume thatν = SNR
(1+ǫ) log 1

SNR
for SNR < 1

and for someǫ > 0. Then, we have

lim
ǫ→0

lim
SNR→0

IM (SNR, ν)

SNR
= 1 (35)

and hence

lim
ǫ→0

lim
SNR→0

SNRlog 2

IM (SNR, ν)
= log 2 = −1.59 dB. (36)

Proof: Note that asSNR → 0, ν → 0 and α2 = SNR
ν =

(1 + ǫ) log 1
SNR → ∞. It can also be seen thatξ → ∞ and

τ → ∞ as SNR diminishes. From (28), we immediately note
thatP0.0 → 1 andPl,0 → 0 for l = 2, . . . ,M . In (29), all the
terms in the summation other than forn = 0 vanishes because
α2 → ∞. Therefore, in order forPl,l for l = 1, . . . ,M to
approach 1, we needQ1(

√
2α,

√
2τ) → 1. Also note that if

Q1(
√
2α,

√
2τ) → 1, then we can observe from (30) and

(31) that P0,l → 0 and Pl,m → 0. Hence, eventually all
crossover error probabilities will vanish and correct detection
probabilities will be 1.

In [16], it is shown that Q1(a, aζ) ≥ 1 −
ζ

1−ζ e
−a2(1−ζ)2

2 0 ≤ ζ < 1. From this lower bound we

can immediately see thatlimSNR→0Q1(
√
2α,

√
2τ) = 1 if

limSNR→0
τ
α2 < 1. Note that bothα2 and τ grow without

bound asSNR → 0. Recall thatτ =
[I−1

0 (ξ)]2

4α2 . Equivalently,

we haveI0(
√
4α2τ ) = ξ = M(1−ν) eα2

ν . Using the asymptotic
form I0(x) = 1√

2πx
ex + O

(

1
x3/2

)

[26] for largex, we can

easily show thatlimSNR→0
τ
α2 =

(

1+ǫ/2
1+ǫ

)2

< 1 ∀ǫ > 0 if

7



P0,0 = (1 − e−τ )M , and Pl,0 =
1

M
(1 − (1− e−τ )M ) for l = 1, 2, . . . ,M, (28)

Pl,l =

M−1
∑

n=0

(−1)n

n+ 1

(

M − 1
n

)

e−
n

n+1α
2

Q1

(

√

2

n+ 1
α,
√

2(n+ 1)τ

)

for l = 1, 2, . . . ,M, (29)

P0,l = (1 − e−τ )M−1
(

1−Q1

(√
2α,

√
2τ
))

for l = 1, 2, . . . ,M, (30)

Pl,m =
1

M − 1
(1− Pm,m − P0,m) for all l 6= 0,m 6= 0, and l 6= m (31)

IM (SNR, ν) = H(y)−H(y|x) (32)

= − ((1− ν)P0,0 + νP0,1) log ((1− ν)P0,0 + νP0,1)

−M

(

(1− ν)P1,0 +
ν

M
P1,1 +

(M − 1)ν

M
P1,2

)

log

(

(1− ν)P1,0 +
ν

M
P1,1 +

(M − 1)ν

M
P1,2

)

+ (1 − ν) (P0,0 logP0,0 +MP1,0 logP1,0) + ν (P0,1 logP0,1 + P1,1 logP1,1 + (M − 1)P2,1 logP2,1) . (33)

ν = SNR
(1+ǫ) log 1

SNR
. Therefore, if ν decays at this rate, the

error probabilities go to zero. It can then be shown that
limSNR→0

IM (SNR,ν)
SNR = 1

1+ǫ . Since results hold for anyǫ > 0,
letting ǫ→ 0 gives the desired result. �

We note that Zhenget al. have shown in [19] that the low
SNR capacity of unknown Rayleigh fading channel can be

approached by on-off keying if
log 1

SNR
log log 1

SNR
≤ α2 ≤ log 1

SNR.

We see a similar behavior here when FSK signals are sent
over the AWGN channel and energy detected.

