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An Efficient Approximation to the Correlated
Nakagami-m Sums and its Application in Equal

Gain Diversity Receivers
Nikola Zlatanov, Zoran Hadzi-Velkov, and George K. Karagiannidis

Abstract—There are several cases in wireless communications
theory where the statistics of the sum of independent or corre-
lated Nakagami-m random variables (RVs) is necessary to be
known. However, a closed-form solution to the distribution of
this sum does not exist when the number of constituent RVs
exceeds two, even for the special case of Rayleigh fading. In
this paper, we present an efficient closed-form approximation for
the distribution of the sum of arbitrary correlated Nakagami-
m envelopes with identical and integer fading parameters. The
distribution becomes exact for maximal correlation, while the
tightness of the proposed approximation is validated statistically
by using the Chi-square and the Kolmogorov-Smirnov goodness-
of-fit tests. As an application, the approximation is used tostudy
the performance of equal-gain combining (EGC) systems oper-
ating over arbitrary correlated Nakagami-m fading channels,
by utilizing the available analytical results for the error-rate
performance of an equivalent maximal-ratio combining (MRC)
system.

Index Terms—Nakagami-m fading, arbitrary correlation, ap-
proximative statistics, equal gain combining (EGC), maximal
ratio combining (MRC)

I. I NTRODUCTION

T HE analytical determination of the the probability distri-
bution functions (PDF) and the cumulative distribution

functions (CDF) of the sums of independent and correlated
signals’ envelopes is rather cumbersome, yielding difficulties
in the theoretical performance analysis of some wireless
communications systems [1]. A closed-form solution for the
PDF and the CDF of the sum of Rayleigh random variables
(RVs) has not been presented for more then 90 years, except
when the number of RVs equals two. The famous Beaulieu
series for computing PDF of a sum of independent RVs were
proposed in [2]. Later, a finite range multifold integral for
PDF of the sum of independent and identically distributed
(i.i.d.) Nakagami-m RVs was proposed in [3]. A closed-form
formula for the PDF of the sum of two i.i.d. Nakagami-m
RVs was given in [4]-[6]. Exact infinite series representations
for the sum of three and four i.i.d. Nakagami-m RVs was
presented in [7], although their usefulness is overshadowed
by their computational complexity.
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The most famous application, where these sums appear,
deals with the analytical performance evaluation of equal
gain combining (EGC) systems [8]-[13]. Only few papers
address the performance of EGC receivers in correlated fading
with arbitrary-order diversity. In [14], EGC was studied by
approximating the moment generating function (MGF) of the
output SNR, where the moments are determined exactly only
for exponentially correlated Nakagami-m channels in terms
of multi-fold infinite series. A completely novel approach
for performance analysis of diversity combiners in equally
correlated fading channels was proposed in [15], where the
equally correlated Rayleigh fading channels are transformed
into a set of conditionally independent Rician RVs. Based on
this technique, the authors in [16] derived the moments of the
EGC output signal-to-noise ratio (SNR) in equally correlated
Nakagami-m channels in terms of the Appell hypergeometric
function, and then used them to evaluate the EGC performance
metrics, such as the outage probability and the error proba-
bility (using Gaussian quadrature with weights and abscissas
computed by solving sets of nonlinear equations).

All of the above works yield to results that are not expressed
in closed form due to the inherent intricacy of the exact sum
statistics. This intricacy can be circumvented by searching
for suitable highly accurate approximations for the PDF of
a sum of arbitrary number of Nakagami-m RVs. Various
simple and accurate approximations to the PDF of sum of
independent Rayleigh, Rice and Nakagami-m RVs had been
proposed in [17]-[21], which had been used for analytical
EGC performance evaluation. Based on the ideas given in [1],
the works [18]-[21] use various alternatives of the moment
matching method to arrive at the required approximation.

In this paper, we present a highly accurate closed-form
approximation for the PDF of the sum of non-identical ar-
bitrarily correlated Nakagami-m RVs with identical (integer)
fading parameters. By applying this approximation, we eval-
uate the performance of EGC systems in terms of the known
performance of an equivalent maximal ratio combining (MRC)
system [22], [24], thus avoiding many complex numerical
evaluations inherent for the methods presented in the afore-
mentioned previous works for the EGC performance analysis.
Although approximate, the offered closed-form expressions
allow to gain insight into system performance by considering,
for example, operation in the low or high SNR region.
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II. A N ACCURATE APPROXIMATION TO THE SUM OF

ARBITRARY CORRELATED NAKAGAMI -m ENVELOPES

Let Z be a sum ofL non-identical correlated Nakagami-m
envelopes,{Zk}Lk=1, defined as

Z =
L
∑

k=1

Zk . (1)

The envelopes{Zk}Lk=1 are distributed according to the
Nakagami-m distribution, whose PDF is given by [1]

fZk
(z) =

(

mz

Ωk

)mz 2z2mz−1

Γ(mz)
exp

(

−mz

Ωk
z2
)

, z ≥ 0 ,

(2)
with arbitrary average powersE[Z2

k ] = Ωk, 1 ≤ k ≤ L, and
the same (integer) fading parametermz. The power correlation
coefficient between any given pair of envelopes(Zi, Zj) is
defined as

ρij =
cov(Z2

i , Z
2
j )

√

var(Z2
i ) var(Z

2
j )
, i 6= j , (3)

whereE[·], cov(·, ·) andvar(·) denote expectation, covariance
and variance, respectively.

