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Abstract— Cognitive radio and dynamic spectrum access rep-
resent a new paradigm shift in more effective use of limited
radio spectrum. One core component behind dynamic spectrum
access is the sensing of primary user activity in the shared
spectrum. Conventional distributed sensing and centralized de-
cision framework involving multiple sensor nodes is proposed
to enhance the sensing performance. However, it is difficultto
apply the conventional schemes in reality since the overhead
in sensing measurement and sensing reporting as well as in
sensing report combining limit the number of sensor nodes
that can participate in distributive sensing. In this paper, we
shall propose a novel, low overhead and low complexity energy
detection based cooperative sensing framework for the cognitive
radio systems which addresses the above two issues. The energy
detection based cooperative sensing scheme greatly reduces the
quiet period overhead (for sensing measurement) as well as
sensing reporting overhead of the secondary systems and the
power scheduling algorithm dynamically allocate the transmis-
sion power of the cooperative sensor nodes based on the channel
statistics of the links to the BS as well as the quality of the
sensing measurement. In order to obtain design insights, we
also derive the asymptotic sensing performance of the proposed
cooperative sensing framework based on the mobility model.We
show that the false alarm and mis-detection performance of the
proposed cooperative sensing framework improve as we increase
the number of cooperative sensor nodes.

Index Terms— Energy Detection, Cooperative Sensing, Cogni-
tive Radio

I. I NTRODUCTION

Cognitive radio and dynamic spectrum access are important
emerging technologies [1]–[3] which may represent a new
paradigm shift in more effective use of limited radio spectrum.
For instance, some of the license spectrum (such as UHF/VHF
band) is under-utilized [4], [5] and this motivated the stan-
dardization of Wireless Regional Area Network (WRAN) in
IEEE 802.22 [6] to exploit unused spectrum dynamically.
One important technical challenge in realizing the vision of
cognitive radio systems is to maintain and control potential
interference to primary users in the licensed spectrum [7],
[8]. There are in general two approaches in cognitive radio
systems to realize efficient spectrum sharing, namely astatic
approach and a dynamic approach. In the static approach
(more conservative), the transmit power of the secondary
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system is limited such that the worst case interference to the
primary users is controlled to an acceptable target [9], [10]
(protection contour) regardless of the instantaneous activity
of the primary system. While this approach is simple, it
failed to exploit the dynamic activity and the location of
the primary users. In the dynamic approach, the secondary
system will sense the activities of the primary system and
transmits only during the activity gaps of the primary system.
This approach allows better utilization of the shared spectrum
especially when the primary system has bursty traffic. As a
result, this dynamic approach is commonly adopted as the
basic framework in cognitive radio systems.

One core component behind dynamic spectrum access is
the sensing of primary user activity in the shared spectrum.
For instance, the accuracy of sensing reports from secondary
nodes are critical to the functioning of the cognitive radio
systems. Imperfect sensing may cause eitherfalse alarmor
mis-detectionproblems. When we have false alarm in the
sensing report, the secondary system will be over-conservative
because it falsely assumed the primary user is active. When
we have mis-detection in the sensing report, the secondary
system may induce strong interference to the primary users
in the shared spectrum. In practice, providing an accurate
sensing measurement on the activity of primary users may
be challenging for the following reasons. For instance, the
secondary system may not have knowledge of the signal
structure as well as channel states of the primary users. Hence,
the sensing detection is usually done in a non-coherent manner
[11], [12]. In addition, in order to maintain a reasonably low
interference level to primary system, the secondary nodes
shall be able to detect the existence of very weak primary
signals [11], [12]. To improve the accuracy of the dynamic
spectrum sensing, classical detection theory suggests that the
sensing performance can be improved by increasing the sens-
ing time [12]–[14]. The sensing performance can be further
enhanced by distributive sensing involving multiple sensor
nodes. In [15]–[19], a distributed sensing and centralized
decision framework has been proposed. In [16], each sensor
node makes a hard-decision on the primary user activity and
feedback the local decisions to the base station. The base
station (BS) makes a final decision by majority voting. In [17],
the authors proposed a similar framework except that each
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sensor node feedback the soft sensing measurement and com-
bined at the BS. This framework is also adopted in the IEEE
802.22 sensing architecture. In [12], an asymptotic relationship
between the target non-coherent sensing performance and the
number of sensing samples needed was derived in the low
SNR regime. In [18], [19], the authors proposed type-based
distributed sensing schemes for the multi-access channelsas
well as wireless sensor networks.

While distributive sensing is a promising solution to en-
hance the sensing performance in cognitive radio systems,
there are several important open issues to be addressed as
elaborated below.

• Overhead in sensing measurement and sensing re-
porting In the above works, the overheads in sensing
measurement and sensing reporting were ignored. For
instance, in 802.22 systems, the BS shall poll a consumer
premise equipment (CPE) to perform sensing measure-
ment and report the sensing result in a round robin
fashion. Yet, each sensing measurement incur system
overhead in the sense that the entire secondary system
has to remain silent during the sensing measurement1.
In addition, reporting of sensing results reliably requires
additional overheads. In fact, the issue of sensing report
overhead is not too related to hard-decision or soft-
decision. Previous literatures have assumed that the re-
porting links are perfect and the one-bit hard decision
result can be delivered to the BS perfectly. However,
in practical systems, to reliably deliver one-bit sensing
information (even for hard decision) actually involves
a lot of overheads, including reliable channel coding,
packet preamble, CRC checking bits etc2. Moreover, if
we allow all the primary detected sensor nodes to report
the sensing measurement simultaneously, the BS may not
be able to separate them since the packet collision may
happens. In other words, the sensing measurement report
(BLM-REP) messages from various sensors have to be
delivered to the BS sequentially. Typical ways to enforce
this is for the BS to poll the CPEs to report sensing
measurement as implemented in the 802.22.

• Overhead in sensing report combiningIn all the above
works, the BS has to combine a large number of distribu-
tive sensing measurements from secondary CPEs in the
cognitive radio systems. This will incur storage issues3 as
well as the processing complexity which scales linearly
with the number of sensing measurements.

Recent discoveries propose pioneering methods to reduce
the potential overhead based on the threshold-based coopera-
tive sensing [20], [21] or sequential detection [22], [23] and
to improve the throughput of the cognitive transmission [24],
[25], but the reporting link is assumed to be perfect which is

1We notice that through simple adjustment, the overhead in the sensing
measurement can be reduced but the overhead in sensing reporting is still an
important issue.

