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Random Access Transport Capacity

Jeffrey G. Andrews, Steven Weber, Marios Kountouris, Martin Haenggi

Abstract

We develop a new metric for quantifying end-to-end throughput in multihop wireless networks,

which we term random access transport capacity, since the interference model presumes uncoordinated

transmissions. The metric quantifies the average maximum rate of successful end-to-end transmissions,

multiplied by the communication distance, and normalized by the network area. We show that a simple

upper bound on this quantity is computable in closed-form in terms of key network parameters when

the number of retransmissions is not restricted and the hops are assumed to be equally spaced on a

line between the source and destination. We also derive the optimum number of hops and optimal

per hop success probability and show that our result follows the well-known square root scaling law

while providing exact expressions for the preconstants as well. Numerical results demonstrate that the

upper bound is accurate for the purpose of determining the optimal hop count and success (or outage)

probability.

I. INTRODUCTION

Determining the capacity of distributed wireless networks (i.e., ad hoc networks) is one of the

most general and challenging open problems in information theory. Straightforward applications

of known information theoretic tools and inequalities becomes intractable almost immediately

and have hence yielded little in the way of results. This motivates the exploration of approaches

to describing ad hoc network throughput that, while falling short of strict information theory

upper bound standards, do provide insight into the fundamental trends on achievable throughput.
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A. Motivation and Related Work

The main line of present inquiry is to consider the transport capacity of an ad hoc network,

which quantifies the bits per second that can be reliably communicated over some distance in

the network [1]. A significant merit of this approach is that it describes important aspects of the

capacity region of all possible rate pairs in the network – notably how the region scales with

the number of nodes n – and has provided high-level insight on how different network scenarios

and approaches may affect the scaling law. Notwithstanding special cases that suggest more

optimistic scalings [2], [3], [4], it is generally agreed that the scaling law in ad hoc networks

is Θ(
√
n) and can be achieved with nearest-neighbor routing through the network [5], [6], [7],

[8], [9]. Despite this considerable progress, a common limitation of this line of research is that

the main results are typically asymptotic scaling laws that do not easily allow capacity tradeoffs

to be made based on the salient network parameters and design choices. Although many efforts

have been made to better understand the transport capacity preconstants, e.g. [10], [11], [12], in

general tractability has suffered and/or several essential aspects of ad hoc networks have had to

be abstracted out.

An alternative approach pioneered by the current authors and others has focused on computing

achievable rate regions and network densities for different architectures and technologies. A key

to this approach is to assume that the interferer locations are random, in particular that they are

Poisson distributed over the plane. Although this is an idealization, it accurately models the sce-

nario where transmitters are randomly scattered and uncoordinated, which seems to be quite a bit

more realistic than other popular alternatives, such as assuming they are placed deterministically

on a regular grid. This approach has allowed closed-form derivation of outage probability as

well as the maximum allowable transmission density at a specified outage probability and data

rate, the latter of which we have termed the transmission capacity [13], [14], [15]. The analytical

tractability of this approach (using tools from stochastic geometry [16], [17]) has to date allowed

quantitative design tradeoffs for spread spectrum [13], [18], [19], interference cancellation [20],

[21], multiple-antenna architectures [22], [23], [24], [25], cognitive radio and capacity overlays

[26], [27], [28] and power control [14], [29].

A common shortcoming of the transmission capacity approach is that it considers a typical

network snapshot, and hence only simultaneous single hop transmissions. The primary goal of

this paper is to address this limitation, and we develop a related metric which we term the



3

random access transport capacity because it presumes packets are transported end-to-end over

some distance R, but assumes independent locations and transmissions for the interferers. In

that sense, one contribution of the paper is to find a middle ground between the transport and

transmission capacity approaches into the capacity of multihop wireless networks. As one might

expect, the results of this paper follow the Θ(
√
n) scaling law, but provide additional information

on the preconstants.

Complementary to the transport capacity research, some recent work has formulated the

multihop capacity problem as a line network without additional network interference [30], [31].

