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Abstract

Outage probabilities and single-hop throughput are two important performance metrics that have

been evaluated for certain specific types of wireless networks. However, there is a lack of comprehensive

results for larger classes of networks, and there is no systematic approach that permits the convenient

comparison of the performance of networks with different geometries and levels of randomness.

Theuncertainty cubeis introduced to categorize the uncertainty present in a network. The three axes

of the cube represent the three main potential sources of uncertainty in interference-limited networks: the

node distribution, the channel gains (fading), and the channel access (set of transmitting nodes). For the

performance analysis, a new parameter, the so-calledspatial contention, is defined. It measures the slope

of the outage probability in an ALOHA network as a function ofthe transmit probabilityp at p = 0.

Outage is defined as the event that the signal-to-interference ratio (SIR) is below a certain threshold in a

given time slot. It is shown that the spatial contention is sufficient to characterize outage and throughput in

large classes of wireless networks, corresponding to different positions on the uncertainty cube. Existing

results are placed in this framework, and new ones are derived.

Further, interpreting the outage probability as the SIR distribution, the ergodic capacity of unit-

distance links is determined and compared to the throughputachievable for fixed (yet optimized) trans-

mission rates.

I. INTRODUCTION

A. Background

In many large wireless networks, the achievable performance is limited by the interference. Since

the seminal paper [1] thescaling behaviorof the network throughput or transport capacity has been the

subject of intense investigations, see,e.g., [2] and references therein. Such “order-of” results are certainly

important but do not provide design insight when different protocols lead to the same scaling behavior. On

the other hand, relatively fewquantitativeresults on outage and local (per-link) throughput are available.
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While such results provide only a microscopic view of the network, we can expect concrete performance

measures that permit, for example, the fine-tuning of channel access probabilities or transmission rates.

Using a new parameter termedspatial contention, we classify and extend the results in [3]–[6] to

general stochastic wireless networks with up to three dimensions of uncertainty: node placement, channel

characteristics, and channel access.

B. The uncertainty cube

The level of uncertainty of a network is determined by its position in the uncertainty cube. The three

coordinates(ul, uf , ua), 0 6 ul, uf , ua 6 1, denote the degree of uncertainty in the node placement,

the channels, and the channel access scheme, respectively.Values of 1 indicate complete uncertainty

(and independence), as specified in Table I. The value of theuf -coordinate corresponds to the fading

Node location ul = 0 Deterministic node placement

ul = 1 Poisson point process

Channel (fading) uf = 0 No fading

uf = 1 Rayleigh (block) fading

Channel access ua = 0 TDMA

ua = 1 slotted ALOHA

TABLE I

SPECIFICATION OF THE UNCERTAINTY CUBE.

figure (amount of fading). For the Nakagami-m fading model, for example, we may defineuf , 1/m.

A network with (ul, uf , ua) = (1, 1, 1) has its nodes distributed according to a Poisson point process

(PPP), all channels are Rayleigh (block) fading, and the channel access scheme is slotted ALOHA. The

other extreme would be the(0, 0, 0) network where the node’s positions are deterministic, there is no

fading, and there is a deterministic scheduling mechanism.Any point in the unit cube corresponds to

a meaningful practical network—the three axes are independent. Our objective is to characterize outage

and throughput for the relevant corners of this uncertaintycube.

We focus on the interference-limited case, so we do not consider noise1. It is assumed that all nodes

1In the Rayleigh fading case, the outage expressions factorize into a noise part and an interference part, see (5). So, thenoise

term is simply a multiplicative factor tops.
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transmit at the same power level that can be set to 1 since onlyrelative powers matter. The performance

results are also independent of the absolute scale of the network since only relative distances matter.

C. Models, notation, and definitions

Channel model.For the large-scale path loss (deterministic channel component), we assume the standard

power law where the received power decays withr−α for a path loss exponentα. If all channels are

Rayleigh, this is sometimes referred to as a “Rayleigh/Rayleigh” model; we denote this case as “1/1”

fading. If either only the desired transmitter or the interferers are subject to fading, we speak ofpartial

fading, denoted as “1/0” or “0/1” fading, respectively.

Network model.We consider a single link of distance 1, with a (desired) transmitter and receiver in a

large network withn ∈ {1, 2, . . . ,∞} other nodes as potential interferers. The signal power (deterministic

channel) or average signal power (fading channel) at the receiver is 1. The distances to the interferers are

denoted byri. In the case of a PPP as the node distribution, the intensity is 1. For regular line networks,

the inter-node distance is1.

Transmit probabilityp. In slotted ALOHA, every node transmits independently with probability p in

each timeslot. Hence if the nodes form a PPP of unit intensity, the set of transmitting nodes in each

timeslot forms a PPP of intensityp. The interference from nodei is Ii = BiGir
−α
i , whereBi is iid

Bernoulli with parameterp and Gi = 1 (no fading) orGi is iid exponential with mean 1 (Rayleigh

fading).