We propose the unknown PDF ofZ be approximated by
the PDF ofR defined as

R =

√

√

√

√

L
∑

k=1

R2
k , (4)

where Rk, 1 ≤ k ≤ L, denote a set ofL correlated
but identically distributed Nakagami-m envelopes with same
average powers,E[R2

k] = ΩR, and same fading parameters,
mR. The power correlation coefficients between any given pair
(Ri, Rj) is assumed equal to that of the respective pair of the
original envelopes(Zi, Zj), ρij .

The statistics ofR2 is easily seen to be equal to the statistics
of the sum of correlated Gamma RVs. Thus, the MGF ofR2

is represented by [26, Eq. (11)]

MR2(s) = det

(

I− s
ΩR

mR
Λ

)−mR

=

L
∏

k=1

(

1− s
ΩR

mR
λk

)−mR

(5)
where I is the L × L identity matrix andΛ is the L × L
positive definite matrix (denoted as the correlation matrix)
whose elements are the square roots of the power correlation
coefficients,

Λ =









1
√
ρ12 · · · √

ρ1L√
ρ21 1 · · · √

ρ2L
. . · · · .√
ρL1

√
ρL2 · · · 1









. (6)

TheL eigenvalues of the correlation matrixΛ are denoted by
λk, 1 ≤ k ≤ L.

Throughout literature, the PDF ofR2 is determined by using
several different approaches that result in alternative closed-
form solutions, two of which are given by [23, Eq. (29)] and

[24, Eq. (10)]. After a simple RV transformation, these two
alternatives for the PDF ofR are expressed as

fR(r) =
2r

π

∫ ∞

0

cos
[

mR

∑L−1
k=0 arctan

(

tΩRλk

mR

)

− tr2
]

∏L−1
k=0

[

1 +
(

tΩRλk

mR

)2
]mR/2

dt

(7)
=

2r2LmR−1

Γ(LmR)

(

mR

ΩR

)LmR
(

1

det(Λ)

)mR

× Φ
(L)
2

(

mR,mR, . . . ,mR;LmR;−
mR

ΩR

r2

λ1
, . . . ,−mR

ΩR

r2

λL

)

,

(8)

where Φ
(L)
2 (·) is the confluent Lauricella hypergeometric

function of L variables, defined in [33] and [24, Eqs. (9)-
(10)]. Note that (8) is here presented to demonstrate existence
of an exact closed-form solution, whereas (7) is much more
convenient for accurate and efficient numerical integration. For
example, the PDF may be obtained using the Gauss-Legendre
quadrature rule [34, Eq. (25.4.29)] over (7) [23].

Next, we apply the moment matching method to determine
the parametersΩR and mR of the proposed approximation
(7)-(8) to the PDF ofZ. In wireless communications, moment
matching methods are most typically applied to approximate
distributions of the sum of log-normal RVs [29]. Most recently,
a variant of moment matching, matching of the normalized
first and second moments, had been applied to arrive at an
improved approximation to the sum of independent Nakagami-
m RVs via theα-µ distribution [20]-[21].

We arrive at required approximation by matching the first
and the second moments of the powers ofZ andR, i.e., the
second and fourth moments of the envelopesZ andR,

E[Z2] = E[R2], E[Z4] = E[R4] . (9)

Matching the first and the second moments of the powers aids
the analytical tractability of the proposed approximationdue
to the availability of the MGF ofR2 in closed form, given by
(5). The second and the fourth moments ofR are determined
straightforwardly by applying the moment theorem over (5),
yielding

E[R2] =
dMR2(s)

ds

∣

∣

∣

∣

∣

s=0

= ΩR

L
∑

l=1

λl = ΩRL , (10)

E[R4] =
d2MR2(s)

ds2

∣

∣

∣

∣

∣

s=0

=
Ω2

R

mR

[

L
∑

l=1

λ2l +mRL
2

]

. (11)

Introducing (10) and (11) into (9), one obtains the unknown
parameters for the statistics ofR

ΩR =
E[Z2]

L
, mR =

∑L
l=1 λ

2
l

L2

(E[Z2])2

E[Z4]− (E[Z2))2
. (12)

Using the multinomial theorem and [1, Eq. (137)], the second
and the fourth moments ofZ are determined as

E[Z2] =

L
∑

k=1

Ωk +
2Γ2(mz + 1/2)

mzΓ2(mz)