Both of these papers agree that numerous hops are helpful only in the “power-limited” regime,

that is where the spectral efficiency is low and overcoming noise is the primary concern. Both

also find that in the “bandwidth-limited regime” – when the SNR is high – that additional hops

decrease the end-to-end throughput due to the use of extra time-slots. Two notable theoretical

results are i) that the end-to-end capacity scales as O(logM) for M hops [30] and ii) that by

using optimal time-sharing on each hop m = 1, . . . ,M to achieve the per-hop capacity cm, the

end-to-end capacity with no interference increases from Cno int = minm(cm) in [30] to

Cno int =

(
M∑
m=1

1

cm

)−1

(1)

as derived in [31]. Intuitively, (1) tells us that each additional hop lowers the capacity unless

the hop capacities cm increase by a sufficient amount (due to higher SNR). Hence this equation

also captures a basic tradeoff between higher per hop capacity (more short hops) and the desire

for fewer total dimensions or transmission (fewer, and hence longer, hops). This tradeoff has

been considered from many possible perspectives in [32], but in the present paper we are able

to quantify it exactly in terms of a transport capacity-like metric, and with interference.

Finally, we note that a recent paper [33] has considered multihop capacity in a Poisson field

of interference. The key distinction in this work is that we focus on achievable end-to-end

throughput and optimal transmission strategies and hop count rather than the stability of queues.

As [33] argues, the delay-optimizing number of hops appears to also be throughput-optimizing,

so our conclusions are not contradictory. We also consider noise whereas they do not, which is

quite important in the power-limited regime where multihop is beneficial.
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B. Contributions and Organization

In this paper we develop a new, quite general model for end-to-end throughput in a multihop

wireless network. We term the resulting metric random access transport capacity since the

analysis requires all transmissions to be independent, which precludes cooperative transmission

scheduling among the nodes, since this would generally couple transmissions and the active

transmitter locations would no longer be independent. Note, however, that the model does not

preclude cooperative or multipacket reception, although we do not consider such approaches in

this paper. The general model includes arbitrary paths of M hops and an end-to-end delay/energy

constraint quantified as the total allowable number of transmissions per packet, A. A closed-form

upper bound on random access transport capacity is obtained by making the M hops equidistant

and by letting A→∞. This upper bound is tight for moderate values of A.

From the upper bound, the optimal number of hops M∗ can be computed as a function of the

network parameters – in fact this was a prerequisite to finding the upper bound. For example,

we can show that M∗ ∝ Rβ
1
α

√
λ, where R is the end-to-end distance, β is the per-hop SINR

required for successful communication at the transmitted rate, α is the path loss exponent, and

λ is the spatial density of transmitters. Additionally, the optimal per-hop success probability (or

equivalently, outage probability) and optimal average number of retransmissions per hop can be

directly found. This exposes an optimal tradeoff between highly reliable transmissions – achieved

with short hops (large M ) and hence a low per-hop outage – and unreliable transmissions, which

make up for the retransmissions by requiring fewer hops. The upper bound is shown to be accurate

for the purposes of predicting the optimal number of hops M∗ and the optimal per-hop success

(or outage) probability.

An advantage of the novel framework developed in this paper is that the end-to-end throughput

(here, the random access transport capacity) uses a small, finite, and computable number of

hops, and results are given as a function of the S −D separation R. We prove that the random

access transport capacity follows the square-root scaling law, while providing easily computable

preconstants. We expect that this approach can be extended to better understand and compare

many specific candidate technologies and design approaches in multihop wireless networks.

The rest of this paper is organized as follows. First in Section II, we define the overarching

network model and metrics used in this paper. We then develop and derive the upper bound in

Section III, which is the main result of the paper. Implications and observations based on the
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upper bound derivation are discussed in Section IV. Numerical results are given in Section V,

in which the upper bound is evaluated against a numerical exact solution (for finite A) and the

above insights from the results are discussed.