Success probabilityps. A transmission is successful if the channel is not in an outage, i.e., if the

(instantaneous) SIRS/I exceeds a certain thresholdθ: ps = P[SIR > θ], whereI =
∑n

i=1 Ii. This is

the reception probability given that the desired transmit-receiver pair transmits and listens, respectively.

Effective distancesξi. The effective distanceξi of a node to the receiver is defined asξi , rα
i /θ.

Spatial contentionγ andspatial efficiencyσ. For a network using ALOHA with transmit probability

p, define

γ , −dps(p)

dp

∣

∣

∣

p=0
, (1)

i.e., the slope of the outage probability1−ps atp = 0, as thespatial contentionmeasuring how concurrent

transmissions (interference) affect the success probability. γ depends on the SIR thresholdθ, the geometry

of the network, and the path loss exponentα. Its inverseσ , 1/γ is thespatial efficiencywhich quantifies

how efficiently a network uses space as a resource.

(Local) probabilistic throughputpT . The probabilistic throughput is defined to be the success probability

multiplied by the probability that the transmitter actually transmits (in full-duplex operation) and, in
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addition in half-duplex operation, the receiver actually listens. So it is the unconditioned reception

probability. This is the throughput achievable with a simple ARQ scheme (with error-free feedback) [7].

For the ALOHA scheme, the half-duplex probabilistic throughput isph
T , p(1− p)ps and for full-duplex

it is pf
T = p ps. For a TDMA line network where nodes transmit in everym-th timeslot,pT , ps/m.

ThroughputT . The throughput is defined as the product of the probabilisticthroughput and the rate

of transmission, assuming that capacity-achieving codes are used,i.e., T , pT log(1 + θ).

Ergodic capacityC. Finally, interpreting1 − ps(θ) as the distribution of theSIR, we calculateC ,

E log(1 + SIR).

II. RELATED WORK

The study of outage and throughput performance is related tothe problem of interference characteri-

zation. Important results on the interference in large wireless systems have been derived by [5], [8]–[11].

In [4], outage probabilities for cellular networks are calculated for channels with Rayleigh fading and

shadowing while [3] determines outage probabilities to determine the optimum transmission range in a

Poisson network. [12] combined the two approaches to determine the optimum transmission range under

Rayleigh fading and shadowing. [6] provides a detailed analysis on outage probabilities and routing

progress in Poisson networks with ALOHA.

For our study of(1, 0, 1), (0, 1, 1), and(1, 1, 1) networks, we will draw on results from [3], [5], [6],

[12], as discussed in the rest of this section.

A. (1, 0, 1): Infinite non-fading random networks withα = 4 and slotted ALOHA

This case is studied in [3]. The characteristic function of the interference is determined to be2

EejωI = exp
(

−πpΓ(1− 2/α)e−jπ/αω2/α
)

(2)

and, forα = 4,

= exp
(

−π
√

π/2(1− j)p
√

ω
)

. (3)

2Note that their notation is adapted to ours. Also, a small mistake in [3, Eqn. (18)] is corrected here.
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B. (0, 1, 1): Regular fading networks withα = 2 and slotted ALOHA

In [5], the authors derive the distribution of the interference power for one- and two-dimensional

Rayleigh fading networks with slotted ALOHA andα = 2. Closed-form expressions are derived for

infinite regular line networks withri = i, i ∈ N. The Laplace transform of the interference is [5, Eqn.

(8)]

ŁI(s) =
sinh

(

π
√

s(1− p)
)

√
1− p sinh

(

π
√

s
) . (4)

The Laplace transforms of the interference are particularly convenient for the determination of outage

probabilities in Rayleigh fading. As was noted in [4], [6], [12], the success probabilityps can be expressed

as the product of the Laplace transforms of the interferenceand noise:

ps =

∫ ∞

0
e−sθdP[N + I 6 s] = LI(θ) · LN (θ) . (5)

In the interference-limited regime, the Laplace transformof the interference itself is sufficient. Other-

wise an exponential factor for the noise term (assuming noise with fixed variance) needs to be added.

C. (1, 1, 1): Random fading networks with slotted ALOHA

In [6], [12], (5) was calculated for a two-dimensional random network with Rayleigh fading and

ALOHA. Ignoring the noise, they obtained (see [6, Eqn. (3.4)], [12, (Eqn. (A.11)])

ps = e−pθ2/αC2(α) (6)

with

C2(α) =
2πΓ(2/α)Γ(1 − 2/α)

α
=

2π2

α
csc

(

2π

α

)

. (7)

The subscript 2 inC2 indicates that this is a constant for the two-dimensional case. Useful values include

C2(3) = 4π2/3
√

3 ≈ 7.6 andC2(4) = π2/2 ≈ 4.9. C2(2) = ∞, so ps → 0 as α → 2 for any θ. The

spatial contention isγ = θ2/αC2(α).