2) Fading Channels: In coherent fading channels where the
receiver has perfect knowledge of the fading coefficients, the
transition probabilities are the same as those in (28)-(31)with
the only difference that we now haveα2 = SNR

ν |h|2. As a
result, the achievable ratesIM (SNR, ν, |h|2) are also depen-
dent on the fading coefficients and average achievable rates
are obtained by finding the expected valueIM,c(SNR, ν) =
E|h|2{IM (SNR, ν, |h|2)}.

In noncoherent Rician fading channels withE{h} = d
andE{|h− d|2} = γ2, the transition probabilities [20], [22]
are given by (37) through (39) on the next page. In these
expressions,

τ =

{

Φ−1(ξ) ξ ≥ 1
0 ξ < 1

where

Φ(x) = e
α2γ2x

1+α2γ2 I0

(

2
√

xα2|d|2
1 + α2γ2

)

, and (40)

ξ =
M(1− ν)

ν
(1 + α2γ2) e

α2|d|2

1+α2γ2 . (41)

The achievable rates,IM,nc(SNR, ν), can be obtained from
(33).

Since the presence of fading unknown at the transmitter does
not improve the performance, we readily conclude that the
bit energy requirements in fading channels still grow without
bound with vanishingSNR.

Corollary 6: The first derivatives at zeroSNR of the achiev-
able ratesIM,c(SNR, ν) and IM,nc(SNR, ν) are equal to zero,

i.e., İM,c(0, ν) = İM,nc(0, ν) = 0. Therefore, the bit en-
ergy required at zero spectral efficiency is infinite in both
coherent and noncoherent fading channels, i.e.,Eb,c

N0

∣

∣

∣

I=0
=

Eb,nc

N0

∣

∣

∣

I=0
= ∞.

On the other hand, in noncoherent fading channels, if|d| ≥
1, then following the same steps as in the proof of Theorem
3, we can show that the minimum bit energy of−1.59 dB is
achieved asSNR→ 0 if ν = SNR

(1+ǫ) log 1

SNR
.

B. FSK Modulation

Recall that if we setν = 1 in OOFSK modulation,
we recover the regular FSK modulation. Similarly, choosing
ν = 1 in the decision rules and transition probabilities
leads to the corresponding expressions for FSK. For instance,
when ν = 1, τ = 0 in the decision rule (27) of OOFSK
modulation. Therefore,si is declared as the detected signal
if the ith component of the received vectorr has the largest
energy, i.e.,|ri|2 > |rj |2 ∀j 6= i. This is the well-known
noncoherent detection of FSK signals. Furthermore, Theorem
2 and Corollaries 5 and 6 are valid for allν ∈ (0, 1] and
hence forν = 1 as well. Therefore, the same conclusions
are automatically drawn for FSK modulation. Hence, although
FSK is energy efficient asymptotically asM → ∞, operating
at very low SNR levels with fixedM is extremely energy
inefficient as the bit energy requirement increases without
bound with decreasingSNR. As a result, the minimum bit
energy is achieved at a nonzero spectral efficiency, the value
of which can be found through numerical analysis. We finally
note that when FSK modulation is considered, the achievable
rates are indeed the capacity of FSK modulation as it is well-
known that hard-decision detection capacity is achieved with
equiprobable signals.

C. Numerical Results

In this section, we provide numerical results and initially
concentrate on FSK modulation due to its widespread and
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P0,0 = (1 − e−τ )M , and Pl,0 =
1

M
(1 − (1− e−τ )M ) for l = 1, 2, . . . ,M, (37)

Pl,l =

M−1
∑

n=0

(−1)n
(

M − 1
n

)

e
− nα2|d|2

n(1+γ2α2)+1

n(1 + γ2α2) + 1
Q1

(
√

2α2|d|2
(1 + γ2α2)(n(1 + γ2α2) + 1)

,

√

2(n(1 + γ2α2) + 1)τ

(1 + γ2α2)

)

for l 6= 0,

P0,l = (1− e−τ )M−1

(

1−Q1

(

√

2α2|d|2
1 + γ2α2

,

√

2τ

1 + γ2α2

))

for l = 1, 2, . . . ,M, (38)