×
L
∑

i=1

L
∑

j=i+1

√

ΩiΩj 2F1 (−1/2,−1/2;mz; ρij) , (13)
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E[Z4] =
mz + 1

mz

L
∑

m=1

Ω2
m +

6Γ2(mz + 1)

m2
zΓ

2(mz)

L
∑

i=1

L
∑

j=i+1

ΩiΩj

×2F1 (−1,−1;mz; ρij) +
4Γ(mz + 3/2)Γ(mz + 1/2)

m2
zΓ

2(mz)

×
L
∑

i=1

L
∑

j=i+1

(Ω
3/2
i Ω

1/2
j +Ω

1/2
i Ω

3/2
j )2F1

(

−3

2
,−1

2
;mz; ρij

)

+12

L
∑

m=1

L
∑

i=m+1

L
∑

j=i+1

Ωm

√

ΩiΩjE[Z2
mZiZj]

+12
L
∑

m=1

L
∑

i=m+1

L
∑

j=i+1

√

ΩmΩi

√

ΩjE[ZmZ
2
i Zj]

+12

L
∑

m=1

L
∑

i=m+1

L
∑

j=i+1

√

ΩmΩiΩjE[ZmZiZ
2
j ]

+ 24

L
∑

m=1

L
∑

n=m+1

L
∑

i=n+1

L
∑

j=i+1

√

ΩmΩnΩiΩjE[ZmZnZiZj ] ,

(14)
where2F1(·) is the Gauss hypergeometric function [31]. The
joint momentsE[Z2

mZiZj], E[ZmZ
2
i Zj ], E[ZmZiZ

2
j ] and

E[ZmZnZiZj ] are not known in closed-form for arbitrary
branch correlation. Exact closed-form expressions are avail-
able only for some particular correlation models, such as the
exponential and the equal correlation models. For the case or
arbitrary correlation, we utilize the method presented in [27],
where an arbitrary correlation matrixΛ is approximated by its
respective Green’s matrix, followed by the application of the
available joint moments of the exponential correlation model.

A. Equal correlation model

Equal correlation typically corresponds to the scenario of
multichannel reception from closely spaced diversity antennas
(e.g., three antennas placed on an equilateral triangle). This
model may be employed as a worst case correlation scenario,
since the impact of correlation on system performance for
other correlation models typically will be less severe [22],
[30].

For this correlation model, the power correlation coefficients
are all equal,

ρij = ρ, i 6= j, 0 ≤ ρ ≤ 1 . (15)

Whenmz is assumed to be integer, the unknown joint mo-
ments in (14) can be expressed in closed-form as [16, Eq.
(43)]

E[Z2
mZiZj] = E[ZmZ

2
i Zj ] = E[ZmZiZ

2
j ]

=

(

1−√
ρ

mz

)2

W (2, 1, 1) , (16)

E[ZmZnZiZj ] =

(

1−√
ρ

mz

)2

W (1, 1, 1, 1) , (17)

where the coefficientsW (· · ·) are determined as

W (k1, ..., kN ) =





N
∏

j=1

Γ(mz + kj/2)

Γ(mz)





(

1−√
ρ

1 + (N − 1)
√
ρ

)mz

×F (N)
A

(

mz;mz +
k1
2
, · · · ,mz +

kN
2

;mz, · · · ,mz;

√
ρ

1 + (N − 1)
√
ρ
, · · · ,

√
ρ

1 + (N − 1)
√
ρ

)

, (18)

with F (N)
A (·) denoting the LauricellaFA hypergeometric func-

tion of N variables, defined by [31, Eq. (9.19)] and [25, Eqs.
(11)-(13)].

Note that the coefficientW (2, 1, 1) needs to be evaluated
whenL ≥ 3, whereas the coefficientW (1, 1, 1, 1) needs to be
evaluated whenL ≥ 4. In Appendix A,W (2, 1, 1) is reduced
to the more familiar hypergeometric functions, attaining the
form given by (A.2).W (1, 1, 1, 1) requires numerical evalua-
tion of the LauricellaFA function of 4 variables, which can
be computed with desired accuracy by using one of the two
numerical methods presented in [25, Section IV.A].

The assumption of equal average powers,Ωk = ΩZ , 1 ≤
k ≤ L, yields independence ofmR from ΩZ . For this case,
Table I gives the values ofmR for several combinations ofρ,
L andmZ . The use of Table I aids the practical applicability
of our approach for the case of equal average powers.