III. T HE CASE OF A SINGLE INTERFERER

To start, we consider the case of a single interferer at effective distanceξ = rα/θ transmitting with

probability p, which is the simplest case of a(0, uf , 1)-network. For the fading, we allow the desired

channel and the interferer’s channel to be fading or static.If both are Rayleigh fading (this is called the

1/1 case), the success probability is

p1/1
s = P[SIR > θ] = 1− p

1 + ξ
. (8)
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Case Spatial contentionγ

1/1 1

1+ξ

1/0 1 − exp(−1/ξ)

0/1 exp(−ξ)

0/0 1ξ61

TABLE II

SPATIAL CONTENTION γ IN THE SINGLE-INTERFERER CASE.

For a fading desired link and non-fading interferers (denoted as1/0 fading),I = Br−α with B Bernoulli

with parameterp and thus

p1/0
s = P[S > B/ξ] = 1− p(1− e−1/ξ) . (9)

In the case of0/1 fading (non-fading desired link, fading interferer),

p0/1
s = P[I < θ−1] = 1− pe−ξ . (10)

For comparison, transmission success in the non-fading (0/0) case is guaranteed ifξ > 1 or the

interferer does not transmit,i.e., p
0/0
s = 1− p1ξ61.

Hence in all cases the outage probability1− ps(p) is increasing linearly inp with slopeγ. The values

of γ are summarized in Table II.

The ordering isγ1/0 > γ1/1 > γ0/1, with equality only if ξ = 0, corresponding to an interferer at

distance0 that causes an outage whenever it transmits, in which case all γ’s are one. The statement that

1 − exp(−1/ξ) > (1 + ξ)−1, ξ > 0 is the same aslog(1 + ξ) − log ξ < 1/ξ, which is evident from

interpreting the left side as the integral of1/x from ξ to 1 + ξ and the right side its Riemann upper

approximation1/x times 1. The ordering can also be shown using Jensen’s inequality:γ1/0 > γ1/1

since E(exp(−Iθ)) > exp(−θEI) due to the convexity of the exponential. Andγ1/1 > γ0/1 since

E(1− exp(−Sξ)) < 1− exp(−ξES) due to the concavity of1− exp x. To summarize:

Proposition 1 In the single-interferer case, fading in the desired link isharmful whereas fading in the

channel from the interferer is helpful.

We also observe that for smallξ, γ1,1 / γ0,1, whereas for largerξ, γ1,1 ' γ1,0. So if the interferer

is relatively close, it does not matter whether the desired link is fading or not. On the other hand, if the

interferer is relatively large, it hardly matters whether the interferer’s channel is fading.
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The results can be generalized to Nakagami-m fading in a straightforward manner. If the interferer’s

channel is Nakagami-m fading, while the desired link is Rayleigh fading, we obtain

p1/m−1

s = 1− p

(

1− mm

(ξ−1 + m)m

)

. (11)

As a function ofm, this is decreasing for allθ > 0, and in the limit converges top1/0
s asm→∞ (see

(9)). On the other hand, if the desired link is Nakagami-m, the success probability is

pm−1/1
s = 1− p

(

mξ−1

1 + mξ−1

)m

(12)

which increasesasm increases for fixedθ > 0 and approaches (10) asm→∞.

The three success probabilitiesps(θ) are the complemetary cumulative distributions (ccdf) of the SIR.

IV. N ETWORKS WITH RANDOM NODE DISTRIBUTION

A. (1, 1, 1): One-dimensional fading random networks with slotted ALOHA

Evaluating (5) in the one-dimensional (and noise-free) case yields

ps = exp

(

−
∫ ∞

0

2p

1 + rα/θ
dr

)

= exp(−pθ1/αC1(α)) , (13)

whereC1(α) = 2π csc(π/α)/α. For finiteC1, α > 1 is needed.C1(2) = π, C1(4) = π/
√

2 =
√

C2(4).

So the spatial contention isγ = θ1/αC1(α). For a generald-dimensional network, we may conjecture

that γ = θd/αCd(α), with Cd = cd(dπ/α) csc(dπ/α) and cd , πd/2/Γ(1 + d/2) the volume of the

d-dim. unit ball.α > d is necessary for finiteγ. This generalization is consistent with [13] where it is

shown that for Poisson point processes, all connectivity properties are a function ofθ′ = θd/α and do no

depend onθ in any other way.

B. (1, 1, 1): Partially fading random networks with slotted ALOHA

If only the desired link is subject to fading (1/0 fading) andα = 4, we can exploit (2), replacingjω

by −θ, to get

p1/0
s = ŁI(θ) = e−pπΓ(1−2/α)θ2/α

. (14)

For α = 4,

p1/0
s = ŁI(θ) = e−p

√
θπ3/2

. (15)

So γ = πΓ(1 − 2/α)θ2/α which is larger than for the case with no fading at all. So, as in the single-

interferer case, it hurts the desired link if interferers donot fade.
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C. (1, 0, 1): Non-fading random networks withα = 4 and slotted ALOHA

From [3, Eqn. (21)],I−1 has the cdf

FI−1(θ) = P[1/I < θ] = 1− ps = erf

(

π3/2p
√

θ

2

)

, (16)

which is the outage probability for non-fading channels fora transmitter-receiver distance 1. For the

spatial contention we obtainγ = π
√

θ, and it can be verified (e.g., by comparing Taylor expansions) that

1− γp < ps(p) < exp(−γp) holds.