2For example, in IEEE 802.22 standard, the actual sensing reports are
delivered using bulk measure report (BLM-REP) messages (which is one type
of MAC-management message occupying a time-frequency burst). The BLM-
REP message involves additional protection bits for reliable transmission.

3To store the complex-valued observations and the channel states from all
the sensor nodes is quite challenging in the practical systems.

in general difficult to implement in practical systems. In [26],
[27], the authors considered the imperfect reporting channels
and the energy detection problem with AWGN reporting
channel is addressed in [28]. In this paper, we shall propose
a low overhead and low complexity energy detection based
cooperative sensing frameworkfor the cognitive radio systems
which addresses the above issues. The proposed framework
consists of two parts, namely thecooperative sensing scheme
and thepower scheduling algorithm. The cooperative sensing
scheme greatly reduces sensing reporting overhead of the
secondary systems. Unlike conventional distributive sensing
schemes, the required sensing reporting overhead do not scale
with the number of cooperative sensor nodes. Furthermore,
the BS does not need extra complexity in combining multiple
sensing reports from the cooperative sensor nodes. The power
scheduling algorithm dynamically allocates the transmission
power of the cooperative sensor nodes based on the channel
statistics of the links to the BS as well as thequality of
the sensing measurement. In order to obtain design insights,
we also derive the asymptotic sensing performance of the
proposed cooperative sensing framework based on the mo-
bility model. We show that the false alarm and mis-detection
performance of the proposed cooperative sensing framework
improve as we increase the number of cooperative sensor
nodes. In the low SNR region, to achieve a target false alarm
and mis-detection probability, the number of sensor nodes
required scales in the order ofO

(
Σr(1 +

√
1 + Σs)

2/ρ2rρ
2
s

)

whereρr,Σr represents the mean and variance of the average
received SNR of the “sensor node”-“BS” links andρs,Σs

represents the mean and variance of the average received
SNR for the “primary user”-“sensor node” links respectively.
We also compare our proposed cooperative sensing scheme
with conventional distributive sensing schemes. Under similar
system overhead, the proposed scheme can have substantial
performance enhancement and has important practical signif-
icance.

The rest of the paper is organized as follows. Section II
introduces the system model. In Section III, we outline the
low-overhead cooperative sensing scheme for cognitive radio
systems and discuss the problem formulation of the power
allocation in Section IV. We propose our power allocation al-
gorithm by solving the optimization problem in Section V and
derive the asymptotic performance analysis in Section VI. In
Section VII, we give some numerical results and discussions.
Conclusions are given in Section VIII.

II. SYSTEM MODEL

In this section, we shall elaborate on the channel model
of the proposed energy detection based cooperative sensing
framework. Consider a cognitive radio system with a single
BS of secondary system and multiple sensor nodes as shown
in Fig. 1. Each node is equipped with single antenna. To make
it precise, we consider a cognitive radio system containingK
sensor nodes, each making observations on a deterministic
source signalθ of the primary user within the licensed
spectrum, whereθ = 1 when the primary user is active and
θ = 0 otherwise. For notation convenience, we define thekth
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BS

Sensor Node 1

Sensor Node 2

Sensor Node k
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Sensor Node K-1

Primary user

Reporting link
Sensing link

Fig. 1. System model of the proposed cooperative sensing framework in the
cognitive radio systems.

sensing linkto be the channel between the primary user and
thekth sensor node and define thekth reporting link to be the
channel between thekth sensor node and the BS as shown in
Fig. 1.

Denotehs
k to be the channel coefficient of thekth sensing

link. Each sensor node observes forT units of time and the
time average received signal power can be described by

|xk|2 =
1

T

∫ T

t=0

∣
∣hs

kθxp

√

Ppu + ns
k,t

∣
∣
2
dt (1)

where hs
k are Rayleigh fading coefficients with zero mean

and varianceΣs
k, xp denotes the transmitted symbols of the

primary user with normalized power andPpu denotes the
transmitted power by the primary user. The noisens

k,t is
additive complex Gaussian random variable with zero mean
and normalized variance.

Denotehr
k to be the channel coefficient of thekth reporting

link andXk to be the transmitted signal at thekth sensor node.
The corresponding received signal at the BS is given by

Y = hr
kXk + nr (2)

wherenr is additive complex Gaussian random variable with
zero mean and normalized variance, andhr

k are Rayleigh
fading coefficients with zero mean and varianceΣr

k.
The following assumptions are made through the rest of the

paper. Firstly, thekth sensor node has perfect instantaneous
channel state information (CSI) knowledge of thekth reporting
link through the transmitted preamble by the BS. Secondly, we
assume the BS only has statistical information (variances of
the CSI) of the reporting links and the sensing links.

III. C OOPERATIVE SENSING SCHEME

In this section, we shall describe the low overhead and
low complexity energy detection based cooperative sensing
scheme. For easy illustration, we first define theobservation
chancesand the static period as follows. An observation
chanceis defined to be the time duration which allows all
the sensor nodes to perform sensing and reporting for one
time. A static period is defined to be the period when the
channel statistics of the sensing links{Σs

k} and the reporting
links {Σr

k} remain the same, which contains many observation
chances as shown in Fig. 2.

Consider a BS monitoring the behavior of the primary user
with the help ofK sensor nodes. During each static period,
the BS shall sense the primary user activity on the current

Network Topology 1

Static Period 1 Static Period 2

Network Topology 2

Observation

Chance 1

Cognitive

Transmission 1

PU Idle

...

Observation

Chance N

No Cognitive

Transmission 

PU Active

Broadcast

Power allocation 

scheme

Observation

Chance 2

...

Broadcast

Power allocation 

scheme

...

Observation

Chance 1

Fig. 2. A timing diagram comparison for the static period andthe observation
chance.

channel. The proposed cooperative sensing scheme can be
briefly described as follows.

Step 1In each static period, the BS shall determine the
optimal power allocation scheme4 and the corre-
sponding threshold based on the channel statistics
of the reporting links and the sensing links. Before
the BS of the secondary system transmits, it shall
broadcast the downlink sensing request message (the
power allocation scheme shall be only broadcast once
for each static period and the preamble shall be
delivered for each observation chance) toK sensor
nodes.

Step 2Upon receiving the request message, each sensor
node shall sense the activity of the primary user forT
units of time and obtain a local sensing measurement
of |xk|2 and the instantaneous CSI knowledge of the
reporting link from the preamble.