For the equal correlation model, the eigenvalues ofΛ are
exactly found asλ1 = 1+ (L− 1)

√
ρ andλk = (1−√

ρ) for
2 ≤ k ≤ L, so the statistics ofR2 is identical to that of the
sum of a pair of independent Nakagami RVs. Thus, the MGF
of R2 is given by [30, Eq. (9.213)], whereas the PDF ofR is
given by [30, Eq. (9.208)]

fR(r) =

(

mR

ΩR

)mRL

× 2r2mRL−1 exp
(

−mRr
2/((1−√

ρ)ΩR)
)

Γ(mRL)(1−
√
ρ)mR(L−1)(1 + (L− 1)

√
ρ)mR

×1F1

(

mR;mRL;
mRL

√
ρ

(1−√
ρ)(1 + (L− 1)

√
ρ)ΩR

r2
)

, (19)

where1F1(·) is the Kummer confluent hypergeometric func-
tion [31, Eq. (9.210)].

B. Exponential correlation model

Exponential correlation typically corresponds to the sce-
nario of multichannel reception from equispaced diversityan-
tennas in which the correlation between the pairs of combined
signals decays as the spacing between the antennas increases
[22], [30].

For this correlation model, the power correlation coefficients
are determined as

ρij = ρ|i−j|, 0 ≤ ρ ≤ 1 . (20)

The unknown joint moments in (14),E[Z2
mZiZj ],

E[ZmZ
2
i Zj], E[ZmZiZ

2
j ] and E[ZmZnZiZj], can be

calculated from [14, Eqs. (11) and (12)]. The Appendix B
derives simpler alternatives to [14, Eqs. (11) and (12)], which
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TABLE I
FADING PARAMETERmR FOR SOME FEASIBLE SCENARIOS WITH EQUAL CORRELATION

mz = 1 mz = 2 mz = 3

ρ L = 2 L = 3 L = 4 L = 2 L = 3 L = 4 L = 2 L = 3 L = 4

mR mR mR mR mR mR mR mR mR

0 0.9552 0.9411 0.9343 1.947 1.93 1.9217 2.943 2.9258 2.9168

0.2 0.9195 0.8884 0.8709 1.9102 1.876 1.8569 2.9068 2.8715 2.8518

0.4 0.9156 0.8841 0.8672 1.907 1.8722 1.8535 2.9039 2.868 2.8487
0.6 0.9304 0.9056 0.8929 1.9242 1.8971 1.8831 2.9222 2.8944 2.8799

0.8 0.9587 0.9445 0.9374 1.956 1.9409 1.9333 2.9553 2.9399 2.9321

TABLE II
FADING PARAMETERmR FOR SOME FEASIBLE SCENARIOS WITH EXPONENTIAL CORRELATION

mz = 1 mz = 2 mz = 3

ρ L = 2 L = 3 L = 4 L = 2 L = 3 L = 4 L = 2 L = 3 L = 4

mR mR mR mR mR mR mR mR mR

0 0.9552 0.9411 0.9343 1.947 1.93 1.9217 2.943 2.9258 2.9168

0.2 0.9195 0.9033 0.9015 1.9102 1.892 1.8897 2.9068 2.8878 2.8852

0.4 0.9156 0.8887 0.88 1.907 1.877 1.8675 2.9039 2.8728 2.8629

0.6 0.9304 0.8988 0.8817 1.9242 1.889 1.87 2.9222 2.8858 2.866
0.8 0.9587 0.934 0.9162 1.956 1.9291 1.9093 2.9553 2.9277 2.9072

involve a single infinite sum and a familiar hypergeometric
function,

E[Zn1

m Zn2

i Zn3

j ] =
|∆|mz

δ
mz+n1/2
11 δ

mz+n2/2
22 δ

mz+n3/2
33

× Γ(mz + n3/2)

Γ2(mz)m
(n1+n2+n3)/2
z

∞
∑

k=0

(

δ212
δ11δ22

)k

× Γ(mz + k + n1/2)Γ(mz + k + n2/2)

Γ(mz + k)k!

×2F1

(

mz + k +
n2

2
,mz +

n3

2
,mz,

δ223
δ22δ33

)

, (21)

E[ZmZnZiZj ] =
|Ψ|mz

(ψ11ψ22ψ33ψ44)mz+1/2

Γ2(mz + 1/2)

Γ3(mz)m2
z

×
∞
∑

k=0

Γ2(mz + k + 1/2)

k!Γ(mz + k)

(

ψ2
23

ψ22ψ33

)k

× 2F1

(

mz +
1

2
, k +mz +

1

2
,mz,

ψ2
12

ψ11ψ22

)

×2F1

(

mz +
1

2
, k +mz +

1

2
,mz,

ψ2
34

ψ33ψ44

)

. (22)

In (21), (n1, n2, n3) = (2, 1, 1) for the calculation of
E[Z2

mZiZj ], (n1, n2, n3) = (1, 2, 1) for the calculation of
E[ZmZ

2
i Zj] and (n1, n2, n3) = (1, 1, 2) for the calculation

of E[ZmZiZ
2
j ]. The matrix∆ = [δi,j ] is the inverse ofΛ’s

principal submatrix composed of them-th, i-th andj-th rows
and columns ofΛ, whereas the matrixΨ = [ψi,j ] is the
inverse ofΛ’s principal submatrix composed of them-th,n-th,
i-th andj-th rows and columns ofΛ,