D. (1, 1, 1): Fully random networks with exponential path loss

In [14] the authors made a case for exponential path loss laws. To determine their effect on the spatial

contention, consider the exponential path loss lawexp(−δr) instead ofr−α. Following the derivation in

[6], we find

ps = exp

(

−2πp

∫ ∞

0

r

1 + exp(δr)/θ
dr

)

= exp

(

−2πp
− dilog(θ + 1)

δ2

)

, (17)

wheredilog is the dilogarithm function defined asdilog(x) =
∫ x
1 log t/(1− t)dt. Soγ = −2π dilog(θ +

1)/δ2. The (negative)dilog function is bounded by− dilog(x) < log(x)2/2 + π2/6 [15], so

γ <
π

δ2

(

log2(1 + θ) +
π2

3

)

, (18)

indicating that the spatial contention grows more slowly (with log θ instead ofθ2/α) for largeθ than for

the power path loss law. In the exponential case, finiteness of the integral is guaranteed for anyδ > 0,

in contrast to the power law whereα needs to exceed the number of network dimensions. Practicalpath

loss laws may include both an exponential and a power law part, e.g., r−2 exp(−δr). There are, however,

no closed-form solutions for such path loss laws, and one hasto resort to numerical studies.

V. NETWORKS WITH DETERMINISTIC NODE PLACEMENT

In this section, we assume thatn interferers are placed at fixed distancesri from the intended receiver.

A. (0, 1, 1): Fading networks with slotted ALOHA

In this case,ps = P[S > θI] for I =
∑n

i=1 Sir
−α
i andSi iid exponential with mean 1. For generalri

andα, we obtain fromps = E[e−θI ] = ŁI(θ)

ps =
n
∏

i=1

(

1− p

1 + ξi

)

(19)
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whereξi = rα
i /θ is the effective distance. We find for the spatial contention

γ , −dps(p)

dp

∣

∣

∣

p=0
=

n
∑

i=1

1

1 + ξi
. (20)

Sincedps/dp is decreasing,ps(p) is convex, so1− pγ is a lower bound on the success probability. On

the other hand,e−pγ is an upper bound, since

log ps =

n
∑

i=1

log

(

1− p

1 + ξi

)

/
n
∑

i=1

− p

1 + ξi
. (21)

The upper bound is tight for smallp or ξi large for mosti, i.e., if most interferers are far.

B. (0, 1, 1): Infinite regular line networks with fading and ALOHA

Here we specialize to the case of regular one-dimensional (line) networks, whereri = i, i ∈ N.

For α = 2, we obtain from (4) (or by direct calculation of (20))

γ =
1

2

(

π
√

θ coth(π
√

θ)− 1
)

. (22)

Sincex coth x − 1 < x < x coth x, this is bounded by(π
√

θ − 1)/2 < γ < π
√

θ/2, with the lower

bound being very tight as soon asθ > 1. Again the success probability is bounded by1− γp < ps(p) <

exp(−pγ), and both these bounds become tight asθ → 0, and the upper bound becomes tight also as

θ →∞.

For α = 4, we first establish the analogous result to (4).

Proposition 2 For one-sided infinite regular line networks (ri = i, i ∈ N) with slotted ALOHA and

α = 4,

ps =
cosh2

(

y(1− p)1/4
)

− cos2
(

y(1− p)1/4
)

√
1− p (cosh2 y − cos2 y)

(23)

wherey , πθ1/4/
√

2.

Proof: Rewrite (19) as

ps =

∏n
i=1(1 + (1− p)θ/i4)
∏n

i=1(1 + θ/i4)
. (24)

The factorization of both numerator and denominator according to (1− z4/i4) = (1− z2/i2)(1 + z2/i2)

permits the use of Euler’s product formulasin(πz) ≡ πz
∏∞

i=1(1 − z2/i2) with z =
√±j((1 − p)θ)1/4

(numerator) andz =
√±jθ1/4 (denominator). The two resulting expressions are complex conjugates,

and | sin(
√

jx)|2 = cosh2(x/
√

2)− cos2(x/
√

2).
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The spatial contention is

γ =
1

8

(y − 1)e2y + 4cos2 y + 4y cos y sin y − 2− (y + 1)e−2y

cosh2 y − cos2 y
. (25)

For y ' 2, the e2y (numerator) andcosh2 y (denominator) terms dominate, soγ ≈ (y − 1)/2 for y > 2.

In terms ofθ, this implies that

γ ≈ πθ1/4/(2
√

2)− 1/2 , (26)

which is quite accurate as soon asθ > 1. The corresponding approximation

ps ≈ e−p(πθ1/4/(2
√

2)−1/2) . (27)

can be derived from (23) noting that fory not too small andp not too close to1, thecosh terms dominate

the cos terms andcosh2(x) ≈ e2x/4, 1− (1− p)1/4 ≈ p/4, and(1− p)−1/2 ≈ ep/2.