Step 3Using the estimated CSI knowledge between the BS
and the sensor nodes, all theK sensor nodes amplify
and forward a pre-equalized version of the sensing
measurement to the BS. Specifically, the transmitted
signal at thekth sensor node,Xk, is given by

Xk = conj(hr
k)|xk|2

√
αk (3)

where conj(·) denotes the complex conjugate oper-
ation. The sensing results are then RF combined in
the air interface and the observationX at the BS5 is
given by

X =

∑K
k=1 h

r
kXk + nr

K

=

∑K
k=1 |hr

k|2|xk|2
√
αk + nr

K
(4)

whereαk
6 stands for the amplify-and-forward (AF)

gain of thekth sensor node.

4The rigorous definition of the power allocation scheme will be given in
Section IV.

5In the network initialization process, the BS groups the sensor nodes into
the clusters and hence, knows about the number of sensor nodes in each
cluster. Since only those sensor nodes that are polled by theBS shall upload
measurement, the BS would know aboutK.

6Precisely speaking,αk shall be a function of the channel statisticsΣr
k

andΣs
k

. For notation convenience, we useαk to representαk({Σr
k
,Σs

k
})

for all k through the paper.
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Fig. 3. Comparison between the traditional distributed sensing scheme and
the proposed cooperative sensing scheme.

Step 4Using the observationX , the BS shall determine
the activity of the primary user. Since the BS only
has the statistical information of the reporting links
and the sensing links, coherent detection cannot
be applied and we consider theenvelop detection
(energy detection). Specifically, the BS shall compare
the observation resultX with a thresholdT0 and
determine the activity of the primary user according
to (5)

θ̂ = g(X) =

{
1, X ≥ T0
0, otherwise

(5)

Step 5The BS shall start the transmission in the current
static period if the primary user is measured to be
idle in the current observation chance and wait for
the next observation chance otherwise.

In the current literatures, the conventional distributed sens-
ing scheme requires the BS to poll each of the sensor nodes
and collect the corresponding sensing reports in a round robin
fashion. The BS shall then combine the sensing reports from
different sensor nodes to make the final decision. Fig. 3
compares the timing diagram of the proposed cooperative sens-
ing scheme and the conventional distributed sensing scheme.
Comparing with the conventional distributed sensing scheme,
the proposed cooperative sensing scheme has the following
advantages.

• Reduced System Overhead of Reporting.In the conven-
tional distributed sensing scheme, the BS applies the
polling scheme to get the reports from multiple sensor
nodes. Reporting overhead is proportional to the number
of active sensor nodes participating in the sensing. Using
the proposed cooperative sensing scheme, the number of
active sensor nodes in the cooperative sensing system is
no longer limited by the reporting signaling overhead
since the sensor nodes in the proposed scheme report
the result simultaneously. Hence, the proposed scheme
can support much more active sensor nodes than the
conventional distributed sensing scheme with the same
system overhead.

• Reduced System Overhead in Quiet Period.Using the
proposed cooperative sensing scheme, independent mea-
surements from multiple sensor nodes can be exploited.

As a result, for the same performance as the conventional
distributed sensing scheme, the system quiet period can
be substantially reduced.

• Reduced Overhead in Sensing Report Combining.To
achieve the benefits of the multiple sensor nodes, the
distributed sensing scheme shall combine all the sensing
reports from different sensor nodes using Maximum Ratio
Combining (MRC). The processing complexity is propor-
tional to the number of sensor nodes in the distributed
sensing scheme. Using the proposed cooperative sensing
scheme, the MRC is done automatically over the radio
interface during the reporting phase of sensing measure-
ment. As a result, no processing complexity at the BS is
incurred.

IV. PROBLEM FORMULATION

Based on the proposed energy detection based cooperative
sensing scheme, we shall first define the system performance
and then formulate the power scheduling problem as a multi-
object optimization problem.

A. Definition of System Performance

Since the power allocation is done at the BS side, it can
only be a function of the statistics of CSI information, i.e.
the variances of the reporting links{Σr

k} and the variances
of the sensing links{Σs

k}. For notation convenience, we first
have the following definition onpower allocation (AF gain)
Schemeand the system performance, namely, theprobability
of mis-detectionand theprobability of false alarmas follows.

Definition 1 (Power Allocation (AF Gain) Scheme):A
power allocation (AF gain) schemea is defined as the
AF gain coefficients assigned forK active sensor nodes.
Mathematically, the power allocation (AF gain) scheme can
be written asa = [α1, α2, . . . , αK ]T . The power allocation
(AF gain) vectora has to satisfy the following transmission
power constraint.

EH

[
|Xk|2

]
= EH

[
|hr

k|2|xk|4αk

]
≤ Pk, ∀k (6)

whereH = {hr
k, h

s
k} denotes the instantaneous CSI informa-

tion of the reporting links and the sensing links.
Definition 2 (Probability of Mis-Detection):Given the

statistics of CSI information{Σr
k,Σ

s
k}, the power allocation

(AF gain) schemea and the thresholdT0, the probability
of mis-detectionis defined to be the probability that the BS
cannot detect the transmission of primary user when the
primary user is in active state. Mathematically, the probability
of mis-detectionPMD, as a function of power allocation (AF
gain) schemea and the thresholdT0, can be described as

PMD(a, T0) = Pr
(
θ̂ = 0|θ = 1, {Σr

k,Σ
s
k}, a, T0

)
(7)

Definition 3 (Probability of False Alarm):Given the statis-
tics of CSI information{Σr

k,Σ
s
k}, the power allocation (AF

gain) schemea and the thresholdT0, the probability of false
alarm is defined to be the probability that the BS reports the
transmission of primary user erroneously when the primary
user is in idle state. Mathematically, the probability of false
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alarm PFA, as a function of power allocation (AF gain)
schemea and the thresholdT0, can be described as

PFA(a, T0) = Pr
(
θ̂ = 1|θ = 0, {Σr

k,Σ
s
k}, a, T0

)
(8)

The events of mis-detection and false alarm are undesired in
the cognitive radio systems, since the mis-detection causes the
interference to the primary user which is not allowed and false
alarm reduces the opportunities of utilizing the unoccupied
channels. Hence, how to reduce the average probability of mis-
detection and false alarm simultaneously is the major objective
of this paper. In the next section, we shall formulate the power
allocation design into an multi-objective optimization problem.

B. Problem Formulation

In order to minimize the average probability of mis-
detection and false alarm simultaneously, we shall first cal-
culate the probability of mis-detection and false alarm, which
is summarized in the following lemma.