∆ =





1
√
ρmi

√
ρmj√

ρim 1
√
ρij√

ρjm
√
ρji 1





−1

,

Ψ =









1
√
ρmn

√
ρmi

√
ρmj√

ρnm 1
√
ρni

√
ρnj√

ρim
√
ρin 1

√
ρij√

ρjm
√
ρjm

√
ρji 1









−1

. (23)

The exactness of (21)-(22) arise from the fact that both
matrices∆ andΨ are tridiagonal matrices due to (20) [27,
Section IV]. Introducing (21)-(22) into (14), one obtains the
closed-form expression forE[Z4], which is omitted here
for brevity. Combining (13)-(14) into (12), one obtains the
unknown parametersΩR andmR for the statistics ofR.

The assumption of equal average powers,Ωk = ΩZ ,
1 ≤ k ≤ L, again renders independence ofmR from ΩZ for
the exponential correlation model. Under such assumptions,
Table II displays the values ofmR for several illustrative
combinations ofρ, L andmZ .

C. Arbitrary correlation model

In the general case of arbitrary branch correlations, the cor-
relation matrixΛ is approximated by its appropriate Green’s
matrix, C, utilizing the method presented in [27, Section
IV]. Since principal submatrices of Green’s matrices are also
Green’s matrices, the matrices∆ andΨ, defined by (23), are
determined to be tridiagonal, yielding direct applicability of
the results presented in Section II.B to determine the unknown
parametersΩR and mR for the statistics ofR. Thus, the
statistics ofZ are approximated by the statistics ofR, whose
arbitrary correlation matrixΛ is approximated by the Green’s
matrixC. In the following subsection, we illustrate the highly
accurate approximation to the PDF ofZ facilitated by this
approach.

D. Validation via statistical goodness-of-fit tests

We now statistically validate the proposed PDF approxima-
tions for equal, exponential and arbitrary branch correlation by
using two different goodness-of-fit tests. The Chi-square (C-
S) and Kolmogorov-Smirnov (K-S) tests provide two different
statistical metrics,χ2

n andDn, which describe the discrepancy
between the observed samples ofZ and the samples expected
under the analytical distribution (7)-(8).

Each metric is averaged over 100 statistical samples, where
each statistical sample comprises of 10000 independent ran-
dom samples ofZ. The random samples ofZ are generated



5

TABLE III
SIGNIFICANCE LEVELS OFC-SAND K-S TESTS FOR GOODNESS

OF FIT BETWEEN THE EXACT AND THE APPROXIMATIVE DISTRIBUTIONS OFFIG. 1

mz = 1 mz = 3

ρ L = 2 L = 5 L = 2 L = 5

αCS αKS αCS αKS αCS αKS αCS αKS

0.2 0.004 0.02 0.17 0.06 < 0.001 < 0.001 < 0.001 < 0.001
0.7 0.04 0.03 0.2 0.18 < 0.001 < 0.001 < 0.001 < 0.001

TABLE IV
SIGNIFICANCE LEVELS OFC-SAND K-S TESTS FOR GOODNESS

OF FIT BETWEEN THE EXACT AND THE APPROXIMATIVE DISTRIBUTIONS OFFIG. 2

mz = 1 mz = 3

ρ L = 2 L = 5 L = 2 L = 5

αCS αKS αCS αKS αCS αKS αCS αKS

0.2 < 0.001 0.02 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

0.7 0.08 0.04 0.02 0.17 < 0.001 < 0.001 < 0.001 < 0.001
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Fig. 1. Exact (obtained by simulation) and the approximative analytical
PDFs to the sum of equally correlated Nakagami-m RVs with equal average
powers, whenΩZ = 1

by computer simulations of correlated Nakagami-mRVs based
on the method proposed in [28, Section VII].

For each metric, we calculate the significance levelα from
the C-S and K-S distributions, respectively denoted asαCS

andαKS . The significance levelα represents the probability of
rejecting the tested null hypothesis (H0: ”the random samples
of Z, obtained from (1), belong to the distribution given by (7)-
(8)”), when it is actually true. The small values ofα indicate
a good fit.

Note that, significance levelsα less then0.2 still indicate a
good fit, due to the rigourousness of both C-S and K-S tests
in accepting the null hypothesisH0.

1) Equal and exponential correlation:For the equal and
exponential correlation models, the goodness-of-fit testing is
conducted for combinations of the followings input parame-
ters:L = 2 and5,mZ = 1 and3, ρ = 0.2 and0.7, whereas the
average powers ofZk are assumed equal to unity (ΩZ = 1).
The needed fading parametermR of distribution (7)-(8) is
obtained directly from Tables I and II, whereas the average
powerΩR is calculated from (12).
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Fig. 2. Exact (obtained by simulation) and the approximative analytical PDFs
to the sum of exponentially correlated Nakagami-m RVs with equal average
powers, whenΩZ = 1

Figs. 1 and 2 depict the excellent (visual) match between
the histogram obtained from generated samples ofZ and the
proposed approximation, for the cases of equal and exponential
correlation models, respectively. Tables III and IV complement
Figs. 1 and 2, by presenting the significance levelsα for
the corresponding input parameters’ combinations. The Table
III and the Table IV entries reveal the very low significance
levelsα for all input parameters’ combinations, thus proving
an excellent goodness of fit in statistical sense.