For generalα, the Taylor expansion of (20) yields

γ(θ) = −
∞
∑

i=1

(−1)iζ(αi)θi . (28)

In particular,γ < ζ(α)θ. Sinceζ(x) ' 1 for x > 3, the series converges quickly forθ < 1/2. For θ > 1,

it is unsuitable.

C. (0, 1, 1): Partially fading regular networks

If only the desired link is subject to fading, the success probability is given by

ps = e−pθ
P

n
i=1

r−α
i , (29)

thusγ =
∑n

i=1 1/ξi. Compared with (20),1+ ξ is replaced byξ. So the spatial contention is larger than

in the case of full fading,i.e., fading in the interferer’s channels helps, as in the single-interferer case.

For regular line networksξi = iα/θ, soγ = θζ(α) andps = e−pθζ(α).

D. (0, 1, 0): Regular line networks with fading and TDMA

If in a TDMA scheme, only everym-th node transmits, the relative distances of the interferers are

increased by a factor ofm. Fig. 1 shows a two-sided regular line network withm = 2. Since(mr)α/θ =

rα/(θm−α), having everym-th node transmit is equivalent to reducing the thresholdθ by a factormα

and settingp = 1.

Proposition 3 The success probability for one-sided infinite regular linenetworks with Rayleigh fading

and m-phase TDMA is: Forα = 2:

ps =
y

sinh y
, wherey ,

π
√

θ

m
, (30)
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...
−4 −3 −2 −1 1 2 3 4

...

T

R

Fig. 1. Two-sided regular line network with TDMA withm = 2, i.e., every second node transmits. The filled circles indicate

the transmitters. The transmitter denoted by T is the intended transmitter, the others are interferers. The receiver atthe origin,

denoted by R, is the intended receiver. In the one-sided case, the nodes at positionsx < 0 do not exist.

and for α = 4:

ps =
2y2

cosh2 y − cos2 y
, wherey ,

πθ1/4

√
2m

. (31)

Proof: Apply L’Hôpital’s rule for p = 1 in (4) and (23) (forα = 2, 4, respectively) and replaceθ

by θm−α.

The following proposition establishes sharp bounds for arbitrary α.

Proposition 4 The success probability for one-sided infinite regular linenetworks, Rayleigh fading, and

m-phase TDMA is bounded by

e−ζ(α)θ/mα

/ ps /
1

1 + ζ(α) θ
mα

. (32)

A tighter upper bound is

ps /
1

1 + ζ(α) θ
mα + (ζ(α)− 1) θ2

m2α

. (33)

Proof: Upper bound: We only need to proof the tighter bound. Letθ′ , θ/mα. The expansion of

the product (19),p−1
s =

∏∞
i=1 1 + θ′/iα , ordered according to powers ofθ′, has only positive terms and

starts with1+ θ′ζ(α)+ θ′2(ζ(α)− 1). There are more terms withθ′2, but their coefficients are relatively

small, so the bound is tight. The lower bound is a special caseof (21).

Note that all bounds approach the exactps as θ/mα decreases. Interestingly, forα = 2, 4, the upper

bound (32) corresponds exactly to the expressions obtainedwhen the denominators in (30) and (31) are

replaced by their Taylor expansions of order2α. Higher-order Taylor expansions, however, deviate from

the tighter bound (33).

The success probabilitiesp′s for two-sided regular networks are obtained simply by squaring the

probabilities for the one-sided networks,i.e., p′s = p2
s. This follows from the fact that the distances

are related as follows:r′i = r⌈i/2⌉.
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E. Spatial contention in TDMA networks

In order to use the spatial contention framework for TDMA networks, Let p̃ , 1/m be the fraction

of time a node transmits. Nowdps/dp̃|p̃=0 = 0 sinceps depends onmα rather thanm itself. So for

TDMA, we define

γ , − dps

d(p̃α)

∣

∣

∣

p̃=0
(34)

and find γ = ζ(α)θ, which is identical to the spatial contention of the ALOHA line network with

non-fading interferers.

Table III summarizes the results on the spatial contention established in this section.

Uncertainty Spatial contentionγ Eqn. #dim. Remark

(1, 1, 1) 2πθ1/α csc(π/α)/α (13) 1 Two-sided network

2π2θ2/α csc(2π/α)/α (6) 2 From [6].

π2
√

θ/2 (6) 2 Special case forα = 4

πΓ(1− 2/α)θ2/α (14) 2 Non-fading interferers

π3/2
√

θ (15) 2 For α = 4 and non-fading interferers

(1, 0, 1) π
√

θ (16) 2 No fading, forα = 4

(0, 1, 1)
∑n

i=1 1/(1 + ξi) (20) d Deterministic node placement,n nodes

π
√

θ coth(π
√

θ)/2 − 1/2 (22) 1 One-sided regular network,α = 2

≈ πθ1/4/(2
√

2)− 1/2 (26) 1 One-sided regular network,α = 4

∑n
i=1 1/ξi (29) d Det. node placement, non-fading interf.

θζ(α) (29) 1 Regular network, non-fading interferers

(0, 1, 0) ps ' e−ζ(α)θ/mα

(32) 1 TDMA in one-sided regular networks.