Lemma 1:For sufficiently largeK7 andT , the probability
of mis-detection and false alarm is given by:

Pr
(
θ̂ = 0|θ = 1, {Σr

k,Σ
s
k}, a, T0

)
= Q

(µ1 − T0
σ1

)
(9)

Pr
(
θ̂ = 1|θ = 0, {Σr

k,Σ
s
k}, a, T0

)
= Q

(T0 − µ0

σ0

)
(10)

with

µ0 =

∑K
k=1 SNRr

k

K

σ2
0 =

3
∑K

k=1 SNRr,2
k + 1

K2

µ1 =

∑K
k=1 SNRr

k(SNRs
k + 1)

K

σ2
1 =

3
∑K

k=1 SNRr
k
2(SNRs,2

k + 2
3SNRs

k + 1) + 1

K2

where SNRsk = PpuΣ
s
k denotes the received SNR at thekth

node from the primary user, SNRrk =
√
αkΣ

r
k denotes the

ratio of the received signal over the transmitted signal from
kth sensor node, andQ(·) denotes the standard Gaussian
complementary c.d.f. [29].

Proof: Please refer to Appendix I for the proof.
Based on the relationship between the system performance

(i.e. the probability of missing and false-alarm), the power
allocation (AF gain) scheme and the threshold, the optimal
power allocation (AF gain) schemea∗ and the optimal thresh-
old T ∗

0 can be described by the following multi-objective
optimization problem8.

(a∗, T ∗
0 ) = arg min

(a,T0)

(
PMD

(
a, T0

)

PFA

(
a, T0

)

)

= arg min
(a,T0)

(

Q
(
µ1−T0

σ1

)

Q
(T0−µ0

σ0

)

)

(11)

7The theoretical results in Lemma 1 are basically an asymptotic result based
on Central Limit Theorem. However, we see that in practice, the result is quite
accurate even for moderateK ∼ 20.

8In this paper, we focus on study the Pareto optimality as specified in the
next section.

V. POWER SCHEDULING ALGORITHM

In this section, our target is to find the optimal power
allocation scheme based on solving the optimization problem
given by (11). To measure the efficiency of the multi-objective
situation,Pareto Optimality, is widely used to describe those
tradeoff relations. A solution can be considered Pareto optimal
if there is no other solution that performs at least as good
on every criteria and strictly better on at least one criteria9.
Mathematically,(a∗, T ∗

0 ) is Pareto optimal if we cannot find
a solution(â, T̂0) such that

(
PMD

(
â, T̂0

)

PFA

(
â, T̂0

)

)

�
(

PMD

(
a
∗, T ∗

0

)

PFA

(
a
∗, T ∗

0

)

)

(12)

where � denotes the element-wise inequality. As a result,
we solve the multi-objective optimization problem (11) by
characterizing the optimal trade-off curve, which is a set of
Pareto optimal values for a multi-criteria problem. To solve for
Pareto optimal solution, we can scalarize the multi-objective
optimization problem (11) as follows [30]

mina,T0
Q
(µ1 − T0

σ1

)
+ βQ

(T0 − µ0

σ0

)

s.t. EH

[
|hr

k|2|xk|4αk

]
≤ Pk, ∀k, a � 0 (13)

whereβ is the corresponding weight10, which balances the
tradeoff between the probability of mis-detection and false
alarm11.

A. Optimal Value of the ThresholdT ∗
0

We shall first optimize the thresholdT0 in problem (13).
Specifically, the optimal thresholdT ∗

0 is given by the following
optimization problem.

T ∗
0 = argmin

T0

Q
(µ1 − T0

σ1

)
+ βQ

(T0 − µ0

σ0

)
(14)

Since the above optimization problem is an unconstrained
minimization problem, we can differentiate the objective func-
tion with respect to (w.r.t.) the thresholdT0 and calculate
the optimal valueT ∗

0 by setting the first-order derivative
equal to zero. As a result, the optimal choice of the thresh-

old T ∗
0 shall satisfy the following relation. 1√

2π

(

exp
(
−

1
2 (

µ1−T ∗

0

σ1
)2
)
(− 1

σ1
)+β exp

(
− 1

2 (
T ∗

0
−µ0

σ0
)2
)

1
σ0

)

= 0. Equiva-

lently, the optimal value of the thresholdT ∗
0 has the following

relations.

exp
(
− 1

2
(
µ1 − T ∗

0

σ1
)2
) 1

σ1
= β exp

(
− 1

2
(
T ∗
0 − µ0

σ0
)2
) 1

σ0
(15)

With some mathematical manipulation, we have

(
T ∗
0 − µ0

σ0
)2 − (

µ1 − T ∗
0

σ1
)2 = 2 ln(

βσ1

σ0
) (16)

9Other restrictions on the probability of mis-detection or false alarm (e.g.
PMD, PFA ≤ 0.1) can be addressed by a simple intersection operation
between the tradeoff curve and the region quantified by the constraints.

10The probability of mis-detection describes how well the primary system
can be protected and the probability of false alarm mainly constraints the
utilization of cognitive transmission. The objective herecan be interpreted as
a joint consideration of the above two criteria.

11Any solution to the problem (13) is Pareto optimal but not conversely.
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The optimal thresholdT ∗
0 is hence given by

T ∗
0 =

σ2
1µ0 − σ2

0µ1

σ2
1 − σ2

0

+
σ0σ1

σ2
1 − σ2

0

×
√

(µ1 − µ0)2 + 2(σ2
1 − σ2

0) ln(βσ1/σ0) (17)

Substitute (16) into the optimization problem (13), we have

mina Q
(
√

(
T ∗
0 − µ0

σ0
)2 − 2 ln(

βσ1

σ0
)
)

+ βQ
(T ∗

0 − µ0

σ0

)

s.t. EH

[
|hr

k|2|xk|4αk

]
≤ Pk, ∀k, a � 0,

Eqn. (17) (18)

B. Optimal Power Allocation Scheme

The objective function in the optimization problem (18) is
a monotonic decreasing function with respect w.r.t.(T ∗

0 −
µ0)/σ0 for T ∗

0 ≥ µ0. Hence, we can transform the original
minimization problem into the following maximization prob-
lem.

maxa
T ∗
0 − µ0

σ0

s.t. EH

[
|hr

k|2|xk|4αk

]
≤ Pk, ∀k, a � 0,

Eqn. (17) (19)

In fact, to solve the optimization problem (19) is non-trivial
since the problem is non-convex ina. Consider the Lagrangian
dual of (19) given by [31]:

L(a,Γ) =
T ∗
0 − µ0

σ0
−

K∑

k=1

γk

(

EH

[
|hr

k|2|xk|4αk

]
− Pk

)

where Γ = [γ1, γ2, . . . , γK ] are the dual variables. Define
the dual objectiveg(Γ) as a maximization of the Lagrangian
g(Γ) = maxa L(a,Γ). The dual optimization problem is

min
Γ

g(Γ)

s.t. Γ � 0 (20)

While the standard way of solving constrained optimization
problem is to form a Lagrangian dual, it is important to make
sure that the duality gap between the original problem and the
dual problem is zero. We first have the following important
theorem on the duality gap of the problem.