Pl,m =
1

M − 1
(1− Pm,m − P0,m) for all l 6= 0,m 6= 0, and l 6= m (39)
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Fig. 4. Bit energyEb/N0 vs. Spectral efficiencyC(Eb/N0) for energy-
detectedM -ary FSK in the AWGN channel.

frequent use. Fig. 4 plots the bit energyEb/N0 curves as a
function of spectral efficiency forM -ary FSK in the AWGN
channel for different values ofM . In all cases, we observe
that the minimum bit energy is achieved at a nonzero spectral
efficiencyC∗, and the bit energy requirements increase to in-
finity as spectral efficiency decreases to zero. Hence, operation
below C

∗ should be avoided. Another observation is that the
minimum bit energy and the spectral efficiency value at which
the minimum is achieved decrease with increasingM . For
instance, whenM = 2, the minimum bit energy is 7.821 dB
and is achieved atC∗ = 0.251 bits/s/Hz. If the value ofM is
increased to 48, the minimum bit energy decreases to 2.617
dB and is now attained atC∗ = 0.074 bits/s/Hz. Another fact
is that asM increases, the minimum bit energy is achieved at
a higherSNR value. Indeed, we can show that

lim
ǫ→0
M→∞

CM (SNR)

SNR

∣

∣

∣

∣

SNR=(1+ǫ) logM

= lim
ǫ→0
M→∞

CM ((1 + ǫ) logM)

(1 + ǫ) logM

(42)

= lim
ǫ→0

1

1 + ǫ
lim
M→∞

P1,1 = 1.

(43)

Hence, if SNR grows logarithmically with increasingM , the
bit energyEb

N0
= SNRlog 2

CM (SNR) approacheslog 2 = −1.59 dB. The
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Fig. 5. Bit energyEb/N0 vs. Spectral efficiencyC(Eb/N0) for energy-
detectedM -ary FSK in the coherent Rician fading channel with Rician factor
K = 1.

proof of (43) is omitted because Turin [2] has already shown
that−1.59 dB is achieved if the signal duration increases as
logM , which in turn increases theSNR logarithmically inM .

Figures 5 and 6 plot the bit energy curves forM -ary FSK
transmission over coherent and noncoherent Rician fading
channels. As predicted, the bit energy levels for all valuesof
M increase without bound as the spectral efficiency decreases
to zero. Due to the presence of fading, the minimum bit
energies have increased with respect to those achieved in the
AWGN channel. For instance, whenM = 48, the minimum
bit energies are nowEb/N0min = 3.45 dB in the coherent
Rician fading channel andEb/N0min = 4.23 dB in the
noncoherent Rician fading channel. We again observe that
the minimum bit energy decreases with increasingM . Fig.
7 provides the minimum bit energy values as a function ofM
in the AWGN and noncoherent Rician fading channels with
different Rician factors. In all cases, the minimum bit energy
decreases with increasingM . However, Fig. 7 indicates that
approaching−1.59 dB is very slow and demanding inM . In
this figure, we also note the energy penalty due to the presence
of unknown fading. But, as the Rician factorK increases,
the noncoherent Rician channel approaches to the AWGN
channel and so do the minimum bit energy requirements.
Figures 8 and 9 plot the spectral efficiencies and average
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receivedSNR values at whichEb/N0min is achieved as a
function ofM . As we have also observed in Figs. 4 and 6, we
see in Fig. 8 that the spectral efficiency at whichEb/N0min

is achieved decreases with increasingM . From Fig. 8, we
further note that the required spectral efficiencies are lower and
hence the bandwidth requirements are higher in noncoherent
fading channels. In Fig. 9, we observe that theSNR levels at
whichEb/N0min is achieved increases with increasingM . As
predicted by (43),SNR increases logarithmically withM in the
AWGN channel. Similar rates of increase are also noted for
the noncoherent fading channel.