TABLE III

SPATIAL CONTENTION PARAMETERS FOR DIFFERENT TYPES OF SLOTTED ALOHA NETWORKS. FOR COMPARISON, THE

TDMA CASE IS ADDED. “REGULAR NETWORK” REFERS TO AN INFINITE LINE NETWORK WITH UNIT NODE SPACING.
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VI. T HROUGHPUT ANDCAPACITY

A. (ul, uf , 1): Networks with slotted ALOHA

For networks with slotted ALOHA, define theprobabilistic throughputas

full-duplex: pf
T , p ps(p) ; half-duplex: ph

T , p(1− p) ps(p) . (35)

This is the unconditional probability of success, taking into account the probabilities that the desired

transmitters actually transmits and, in the half-duplex case, the desired receiver actually listens.

Proposition 5 (Maximum probabilistic throughput in ALOHA networks with fading) Consider a net-

work with ALOHA and Rayleigh fading with spatial contentionγ such thatps = e−pγ . Then in the

full-duplex case

popt = 1/γ ; pf
T max =

1

eγ
(36)

and in the half-duplex case

popt =
1

γ
+

1

2

(

1−
√

1 +
4

γ2

)

. (37)

and

ph
T max '

1 + γ

(2 + γ)2
exp

(

− γ

2 + γ

)

, (38)

Proof: Full-duplex:popt = 1/γ maximizesp exp(−pγ). Half-duplex: Maximizinglog ph
T (p) yields

the quadratic equationp2
opt − popt(1 + 2σ) + σ = 0 whose solution is (37). Any approximation ofpopt

yields a lower bound onph
T . Sincepopt(0) = 1/2, andpopt = Θ(γ−1) for γ →∞, a simple yet accurate

choice ispopt ' 1/(2 + γ) which results in the bound in the proposition.

Numerical calculations show that the lower bound (38) is within 1.4% of the true maximum over the

whole rangeγ ∈ R
+.

B. (0, 1, 0): Two-sided regular line networks with TDMA

Here we consider atwo-sided infinite regular line network withm-phase TDMA (see Fig. 1). To

maximize the throughputpT , ps/m, we use the bounds (32) forps. Since the network is now two-

sided, the expressions need to be squared. Letm̃opt ∈ R andm̂opt ∈ N be estimates for the truemopt ∈ N.

We find
(

θζ(α)(2α− 1)
)1/α

< m̃opt <
(

θζ(α)2α)
)1/α

, (39)
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[dB] for α = 2. The dashed lines show the approximations (41), the solid line the actual value obtained numerically.

where the lower and upper bounds stem from maximizing the upper and lower bounds in (32), respectively.

The factor 2 in2α indicates that the network is two-sided. Rounding the average of the two bounds to

the nearest integer yields a good estimate formopt:

m̂opt = ⌈
(

θζ(α)(2α− 1/2)
)1/α⌋ (40)

Fig. 2 (left) shows the bounds (39),̂mopt, and the truemopt (found numerically) forα = 2 as a function

of θ. For most values ofθ, m̂opt = mopt. The resulting difference in the maximum achievable throughput

pT max is negligibly small. We can obtain estimates on the success probability ps by inserting (39) into

(32):
(

1− 1

2α

)2

≈ ps ≈ e−1/α . (41)

In Fig. 2 (right), the actualps(θ) is shown with the two approximations forα = 2. Sincemopt is increasing

with θ, the relative error̃mopt/mopt → 0, so we expectlimθ→∞ ps(θ) to lie between the approximations

(41).

C. Rate optimization

So far we have assumed that the SIR thresholdθ is fixed and given. Here we address the problem

of finding the optimum rate of transmission for networks where γ ∝ θd/α, whered = 1, 2 indicates the
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number of network dimensions. We define thethroughputas the product of the probabilistic throughputpT

and the (normalized) rate of transmissionlog(1+θ) (in nats/s/Hz). As before, we distinguish the cases of

half-duplex and full-duplex operation,i.e., we maximizepf
T (θ) log(1+θ) (full-duplex) orph

T (θ) log(1+θ)

(half-duplex), respectively.

Proposition 6 (Optimum SIR threshold for full-duplex operation)

The throughputT = p exp(−pγ) log(1 + θ) is maximized at the SIR threshold

θopt = exp

(

W
(

−α

d
e−α/d

)

+
α

d

)

− 1 , (42)

whereW is the principal branch of the Lambert W function andd = 1, 2 is the number of network

dimensions.

Proof: Given γ, the optimump is 1/γ. With γ = cθd/α, we need to maximize

T (α, θ) =
1

ecθd/α
log(1 + θ) , (43)

whered = 1, 2 is the number of dimensions. Solving∂T/∂θ = 0 yields (42).

Remark.θopt in the two-dimensional case for a path loss exponentα equalsθopt in the one-dimensional

case for a path loss exponentα/2. In the two-dimensional case, the optimum threshold is smaller than

one forα < 4 log 2 ≈ 2.77.