Theorem 1:The non-convex optimization problem (19) and
its dual problem (20) has a zero duality gap [30], i.e., the
primal problem (19) and the dual problem (20) have the same
optimal value.

Proof: Please refer to Appendix II for the proof.
Theorem 1 establishes the relationship between the primal

optimization problem (19) and its dual problem. Since it hasa
zero duality gap, we can solve the primal optimization problem
(19) by solving its dual problem (20), which is a standard
convex optimization problem w.r.t. the Lagrangian variablesΓ.
By substituting the expression ofT ∗

0 , g(Γ) in the optimization

problem (20) becomes

maxa
σ0(µ0 − µ1)

σ2
1 − σ2

0

−
K∑

k=1

γk

(

EH

[
|hr

k|2|xk|4αk

]
− Pk

)

+
σ1

√

(µ1 − µ0)2 + 2(σ2
1 − σ2

0) ln(βσ1/σ0)

σ2
1 − σ2

0

s.t. a � 0 (21)

Introduce the slack variableG, such that
(
σ0(µ0 − µ1) +

σ1

√

(µ1 − µ0)2 + 2(σ2
1 − σ2

0) ln(βσ1/σ0)
)
/(σ2

1 − σ2
0) ≥ G

and the optimization problem (21) can be transferred as
follows.

maxa,G G−
K∑

k=1

γk

(

EH

[
|hr

k|2|xk|4αk

]
− Pk

)

(22)

s.t. σ2
1

(
(µ1 − µ0)

2 + 2(σ2
1 − σ2

0) ln(βσ1/σ0)
)

≥
[
G(σ2

1 − σ2
0) + σ0(µ1 − µ0)

]2
(23)

µ0 =

∑K
k=1 SNRr

k

K
,σ2

0 =
3
∑K

k=1 SNRr
k
2 + 1

K2

µ1 =

∑K
k=1 SNRr

k(SNRs
k + 1)

K
,

σ2
1 =

∑K
k=1 SNRr

k
2(3SNRs,2

k + 2SNRs
k + 3) + 1

K2

a � 0 (24)

Due to the constraint (23), the above optimization problem
is still non-convex. To simplify the problem, we can bound
the original non-convex constraint (23) by a linear constraint
w.r.t. a, e.g.(µ1−µ0

σ0
−G)2σ2

0 + σ2
1

(

G2 − 2 lnβ + ln(
σ2

1

σ2

0

)
)

≥
C

T
a + d ≥ 0, whereC and d can be determined byG,

β and {SNRs
k} sinceσ2

0 and σ2
1 are linear ina and

(

G2 −
2 lnβ + ln(

σ2

1

σ2

0

)
)

, (µ1−µ0

σ0
−G)2 can be bounded for fixedG,

β and{SNRs
k}. Moreover, since the objective function of the

problem (24) is non-increasing ina12, the original optimization
problem (24) can be well approximated13 by a standard quasi-
convex optimization problem [30] through the relaxizationof
the non-convex constraint (23). As a result, efficient algorithm
such as bisection search algorithms [30] can be used to solve
this problem. By solving problem (21), we can obtain the value
of g(Γ) and find the gradient ofg(Γ) w.r.t.Γ. Hence, problem
(20) can be solved through standard gradient search [30] and
finally we can obtain the optimal value of the original problem
(13).

VI. A SYMPTOTIC PERFORMANCEANALYSIS

In this section, we shall derive the probability of false
alarm and mis-detection averaged over multiple static periods
based on a mobility model14. We assume the channel statistics

12In this paper, the objective functionf(a) is non-increasing ina means
the gradient of the objective w.r.t.a is element-wise less than or equal to
zero, i.e.∇af(a) = [ ∂f

∂α1

∂f
∂α2

· · · ∂f
∂αK

]H � 0.
13Notice that the solution of the approximated optimization problem is also

an approximated solution of the original optimization problem (24) as well.
14In this paper, we mainly focus on analyzing the probability of false alarm

and mis-detection. The performance advantages of the proposed cooperative
sensing scheme can be translated into the reduction of quiteperiod under the
same probability of false alarm and mis-detection as well.
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{Σr
k,Σ

s
k} follows the statistic model15 with mean and variance

of the received SNRrk and SNRsk given by

µSNRr
k

= EΣr
k

[
SNRr

k

]
=

√
αkΛr, (25)

σ2
SNRr

k
= EΣr

k

[
(SNRr

k − µSNRr
k
)2
]
= Σr, (26)

µSNRs
k

= EΣs
k

[
SNRs

k

]
= PpuΛs, (27)

σ2
SNRs

k
= EΣs

k
2

[
(SNRs

k − µSNRs
k
)2
]
= Σs, (28)

DenoteP ∗
e

(
{Σr

k,Σ
s
k}
)
= PMD(a, T0)+βPFA(a, T0) to be

the probability of false alarm and mis-detection error perfor-
mance of the proposed cooperative sensing scheme under the
channel statistics{σr

k, σ
s
k} and the optimal power allocation

schemea∗. Hence, the average probability of false alarm and
mis-detection error performancēP ∗

e is given by

P̄ ∗
e = E{Σr

k
,Σs

k
}
[

P ∗
e

(
{Σr

k,Σ
s
k}
)]

(29)

We assume the power constraints are uniform over different
sensor nodes, i.e.Pk = P for all k. Meanwhile, we consider
an upper bound on the error probability of false alarm and
mis-detection by considering a constant AF gain policy, i.e.,
αk = α with α = P

EH[|hr
k
|2|xk|4] . Since the constant AF

gain is one of the many schemes in the optimization domain,
the error performance obtained is an achievable upper bound
Pu
e

(
{Σr

k,Σ
s
k}
)

and given by

P ∗
e

(
{Σr

k,Σ
s
k}
)
≤ Pu

e

(
{Σr

k,Σ
s
k}
)

= Q(
µ1 − T ∗

0

σ1
) + βQ(

T ∗
0 − µ0

σ0
)
∣
∣
a=α·1 (30)

The following theorem summarizes the upper bound of the
false alarm and mis-detection performance.