II. NETWORK MODEL AND METRICS

We consider a large wireless ad hoc network where a typical source node S drawn from a

homogenous 2-D Poisson point process (PPP) of intensity λ wishes to transmit to a destination

node D that is a distance R away in a random direction and is not part of the PPP. All transmitters

(desired and interfering) have fixed transmit power ρ, which in order to simplify notation is more

precisely the average radiated power at a distance of 1 meter from the transmitter1. The noise

power is η and the channel strength is determined by path loss and fading, so the received

power at a distance R is ρχR−α, where α > 2 is the path loss exponent and χ results from iid

Rayleigh fading, which means χ ∼ exp(1). The SNR is defined in this paper as SNR := ρR−α/η

regardless of the number of hops taken, so dividing the route into hops improves the per-hop

SNR, as it should.

A. Single Hop, Single Transmission

The simplest case is to consider a single transmission over the entire S − D distance R. In

this case, the received SINR, where the reference receiver is defined to be at the origin, is

SINR =
ρχ0R

−α∑
i∈Π ρχi|Xi|−α + η

. (2)

The interfering node locations in (2) are drawn from a stationary (Poisson point process (PPP)

on the plane of intensity λ, denoted Π = {Xi}, where each Xi ∈ R2 is the location of an

interfering transmitter. In the single-hop model, all interferers are sources, themselves. This is a

realistic model assuming the transmitting nodes in the network are randomly and independently

located and do not cooperate.

Under this model, the probability of success for sending a packet from source to destination

can be found to be

ps = ps(1) = exp

{
− βη

ρR−α
− λβ

2
αKαR

2

}
, (3)

1The authors have proven in [14] and [29] that pairwise power control does not have a significant effect on outage probability

or transmission capacity. Path loss models that avoid the singularity for R→ 0 are discussed in [34].
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where Kα = 2π2/(α sin(2π/α)). Obtaining this expression is crucial to the results in this paper

but nontrivial: for the derivation the reader is referred to [35]. Note that a similar exact result

exists for Nakagami fading [22] as well as a tight bound on success probability with path loss

only (no fading) [13], but we will use the expression for Rayleigh fading in (3) throughout this

paper.

This single hop model has been fairly well-studied in recent years. For such a model, we

define the random access transport capacity, in this case for single hop, to be

Csh = psλ log(1 + β)R. (4)

In words, Csh gives the density of successful transmissions at rate log(1+β) that can span a S−D

distance of R: therefore C has units of bps/Hz/m. As R increases, ps → 0 exponentially fast per

(3). If ps is fixed to be 1− ε for some maximum outage probability ε, the R term is dropped in

(4), and (3) is inverted to find λ, then (4) gives the so-called transmission capacity. The goal in

this paper is to move beyond the single-hop, single-transmission model to a network that allows

multiple hops and multiple transmissions per hop, while retaining some of the tractability of the

transmission capacity model.

B. Multiple Hops, Multiple Transmissions per Hop

Now, allow the S − D distance R to be subdivided into M hops having not necessarily

equal distances rm, where R =
∑M

m=1 rm. On each hop, retransmissions are allowed and

acknowledgments are used. Therefore, the number of transmissions on each hop m is denoted

by the geometric random variables (T1(M), . . . , TM(M)), where each Tm(M) ∈ {1, 2, . . .}, and

the total number of transmissions required to move a packet from S to D is

T (M) =
M∑
m=1

Tm(M). (5)

The notion of outage comes in naturally by constraining the total number of transmissions per

packet, which is functionally a constraint on the total amount of delay and energy per packet, for

example due to a timeout. If the total transmission per packet allowance is A then T (M) ≤ A is

required for successful transmission, so an outage event occurs when T (M) > A. Therefore, the

total number of actual transmissions per packet is min(T (M), A), or more compactly, T (M)∧A.