Figs. 10 and 11 plot the bit energies as a function of spectral
efficiency of 8-OOFSK with different duty cycle factors in
the AWGN and noncoherent Rayleigh fading channels. We
immediately observe that decreasing the duty cycleν lowers
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the minimum bit energy. Hence, increasing the signal peaked-
ness in the time domain improves the energy efficiency. In the
AWGN channel, while regular 8-FSK (8-OOFSK withν = 1)
hasEb/N0min = 4.08 dB, 8-OOFSK with ν = 0.01 has
Eb/N0min = 2.017 dB. However, this energy gain is obtained
at the cost of increased peak-to-average ratio. We also notethat
unknown fading again induces a energy penalty with respect to
that achieved in the AWGN channel as observed by comparing
Figs. 10 and 11.

V. CONCLUSION

In this paper, we have analyzed the impact of hard-decision
detection on the energy efficiency of phase modulation and
frequency modulation together with on-off keying. We have
obtained closed-form expressions for the first and second
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Fig. 10. Bit energy Eb/N0 vs. Spectral efficiencyC(Eb/N0) for
8-OOFSK in the AWGN channel. The duty cycle values areν =
1, 0.8, 0.5, 0.3, 0, 1, 0.01 and 0.001.
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Fig. 11. Bit energyEb/N0 vs. Spectral efficiencyC(Eb/N0) for 8-OOFSK
in the noncoherent Rayleigh fading channel. The duty cycle values areν =
1, 0.8, 0.5, 0.3, 0, 1, 0.01 and 0.001.

derivatives of theM -ary PSK capacity in AWGN, coherent
fading, and noncoherent Rician fading channels. Subsequently,
we have found closed-form expressions for the bit energy
required at zero spectral efficiency and wideband slope, and
quantified the loss in energy efficiency incurred by hard-
decision detection and channel fading. The inefficiency of
3-PSK at very lowSNRs is noted. We have also considered
energy detectedM -ary OOFSK transmission over the AWGN
and fading channels. We have shown that bit energy require-
ments grow without bound asSNR vanishes for any fixed duty
cycle value. Results are easily specialized to FSK modulation
as well. Through numerical results, we have investigated the
value of the minimum bit energy for different values ofM in
various channels. We have shown through numerical results
that the minimum bit energy decreases with decreasing duty

cycle and increasingM . We have proved that if the duty cycle
decreases as SNR

log 1

SNR
, the minimum bit energy of−1.59 dB

can be approached.

APPENDIX

A. Proof of Theorem 1

The main approach is to obtaiṅCM,nc(0) and C̈M,nc(0)
by first finding the derivatives of the transition probabilities
{Pl,1}. This can be accomplished by finding the first and
second derivatives offθ|s1 with respect toSNR. However,

the presence of
√

|d|2SNR
π(γ2SNR+1) in the second term of (14)

complicates this approach because it leads to the result that
dfθ|s1
dSNR

∣

∣

∣

SNR=0
= ∞. In order to circumvent this problem, we

define the new variablea =
√

SNRand consider the conditional
density expression in (44) on the next page. Now, the derivative
expressions in (45) and (46) on the next page evaluated at
a = 0 can easily be verified. Using the derivatives ofPl,1
and performing several algebraic operations, we arrive to the
following Taylor expansion ofCM,nc(a) at a = 0:

CM,nc(a) = φ1(M) a2 + φ2(M) a3 + φ3(M) a4 + o(a4) (47)

= φ1(M)SNR+ φ2(M)SNR3/2 + φ3(M)SNR2 + o(SNR2)
(48)

where (48) follows due to the fact thata =
√

SNR. In the above
expansion,φ1(M), φ2(M), and φ3(M) are given by (49)–
(51) on the next page. We immediately conclude from (48)
that ĊM,nc(0) = φ1(M). Note that the expansion includes
the termSNR3/2 which implies thatC̈M,nc(0) = ±∞ for all
M . However, it can be easily seen thatφ2(M) = 0 for all
M 6= 3, and atM = 3, φ2(3) = 0.1718|d|3. Therefore, while
C̈3,nc(0) = ∞, C̈M,nc(0) = 2φ3(M) for M 6= 3. Further
algebraic steps and simplification yield (17). �
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