Theorem 2:The asymptotic expressions for the false alarm
and mis-detection performance of the proposed cooperative
sensing framework can be upper bounded by

P̄ ∗
e ≤ 1 + β

2
exp

(

− K

3(1 + Σr

ρ2
r
)

×
( 1

1
ρs

+
√

1 + Σs

ρ2
s
+ 2

3ρs
+ 1

ρ2
s

)2
)

(31)

where the average SNR of the reporting linksρr =
√
αΛr and

the average SNR of the sensing linksρs = PpuΛs.
Proof: Please refer to Appendix III for the proof.

Theorem 2 establishes the relation between the upper bound
of the system performance (the false alarm and mis-detection
performance) and the system parameters (the number of sensor
nodesK, the channel quality of the reporting linksρb,Σ2

b

and the channel quality of the sensing linksρi,Σ2
i ). In the

following subsections, we shall discuss the relations in details,
especially in the low SNR regime.

A. The Effect ofK

From the expression of (31), we find that the false alarm
and mis-detection performance of the proposed cooperative
sensing framework w.r.t. the number of sensor nodesK scales

15The statistical fluctuations of{Σr
k
,Σs

k
} is driven by the mobility of the

CPE in the secondary system.

in the order ofO
(
exp(−K)

)
. Hence, to reduce the error

performance of the proposed cooperative scheme byN times,
we can simply increase the number of sensor nodes bylnN
times.

B. The Effect of the Reporting Links

To characterize the effect of the reporting links, we fix the
parameter ofρi andΣ2

i and the false alarm and mis-detection
error performance to beǫ. In the low SNR regime of the
reporting links, equivalently speaking,ρr is sufficiently small,
the error expression (31) can be approximated as

ǫ ≤ 1 + β

2
exp

(

− K

3(1 + Σr

ρ2
r
)

( 1

1
ρs

+
√

1 + Σs

ρ2
s
+ 2

3ρs
+ 1

ρ2
s

)2
)

≈ 1 + β

2
exp

(

− Kρ2r
3Σr

( 1

1
ρs

+
√

1 + Σs

ρ2
s
+ 2

3ρs
+ 1

ρ2
s

)2
)

We summarize the effect of the reporting links using the
following corollary.

Corollary 1 (The Effect of the Reporting Links):With re-
spect to the reporting links, to achieve a target false alarm
and mis-detection performanceǫ of the proposed cooperative
sensing scheme, the number of sensor nodesK scales in the
order ofO

(
Σr/ρ

2
r

)
in the low SNR regime.

C. The Effect of the Sensing Links

We apply the same approach for the sensing links. In the
low SNR region of the sensing links, i.e.ρs is sufficiently
small, the error expression (31) can be approximated as

ǫ ≤ 1 + β

2
exp

(

− K

3(1 + Σr

ρ2
r
)

( 1

1
ρs

+
√

1 + Σs

ρ2
s
+ 2

3ρs
+ 1

ρ2
s

)2
)

≈ 1 + β

2
exp

(

− K

3(1 + Σr

ρ2
r
)

( ρs

1 +
√
1 + Σs

)2
)

We summarize the effect of the sensing links using the
following corollary.

Corollary 2 (The Effect of the Sensing Links):With
respect to the sensing links, to achieve a target false alarm
and mis-detection performanceǫ of the proposed cooperative
sensing scheme, the number of sensor nodesK scales in the
order ofO

(
(1 +

√
1 + Σs)

2/ρ2s
)

in the low SNR regime.

VII. S IMULATION RESULTS

In this section, we verify our analytical results via simu-
lations. We assume both the noise variance and the channel
statistics are assumed to be constant and known at the BS for
each static period. Each sensor node has the same channel
statistics and experience independent fading. Moreover, each
observation chance is chosen to be 2ms and the static period is
assumed to be sufficiently long for 10 observation chances. For
easy illustration, we define some baseline systems, namely the
baseline 1: local detection scheme, thebaseline 2: traditional
distributed sensing scheme, the baseline 3: OR-Rule combin-
ing sensing scheme, and thebaseline 4: proposed cooperative
sensing scheme with constant AF gainα. In baseline 1, we
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Fig. 4. Tradeoff curves between the probability of false alarm and mis-
detection. The transmit SNR of the primary user is 30 dB. The mean path loss
of the sensing links areΛs = −30dB with varianceΣs = 5dB. The mean
path loss of the reporting links areΛr = −80dB with varianceΣr = 5dB.
As we can see from the above results, the proposed scheme gives a better
tradeoff between the probability of mis-detection and false alarm than other
baseline schemes.
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Fig. 5. Tradeoff curves between the probability of false alarm and mis-
detection under transmit power uncertainties. The mean transmit SNR of the
primary user is 30 dB, which is known to all the sensing nodes.The actual
transmit SNR of the primary user is frustrated from 30dB to 50dB and the
exact value is unknown to all the sensing nodes. The mean pathloss of the
sensing links areΛs = −30dB with varianceΣs = 5dB. The mean path
loss of the reporting links areΛr = −80dB with varianceΣr = 5dB. The
noise variances are frustrated from−5dB to 5dB. As we can see from the
above results, under the transmit power uncertainties of the primary systems,
the proposed scheme can still work properly and perform better than other
baselines.

plot the average local detection performance, i.e. the average
performance of an energy detector over different sensing
positions. In baseline 2, the BS applies polling scheme to each
of the sensing node for the sensing report and perform the
final decision based on majority voting scheme. In baseline
3, all the sensing node shall report one-bit local decision
simultaneously and the BS performs the final decision based
on the OR-Rule. For simplicity, we assume perfect reporting
links for baselines 2 and 3, i.e. the local decision results of
baselines 2 and 3 can be successfully delivered to the BS.
On the other hand, for our proposed scheme and baseline 4,
the reporting links are modeled by equation (2). Hence, we
have more favorable assumptions regarding the reporting links
for the baselines. Fig. 4 shows the tradeoff relation between

the probability of false alarm16 PFA and the probability of
mis-detectionPMD. The proposed cooperative sensing scheme
performs better than the local detection scheme (baseline 1),
the traditional distributed sensing scheme (baseline 2) and the
OR-Rule combining sensing schemes (baseline 3) regardless
of the power allocation scheme17. Meanwhile, the proposed
cooperative sensing scheme with optimal power allocation
achieves better tradeoff than with constant AF gain scheme
(baseline 4). In practise, the actual transmit power of the
primary system may difficult to obtain. In Fig. 5, we studies
the tradeoff relations when the actual transmit power and the
noise variances are unknown to the sensing nodes18. Based on
the numerical results, we find that the proposed cooperative
sensing scheme can still work properly and perform better than
other baselines.