2) Arbitrary correlation: For illustrative purposes, we use
same two example correlation matrices from [27, Sections V.B
and V.D], Σ3 lin and Σ4 circ, here denoted asΛ1 and Λ2,
respectively. They are approximated by their Green’s matrices
C3 lin andC4 circ, here denoted asC1 andC2, respectively.

Using C1 and C2, one obtains the needed tridiagonal
matrices∆ andΨ from their definitions given by (23). The
required joint moments are then calculated from (21) and (22),
which are then substituted into (13) and (14) to calculate
E[Z2] and E[Z4], and then (12) is used to describe the
statistics ofR.
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TABLE V
SIGNIFICANCE LEVELS OFC-SAND K-S TESTS FOR GOODNESS OF FIT

BETWEEN EXACT AND APPROXIMATIVE DISTRIBUTIONS OFFIG. 3

mz = 1 mz = 3

αCS αKS αCS αKS

Λ1 0.19 0.18 < 0.001 < 0.001

Λ2 0.12 0.11 < 0.001 < 0.001
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Fig. 3. Exact (obtained by simulation) and the approximative analytical PDFs
to the sum of correlated Nakagami-m RVs with equal average powers, when
ΩZ = 1), and correlation matricesΛ1 andΛ2

Fig. 3 depicts the excellent (visual) match between the
histogram obtained from generated samples ofZ and the
proposed approximation (7)-(8), for the two example corre-
lation matricesΛ1 and Λ2. Table V complements Figs. 3,
by revealing the very low significance levelsαs, thus again
proving an excellent goodness of fit.

E. Validation in case of maximal correlation

We now consider the case of maximal correlation coefficient
between any pair of Nakagami-m envelopesZi andZj , i.e.,
ρij = 1. It indicates a perfect linear relationship between these
pairs, which, after applying the model from [16, Eq. (37)], can
be defined asZi =

√
Ωi Z0 for 1 ≤ i ≤ L, whereZ0 is an

auxiliary Nakagami-m RV with unity average power and same
fading parametermz. After replacing the latter expression into
(1), Z is transformed into a Nakagami-m RV with fading
parametermz and average power of

E[Z2] =

(

L
∑

i=1

√

Ωi

)2

=

L
∑

i=1

L
∑

j=1

√

ΩiΩj , (24)

which agrees with (13) whenρij → 1.
Replacingρij = 1 into (6), theL − 1 eigenvalues of the

matrix Λ turn up equal to 0, exceptλ1 = L. After plugging
these eigenvalues into (5),R is transformed into a Nakagami-
m RV with fading parametermR and average powerLΩR.
After the moment matching,ΩR and mR can be obtained

from (12), as

ΩR =
1

L

L
∑

i=1

L
∑

j=1

√

ΩiΩj , mR =
(E[Z2])2

E[Z4]− (E[Z2])2
= mz ,

(25)
respectively, where the latter equality is attributed to the
definition of the Nakagami-m fading parameter, given by [1,
Eq. (4)].

Thus, maximal correlation yields (7)-(8) as an accurate
distribution of Z, when our moment matching approach is
applied. This conclusion further validates our approach.

III. A PPLICATION TO THE PERFORMANCE ANALYSIS OF

EGC RECEIVERS

We now consider a typicalL-branch EGC diversity receiver
exposed to slow and flat Nakagami-m fading. The envelopes of
the branch signalsZk are non-identical correlated Nakagami-
m random processes with PDFs given by (2), whereas their
respective phases are i.i.d. uniform random processes. Each
branch is also corrupted by additive white Gaussian noise
(AWGN) with power spectral densityN0/2, which is added
to the useful branch signal. In the EGC receiver, the random
phases of the branch signals are compensated (co-phased),
equally weighted and then summed together to produce the
decision variable. The envelope of the composite useful sig-
nal, denoted byZ, is given by (1), whereas the composite
noise power is given byσ2

EGC = LN0/2, resulting in the
instantaneous output SNR given by

γEGC =
Z2

2σ2
EGC

=
1

LN0

(

L
∑

k=1

Zk

)2

=

(

L
∑

k=1

Gk

)2

(26)

where RVsGk = Zk/
√
LN0, 1 ≤ k ≤ L, form a set ofL non-

identical equally correlated Nakagami-m RVs with E[G2
k] =

γ̄k/L, same fading parametersmZ and correlation coefficient
ρij between branch pair(i, j). Note thatγ̄k = Ωk/N0 denotes
the average SNR ink-th branch.