The optimum (normalized) transmission rate (in nats/s/Hz)is

Ropt(α) = log(1 + θopt) =W
(

−α

d
e−α/d

)

+
α

d
, d = 1, 2 . (44)

Ropt(α) is concave forα > d, and the derivative atα = d is 2 for d = 1 and1 for d = 2. So we have

Ropt(α) < α− 2 for d = 2 andRopt(α) < 2(α − 1) for d = 1.

In the half-duplex case, closed-form solutions are not available. The results of the numerical throughput

maximization are shown in Fig. 3, together with the results for the full-duplex case. As can be seen, the

maximum throughput scales almost linearly withα−d. The optimum transmit probabilities do not depend

strongly onα and are around0.105 for full-duplex operation and0.08 for half-duplex operation. The

achievable throughput for full-duplex operation is quite exactly 10% higher than for half-duplex operation,

over the entire practical range ofα.

D. (1, 1, 1): Ergodic capacity

Based on our definitions, the ergodic capacity can be generally expressed as

C = E log(1 + SIR) =

∫ ∞

0
− log(1 + θ)dps , (45)
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Fig. 3. Left: Optimum thresholdθopt for full- and half-duplex operation as a function ofα for a two-dimensional network.

Right: Maximum throughput.

whereps(θ) is the ccdf of the SIR.

Proposition 7 (Ergodic capacity for (1, 1, 1) networks) Let C be the ergodic capacity of a link in a

two-dimensional(1, 1, 1) network with transmit probabilityp. For α = 4,

C = 2ℜ{q} cos(cp)− 2ℑ{q} sin(cp) , q , Ei(1, jcp) , (46)

wherecp = pC2(α) and Ei(1, z) =
∫∞
1 exp(−xz)x−1dx is the exponential integral. For generalα > 2,

C is lower bounded as

C > log 2 ·
(

c−α/2
p γ(1 + α/2, cp) +

(α

4
− 1
)

exp(−
√

2cp) + exp(−cp)
)

+
α

2
Ei(
√

2cp) , (47)

whereγ(a, x) =
∫ x
0 ta−1 exp(−t)dt is the lower incomplete gamma function.

The one-dimensional network with path loss exponentα (and cp = pC1(α)) has the same capacity as

the two-dimensional network with path loss exponent2α.

Proof: Let cp , pγθ−2/α = pC2(α). We have

C =
2cp

α

∫ ∞

0
log(1 + θ)θ2/α−1 exp(−cpθ

2/α)dθ (48)

= cp

∫ ∞

0
log
(

1 + tα/2
)

exp(−cpt)dt . (49)

So, the2/α-th moment of the SIR is exponentially distributed with mean1/cp. As a consequence, the

capacity of the ALOHA channel is the capacity of a Rayleigh fading channel with mean SIRc−1
p with
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an “SIR boost” exponent ofα/2 > 1. Note that since a significant part of the probability mass may be

located in the interval0 6 θ < 1, this does not mean that the capacity is larger than for the standard

Rayleigh case. This is only true if the SIR is high on average.

For generalp andα, the integral does not have a closed-form expression. Forα = 4, direct calculation

of (49) yields

C = exp(−jcp) Ei(1, jcp) + exp(−jcp) Ei(1,−jcp) , (50)

which equals (46). To find an analytical lower bound, rewrite(49) as (by substitutingt← t−1)

C = cp

∫ ∞

0

log(1 + t−α/2) exp(−cp/t)

t2
dt (51)

and lower boundlog(1 + t−α/2) by L(t) given by

L(t) =



























−α
2 log t for 0 6 t <

√
2/2

log 2 for
√

2/2 6 t < 1

log(2)t−α/2 for 1 6 t .

(52)

This yields the lower bound (47).

For rational values ofα, pseudo-closed-form expressions are available using the Meijer G function.

Fig. 4 displays the capacities and lower bounds forα = 2.5, 3, 4, 5. For smallcp (high SIR on average),

a simpler bound is

C >

∫ ∞

1
− log(θ)dps =

α

2
Ei(1, pC(α)) , (53)

To obtain thespatial capacity, the ergodic capacity needs to be multiplied by the probability (density)

of transmission. It is expected that there exists an optimump maximizing the productpC in the case of

full-duplex operation orp(1 − p)C in the case of half-duplex operation. The corresponding curves are

shown in Fig. 5. Interestingly, in the full-duplex case, theoptimump is decreasingwith increasingα. In

the half-duplex case,popt ≈ 1/9 quite exactly — independent ofα.

E. TDMA line networks

Proposition 8 (Ergodic capacity bounds for TDMA line networks) For α = 2,

2 log

(

2m

π

)

< C < log

(

1 +
7ζ(3)

π2
m2

)

(54)

and

E

√
SIR =

π

4
m ; ESIR =

7ζ(3)

π2
m2 . (55)
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For generalα > 1,

C > eζ(α)/mα

Ei(1, ζ(α)/mα) (56)

and

ESIR >
1

ζ(α)
mα . (57)

Proof: α = 2: Using (45) and (30) and substitutingt← π
√

θ/m yields

C =

∫ ∞

0
log

(

1 +

(

mt

π

)2
)

t cosh t− sinh t

sinh2 t
dt (58)

Replacinglog(1+x) by log x results in the lower bound which gets tighter asm increases. It also follows

that π
√

SIR/m is distributed as

P(π
√

SIR/m < t) =
e2t − 2tet − 1

e2t − 1
(59)

from which the moments of theSIR follow. The upper bound in (54) stems from Jensen’s inequality.