Fig. 6 shows the relations between the system performance
(i.e. the false alarm and mis-detection error performance)and
the number of sensor nodes. Without loss of generality, we
chooseβ equals to1 and the system performance becomes
the sum of the false alarm and mis-detection error probability.
As shown in Fig. 6, the system performance of the proposed
cooperative sensing scheme with optimal power allocation as
well as the constant AF gain allocation scales in the order of
O
(
exp(−K)

)
as we have shown in Theorem 2. Fig. 7 and Fig.

8 demonstrate the effects of the reporting links and sensing
links. We simulate the number of sensor nodes required to
achieve a target probability of false alarm and mis-detection
(e.g. we choosePFA = PMD = 0.1 as specified in IEEE
802.22 [6]) under different qualities of the reporting links and
sensing links. As we have shown in the Fig. 7, the number
of sensor nodes required is proportional to the qualities of
the reporting linksΣr/ρ

2
r as derived in Corollary 1. Fig. 8

illustrates the number of sensor nodesK scales in the order
of O

(
(1 +

√
1 + Σs)

2/ρ2s
)

w.r.t. the sensing links as derived
in Corollary 2.

VIII. C ONCLUSION

In this paper, we proposed a simple cooperative sensing
framework for the cognitive radio systems. By applying the
proposed cooperative sensing scheme, we formulate the power
scheduling algorithm as a multi-objective optimization prob-
lem. To describe the relations of the multiple objectives, we
characterize the optimal trade-off curve, containing a setof
Pareto optimal values for a multi-criteria problem, and derive
the asymptotic closed-form expression for the false alarm and
mis-detection error performance of the proposed cooperative
sensing framework. Simulation results are then evaluated to

16In [32], the probability of false alarmP ′
FA is defined as

Pr(θ̂=1|θ=0)×Pr(θ=0)

Pr(θ̂=1)
and the probability of detectionP ′

D is defined as

Pr(θ̂=1|θ=1)×Pr(θ=1)

Pr(θ̂=1)
. Under these definitions, we can show through our

numerical results thatP ′
FA

, P ′
D

≈ 50%, which matches the conclusion of
[32].

17The performance advantage in the tradeoff relations can be translated into
quite period reduction as well. For example, compared with the traditional
distributed sensing scheme, 15% quiet period reduction canbe obtained for
PMD = PFA = 0.1 with 10 sensing nodes.

18The actual transmit power frustrated from -10dB to 10dB w.r.t. the mean
transmit power and the noise variances are from -5dB to 5dB aswell.
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as
derived in corollary 2.

demonstrate the proposed cooperative sensing framework. We
found that the false alarm and mis-detection error performance
of the proposed cooperative sensing framework scales in the
order ofO

(
exp(−K)

)
. In order to achieve a target false alarm

and mis-detection probability, the number of required sensor
nodes scales in the order ofO

(
Σr(1 +

√
1 + Σs)

2/ρ2rρ
2
s

)
in

the low SNR regime.

APPENDIX I
PROOF OFLEMMA 1

In order to calculate the probability of mis-detection and
false alarm, we shall first try to find the probability density
function (p.d.f.) of the received signalX at the BS side. Since
the sensing links remain quasi-static throughout the observa-
tion chance and the noise variance is completely known at
each sensor node, the time average received signal power at
the kth sensor node can be expressed as19

|xk|2 =
1

T

∫ T

t=0

∣
∣hs

kθxp

√

Ppu + ns
k,t

∣
∣
2
dt

=
1

T

(

|hs
kθxp

√

Ppu|2T + |ns
k|2 +Xk

)

w.p.1−→ |hs
k|2θ2Ppu +

1

T
|ns

k|2 (32)

wherens
k is the additive white Gaussian noise with mean zero

and varianceT 20. Xk = 2Re
{

1
T

∫ T

t=0 h
s
kθxp

√
Ppun

s,∗
k,tdt

}

, which is with zero mean and variance|hs
k|2θ2PpuT . For

sufficiently largeT , the cross-termXk

T
tends to zero with

probability 1 (w.p.1). We also assume the noise and primary
signals are independent and substitute|xp|2 = 1 in the last
step.

At the BS side, the received signal contributed bykth sensor
node (denoted bŷXk) is given by

X̂k = hb
kXk = |hr

k|2|xk|2
√
αk

= |hr
k|2|hs

k|2θ2Ppu

√
αk

︸ ︷︷ ︸

Signal Part

+
1

T
|hr

k|2|ns
k|2

√
αk

︸ ︷︷ ︸

Noise Part

(33)

The statistical properties of the random variablêXk can be
evaluated in the following way.

µX̂k
= Ehr

k
,hs

k
,ns

k

[
X̂k

]
= Σr

k

√
αk

(
Σs

kθ
2Ppu + 1

)
(34)

σ2
X̂k

= Ehr
k
,hs

k
,n2

k

[
(X̂k − µX̂k

)2
]

= Σr,2
k αk(3Σ

s,2
k θ4P 2

pu + 2Σs
kθ

2Ppu + 3) (35)

Using the proposed cooperative sensing scheme, allK
sensor nodes are suggested to report their local measurements
at the same time and all the reports will naturally combined
in the air interface. Applying the central limit theorem [33],
the received signalX at the BS side can be approximated by
the following equation whenK is sufficiently large [12]

X ∼ N
(∑K

k=1 µX̂k

K
,

∑K
k=1 σ

2
X̂k

+ 1

K2

)

(36)

19The proposed framework can be directly extended to frequency selective
channels with OFDM schemes as well.

20Without loss of generality, we assume the noise variance is normalized
to unity.
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whereN (µ, σ2) denotes the Gaussian distribution with mean
µ and varianceσ2.

Denoteµ1, σ
2
1 to be the mean and variance of the received

signalX when the primary user is in active state andµ0, σ
2
0

to be the mean and variance ofX when the PU is in idle state,
respectively. We can derive the expressions forµ0, σ

2
0 , µ1, σ

2
1

as follows.