Using the results from Section II, the MGF and the PDF of
(26) can be approximated using (5) and (7)-(8), respectively,
whenΩR is replaced bȳγR = ΩR/(LN0). These approxima-
tions are then used to determine the outage probabilityFγEGC

and the error probabilitȳPEGC of anL-branch EGC systems
in correlated Nakagami-m fading with high accuracy.

A. Outage probability

The outage probability of the EGC system with arbitrary
correlated Nakagami-m fading branches, whose output SNR
drops below thresholdt, is approximated by the known outage
probability expressions of an equivalent MRC system [23, Eq.
(28)], [24, Eq. (13)],

FγEGC
(t) ≈ FγMRC

(t)

=
1

2
− 1

π

∫ ∞

0

sin
[

mR

∑L−1
k=0 arctan

(

xΩRλk

mR

)

− xt
]

∏L−1
k=0

[

1 +
(

xΩRλk

mR

)2
]mR/2

dx

x
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Fig. 4. Exact and approximate error probabilities of an EGC receiver with
correlated Nakagami-m branches, whenmz = 2, µ = 0 andρ = 0.7

=
1

Γ(1 + LmR)

(

mR

ΩR
t

)LmR 1

det(Λ)

×Φ
(L)
2

(

mR,mR, . . . ,mR; 1 + LmR;

− mR

ΩRλ1
t,− mR

ΩRλ2
t, . . . ,− mR

ΩRλL
t

)

. (27)

For the equal correlation model, (27) can be simplified using
[31, Eq. (2.1.3(1))].

B. Average error probability

The average error probability of the correlated Nakagami-m
EGC system with BPSK modulation / coherent demodulation
is approximated using the available expressions for the average
error probability of the equivalent MRC systems. Based on
[30, Eq. (9.11)] and [24, Eq. (17)], the error performance of
this EGC system is alternatively approximated as

P̄EGC−BPSK ≈ P̄MRC−BPSK =
1

π

∫ π/2

0

MR2

( −1

sin2 θ

)

dθ

(28)

=
Γ(LmR + 1/2)

2
√
πΓ(LmR + 1)

(

mR

ΩR

)LmR
(

1

det(Λ)

)mR

×F
(L)
D

(

LmR + 1/2,mR, . . . ,mR;LmR + 1;

− mR

ΩRλ1
,− mR

ΩRλ2
, . . . ,− mR

ΩRλL

)

. (29)

In (28),MR2(·) is replaced with the MGF given by (5). In (29),
F

(L)
D (·) denotes the LauricellaFD hypergeometric function

of L variables, defined in [33] and [24, Eq. (18)]. For the
equal correlation model, the average error probability canbe
calculated using [22, Eq. (32)], which is a special case of (29).

Note that (29) is here presented to demonstrate existence of
an exact closed-form solution, whereas (28) is much more
convenient for accurate and efficient numerical integration.
For example, the average error probability may be obtained
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Fig. 5. Exact and approximate error performance of an EGC receiver with
correlated Nakagami-m branches, whenmz = 2, µ = 0.3 andρ = 0.7
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Fig. 6. Exact and approximate error performance of an EGC receiver with
correlated Nakagami-m branches, when correlation is described by correlation
matricesΛ1 andΛ2, mz = 2 andµ = 0

by applying the Gauss-Chebyshev quadrature rule [34, Eq.
(25.4.38)] over (28). In the case of the balanced diversity
branches with equal or exponential correlation, the combina-
tion of this quadrature rule with Tables I and II allows efficient
and extremely accurate evaluation of the EGC performance.

The average error probability of correlated Nakagami-
m EGC system with BFSK modulation / non-coherent de-
modulation is approximated by known expression of the
equivalent MRC system [26, Eq. (16)],̄PEGC−BFSK ≈
P̄MRC−BFSK = 1

2 MR2(− 1
2 ), whereMR2(·) is given by (5).

C. Validation via Monte-Carlo simulations

Next, we illustrate the tightness of the error performance of
an correlated Nakagami-m EGC system with BPSK modula-
tion / coherent demodulation to that of the equivalent MRC
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system. The results for the actual EGC system are obtained
by Monte-Carlo simulations, whereas those of the equivalent
MRC system are obtained using (28).

1) Equal and exponential branch correlation:Figs. 4 and 5
displays the comparative error performance of the actual EGC
and the equivalent MRC systems, for several combinations
of (ρ, L,mZ ,Ωk). In order to accommodate unequal average
branch powers (thus, unequal average branch SNRs), we used
the exponentially decaying profile, modelled as

Ωk = Ω1 exp(−µ(k − 1)), 1 ≤ k ≤ L , (30)

where Ω1 is the average power of branch 1 andµ is the
decaying exponent, withµ = 0 denoting the case of branches
with equal power (i.e., the balanced branches).