Generalα: Use the lower bound (32) onps and calculate directly.

Fig. 6 shows the ergodic capacity for the TDMA line network for α = 2, together with the lower bounds

(54) and (56) and the upper bound from (54). As can be seen, thelower bound specific toα = 2 gets

tighter for largerm. Using the lower bound (57) on the SIR together with Jensen’sinequality would

result in a good approximationC ≈ log(1 + mα/ζ(α)).

From the slope ofC(m) it can be seen that the optimum spatial reuse factorm = 2 maximizes the

spatial capacityC/m for α = 2. For α = 4, m = 3 yields a slightly higherC/m. This is in agreement

with the observation made in Fig. 5 (left) that in ALOHApopt slightly decreases asα increases.

VII. D ISCUSSION ANDCONCLUDING REMARKS

We have introduced the uncertainty cube to classify wireless networks according to their underlying

stochastic processes. For large classes of networks, the outage probabilityP(SIR < θ) of a unit-distance

link is determined by the spatial contentionγ. Summarizing the outage results:

• For (1, uf , 1) networks (PPP networks with ALOHA),γ ∝ θd/α. With Rayleigh fading,ps =

exp(−pγ), otherwiseps 6 exp(−pγ).

• For regular line networks with ALOHA (a class of(0, 1, 1) networks),γ ≈ cθd/α − 1/2. So, the

regularity is reflected in the shift inγ by 1/2, i.e., γ becomes affine inθd/α rather than linear.

• Quite generally, with the exception of deterministic networks without fading interferers,γ is a

function of θ only throughθd/α (see Table III).

June 6, 2008 DRAFT



20

2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

m

C

 

 

Capacity
Lower bound 1
Lower bound 2
Upper bound

Fig. 6. Ergodic capacity for TDMA line network forα = 2 as a function of the reuse parameterm. The solid line is the

actual capacity (49), lower bound 1 and the upper bound are from (54), and lower bound 2 is (56).

• For regular line networks withm-phase TDMA (a class of(0, 1, 0) networks),ps ≈ exp(−p̃αζ(α)θ),

where p̃ = 1/m. So the increased efficiency of TDMA scheduling in line networks is reflected in

the exponentα of p̃.

The following interpretations ofγ = σ−1 demonstrate the fundamental nature of this parameter:

• γ determines how fastps(p) decays asp increases from 0:∂ps/∂p|p=0 = −γ.

• For any ALOHA network with Rayleigh fading, there exists a unique parameterγ such that1−pγ 6

ps 6 exp(−pγ). This parameter is what we call the spatial contention. Fromall the networks studied,

we conjecture that this is true for general ALOHA networks.

• In a PPP network, the success probability equals the probability that a disk of areaγ around the

receiver is free from concurrent transmitters. So anequivalent disk modelcould be devised where

the interference radius is
√

γ/π. For a transmission over distanceR, the disk radius would scale to

R
√

γ/π.

• In full-duplex operation, the probabilistic throughput ispf
T = pe−pγ , andpopt = min{σ, 1}. So the

spatial efficiency equals the optimum transmit probabilityin ALOHA, andpf
T = σ/e. The throughput

is proportional toσ.

• The transmission capacity, introduced in [16], is defined asthe maximum spatial density of concurrent
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transmission allowed given an outage constraintǫ. In our framework, for smallǫ, ps = 1−pγ = 1−ǫ,

so p = ǫσ. So the transmission capacity is proportional to the spatial efficiency.

• Even if the channel access protocol used is different from ALOHA, the spatial contention offers a

single-parameter characterization of the network’s capabilities to use space.

Using the expressions for the success probabilitiesps, we have determined the optimum ALOHA trans-

mission probabilitiesp and the optimum TDMA parameterm that maximize the probabilistic throughput.

Further,ps(θ) enables determining both the optimumθ (rate of transmission) and the ergodic capacity.

For the cases whereγ ∝ θd/α, SIRd/α is exponentially distributed. The optimum rates and the throughput

are roughly linear inα−d, the spatial capacity is about2.5× larger than the throughput, and the penalty for

half-duplex operation is 10-20%. The optimum transmit probability popt is around 1/9 for both optimum

throughput (Fig. 3, right) and maximum spatial capacity (Fig. 4, right). The mean distance to the nearest

interferer is1/(2
√

popt) = 3/2, so for optimum performance the nearest interferer is, on average, 50%

further away from the receiver than the desired transmitter. In line networks withm-phase TDMA,ESIR

grows withmα.

The results obtained can be generalized for (desired) link distances other than one in a straightforward

manner. Many other extensions are possible, such as the inclusion of power control and directional

transmissions, as well as node distributions whose uncertainty lies inside the uncertainty cube.
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