µ0 =

∑K
k=1 µX̂k

K
=

∑K
k=1 Σ

r
k

√
αk

K
, (37)

σ2
0 =

∑K
k=1 σ

2
X̂k

K2
=

3
∑K

k=1 Σ
r
k
2αk + 1

K2
(38)

µ1 =

∑K
k=1 µX̂k

K
=

∑K
k=1 Σ

r
k

√
αk(Σ

s
kPpu + 1)

K
(39)

σ2
1 =

∑K
k=1 σ

2
X̂k

K2

=

∑K
k=1 Σ

r
k
2αk(3Σ

s,2
k P 2

pu + 2Σs
kPpu + 3) + 1

K2
(40)

Using these approximations gives the following expressions,
we havePr

(
θ̂ = 0|θ = 1, {Σr

k,Σ
s
k}, a, T0

)
= 1 −Q

(T0−µ1

σ1

)

andPr
(
θ̂ = 1|θ = 0, {Σr

k,Σ
s
k}, a, T0

)
= Q

(T0−µ0

σ0

)
, where

Q(·) denotes the standard Gaussian complementary c.d.f. [29].
Notice that1−Q(−x) = Q(x), we have Lemma 1.

APPENDIX II
PROOF OFTHEOREM 1

Since the primal problem (19) is not convex, the standard
optimization theory cannot be applied here to prove the zero
duality gap. From the result of [31], the primal problem and
its dual problem will have zero duality gap when thetime-
sharingcondition is satisfied. The results will hold true even
when the primal problem is nonconvex.

Let P1 = {P0,1, P1,1, . . . , PK,1}, P2 =
{P0,2, P1,2, . . . , PK,2} and P3 = {P0,3, P1,3, . . . , PK,3}
be values of power constraints withP3 = νP1 + (1 − ν)P2

for some 0 ≤ ν ≤ 1. Let a∗1, a
∗
2 and a

∗
3 be the optimal

power allocation (AF gain) scheme to the primal optimization
problem (16) with constraintsP1, P2 and P3, respectively.
Let P ∗

e1 and P ∗
e2 be their respective optimal values of the

false alarm and mis-detection error performance. To prove
the time-sharing property, we need to construct a power
allocation (AF gain) schemea∗3 such that it achieves an error
equal to or lower thanνP ∗

e1 + (1 − ν)P ∗
e2 with a power that

is at mostνP1 + (1 − ν)P2 for all ν between zero and one.
Such a schemea∗3 may be constructed as follows.

Without loss of generality, we consider the multiple trans-
mission opportunities are divided into two periods withν
proportion of which corresponding to a power constraintP1

and (1 − ν) proportion of which corresponding to a power
constraintP2. We can apply the power allocation schemea

∗
1

to the firstν proportion of channel realizations anda∗2 to the
rest(1− ν) proportion. By doing so, the system achieves the
value of(T ∗

0 −µ0)/σ0 at least equal toνP ∗
e1+(1−ν)P ∗

e2 and
therefore, the time-sharing property holds. From [31, Theorem
1], the primal problem (16) and the dual problem (20) have
the same optimal value since the time-sharing condition is
satisfied.

APPENDIX III
PROOF OFTHEOREM 2

From the expressions ofµ0, µ1, σ
2
0 and σ2

1 , we find that
when the number of sensor nodesK is sufficiently large21, the
following relation holds,(µ1−µ0)

2 ≫ 2(σ2
1−σ2

0) ln(βσ1/σ0).
Using the above relation, the optimal thresholdT ∗

0 from (17)
is given by

T ∗
0 = µ0 +

σ2
0(µ0 − µ1)

σ2
1 − σ2

0

+
σ0σ1

σ2
1 − σ2

0

×
√

(µ1 − µ0)2 + 2(σ2
1 − σ2

0) ln(βσ1/σ0) (41)

≈ µ0 +
σ2
0(µ0 − µ1) + σ0σ1

√

(µ1 − µ0)2

σ2
1 − σ2

0

(42)

= µ0 + σ0
µ1 − µ0

σ0 + σ1
(43)

Substitute the equation (43) into (30), we have

Pu
e

(
{Σr

k,Σ
s
k}
)
= (1 + β)Q(

µ1 − µ0

σ0 + σ1
)
∣
∣
a=α·1 (44)

and the average probability of false alarm and mis-detection
is

P̄ ∗
e ≤ E{Σr

k
,Σs

k
}
[

Pu
e

(
{Σr

k,Σ
s
k}
)]

= E{Σr
k
,Σs

k
}
[

(1 + β)Q(
µ1 − µ0

σ0 + σ1
)
∣
∣
a=α·1

]

(45)

≤ E{Σr
k
,Σs

k
}

[
1 + β

2
exp

(

− 1

2

(µ1 − µ0

σ0 + σ1

)2
)∣
∣
a=α·1

]

≤ 1 + β

2
exp

(
− γ2

2

)
(46)

with γ = E{Σr
k
,Σs

k
}

[

µ1−µ0

σ0+σ1

∣
∣
a=α·1

]

where we use the relation

Q(x) ≤ 1
2 exp(−x2

2 ) in the second inequality and the concav-
ity of the functionexp(−x2

2 ) w.r.t. x in the last step.
Applying the statistical model given by (26) to (28), the

mean and variance of the received SNRr
k and SNRsk under

the constant AF gain scheme are given by(
√
αΛr,Σr) and

(PpuΛs,Σs), respectively.µ0, µ1, σ
2
0 and σ2

1 under the con-
stant AF gain policya = α · 1 are thus given by

µ0 = T
√
αΛr,

σ2
0 =

3T 2(αΛ2
r +Σr)

K
,

µ1 = T
√
αΛr(PpuΛs + 1),

σ2
1 =

T 2(αΛ2
r +Σr)

(
3P 2

puΛ
2
s + 3Σs + 2PpuΛs + 3

)

K

where we have substituted the mean and variance of the
received SNRbk and SNRik. Hence, we can evaluate the ex-
pression ofγ as follows.

γ ≈
√

K

3(1 + Σr

αΛ2
r
)
· PpuΛs

1 +
√

P 2
puΛ

2
s +Σs +

2PpuΛs

3 + 1
(47)

Combine (46) and (47), we have Theorem 2.

21In the numerical examples, we found that the first expressionis quite
accurate for moderateK ∼ 20.
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