2) Arbitrary branch correlation: Fig. 6 depicts the com-
parative error performances of the EGC with same correlation
matrices from Section II.D,Λ1 and Λ2, and the equivalent
MRC system with respective Green’s matricesC1 and C2.
The high accuracy of our approach is maintained for arbitrary
branch correlations.

IV. CONCLUSIONS

A tight closed-form approximation to the distribution of the
sum of correlated Nakagami-m RVs was introduced for the
case of identical and integer fading parameters. The proposed
method approximates this distribution by using the statistics of
the square-root of the sum of statistically independent Gamma
RVs. Examples indicate that the new approximation is highly
accurate over the entire range of abscissas. To demonstrate
this more rigorously, the proposed distribution is tested against
the computer generated data by the use of the Chi-square
and the Kologorov-Smirnov goodness-of-fit tests. In case of
maximal correlation, the proposed distribution becomes the
exact distribution.

The presented approach allowed to successfully tackle
the famous problem of analytical performance evaluation of
an EGC system with arbitrarily correlated and unbalanced
Nakagami-m branches. The significance of the presented re-
sults is underpinned by the existence of a large body of liter-
ature dealing with MRC performance analysis, which permits
highly accurate and efficient EGC performance evaluation.

APPENDIX A

Using [31, Eqs. (9.212 (1)) and (7.622 (1))], one has the
following identity

J(m, a, p, q) =
1

Γ(m)

×
∫ ∞

0

um−1e−u
1F1

(

−p
2
;m;−au

)

1F1

(

− q
2
;m;−au

)

du

= (1 + a)
p
2

(

1 + 2a

1 + a

)
q

2

2F1

(

m+
p

2
,− q

2
;m;− a2

1 + 2a

)

(A.1)
Using [31, Eq. (9.212 (3)), pp. 1023] with some simple alge-
braic manipulations, the general form (18) of the coefficient

W (2, 1, 1) can be simplified as

W (2, 1, 1) = mz

(

Γ(mz + 1/2)

Γ(mz)

)2( 1−√
ρ

1 + (N − 1)
√
ρ

)mz

×
[

J(mz , a, 1, 1) +
a(mz + 1/2)2

m2
z

× J(mz + 1, a, 1, 1) +
a

4m2
z

J(mz + 1, a,−1,−1)

−a(mz + 1/2)2

m2
z

J(mz + 1, a,−1, 1)

]

(A.2)

wherea =
√
ρ/(1 + (N − 1)

√
ρ)

APPENDIX B

The unknown joint moments in (14),E[Z2
mZiZj ],

E[ZmZ
2
i Zj], E[ZmZiZ

2
j ] andE[ZmZnZiZj ] can be calcu-

lated from [14, Eqs. (11) and (12)]. Here we derive their
simpler and computationally more efficient alternatives. The
alternative to [14, Eq. (12)] is derived directly from the
definition of the joint momentE[Z1Z2Z3Z4],

E[ZmZnZiZj] =

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

zmznzizj

×fZmZnZiZj
(zm, zn, zi, zj)dzmdzndzidzj , (B.1)

where joint pdf of four exponentially correlated Nakagami-m
RVs is expressed as [14, Eq. (9)]

fZmZnZiZj
(zm, zn, zi, zj)

=
24mmz+3

z |Ψ|mz

Γ(mz)

zmz
m znziz

mz

j

|ψ12ψ23ψ34|mz−1

×Imz−1 (2mz|ψ12|zmzn) Imz−1 (2mz|ψ23|znzi)
×Imz−1(2mz|ψ34|zizj) exp

(

−mz

(

ψ11z
2
m

+ψ22z
2
n + ψ33z

2
i + ψ44z

2
j

)

)

, (B.2)

whereΨ = [ψi,j ] is defined by (23). Now, we integrate [14,
Eq. (11)] overzm andzj, respectively obtaining
∫ ∞

0

zmz+1
m exp

(

−mzψ11z
2
m

)

Imz−1 (2mzψ12zmzn)

=
1

2
(mzψ12zn)

mz−1
(mzψ11)

−(mz+1/2)

×Γ(mz + 1/2)

Γ(mz)
1F1

(

mz +
1

2
;mz;mz

ψ2
12

ψ11
z2n

)

, (B.3)

and
∫ ∞

0

zmz+1
j exp

(

−mzψ44z
2
j

)

Imz−1 (2mzψ34zizj)

=
1

2
(mzψ34zn)

mz−1
(mzψ44)

−(mz+1/2)

×Γ(mz + 1/2)

Γ(mz)
1F1

(

mz +
1

2
;mz;mz

ψ2
34

ψ44
z2i

)

. (B.4)

We then use the series expansion of the modified Bessel
function of first kind [31, Eq. (8.445)] that allows to separate
the integrations per variableszn and zi, yielding (22). A
similar procedure yields to an alternative of [14, Eq. (11)]
given by (21).
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