We assume that each S−D pair only transmits a single packet at a time along the entire multihop
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path: in other words there is no intra-route spatial reuse2. The interference density is still λ as

in the single-hop case, but each packet is sent T (M) ∧ A times, causing the effective rate per

S − D pair to be log(1 + β)/(T (M) ∧ A) to account for the retransmissions. In other words,

if the transmitted bit rate at S is log(1 + β), because S has to wait T (M) ∧ A packets before

transmitting again, the effective S − D data rate is lowered by this factor. This also presumes

that S is instantaneously notified when the packet is received successfully at D so it can send

the next packet.

Definition 1: Random access transport capacity. The random access transport capacity C

for a multihop wireless network is the maximum average source to destination rate that can be

sustained reliably over a distance R with at most A transmission attempts per packet, normalized

by the area of the network. Formally, it can be characterized by maximizing over the number

of hops as:

C(A) = max
M∈{1,...,A}

P(T (M) ≤ A) · λ · log(1 + β)

E[T (M) ∧ A]
R (6)

= λ log(1 + β)R max
M∈{1,...,A}

P(T (M) ≤ A)

E[T (M) ∧ A]
(bps/Hz/m). (7)

This quantity therefore determines the end-to-end rate that can be supported when the source

nodes have density λ. The challenge is in computing the probability of success P(T (M) ≤ A)

and in computing the expectation of a minimum, i.e., E[T (M)∧A]. In the general model thus es-

poused, T is the sum of M independent but not identical random variables (T1(M), . . . , TM(M)),

where Tm(M) ∼ Geo(ps(M)), for ps(M) to be defined in (9). For each transmission per hop to

have independent success probability requires sufficient diversity in the interference and signal

strength per transmission attempt, which could possibly be achieved through diversity techniques

such as frequency hopping. Even with these simplifications, the general model does not appear

to be tractable. In the next section, we develop an upper bound on the random access transport

2This is an important simplification, as it avoids dependent simultaneous transmissions along a path, as well as difficulties

in accounting for non-Poisson interference. From a network-wide perspective the lack of spatial reuse for a given path does

not affect the transport capacity because other S − D pairs can utilize the space instead. Strictly speaking, the relays must be

deterministically placed on the line between S and D rather than drawn from Π in order to maintain a PPP for the interference.

Since exactly one node transmits per route at a time, the interferers in each time slot form a PPP in this case. We also note that

the spatio-temporal correlations in a Poisson field of interference have recently been studied in [36]: here, the effect would be

to increase the independence as M increases.
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capacity that is computable in closed-form.

III. UPPER BOUND: GUARANTEED END-TO-END DELIVERY, NO DELAY-ENERGY

CONSTRAINT

A. Establishing an upper bound

To develop an upper bound on the random access transport capacity, we make two important

simplifications. First, we assume the hop lengths are all equidistant, that is rm = R/M , for

m = 1, . . . ,M . This is best-case because ps in (3) is o(e−r2m), so the increase in ps on short

hops is outweighed by the decrease in ps on longer hops. In other words, any perturbation from

equal-length hops increases the end-to-end outage probability, all else being equal.

This assumption allows much improved tractability because now the probability of success

is the same for all hops, so the number of transmissions Tm(M) required on a given hop

for success becomes iid geometric with parameter ps(M) to be defined in (9). The second

important simplification is that we relax the delay-energy constraint. Formally, we let A→∞ in

P(T (M) ≤ A)/E[T (M)∧A]. This simplifies both the numerator and denominator: the probability

of end-to-end success P(T (M) ≤ A) tends to 1, and E[T (M)∧A] simplifies to E[T (M)]. These

considerations yield the following Lemma and Corollary.

Lemma 1: For all A ∈ Z+ and all M ∈ {1, . . . , A}:
P(T (M) ≤ A)

E[T (M) ∧ A]
≤ 1

E[T (M)]
. (8)

Proof: See Appendix.

Although the numerator P(T (M) ≤ A)→ 1 and the denominator E[T (M) ∧ A]→ E[T (M)]

both increase, the numerator does so slightly more quickly, resulting in an upper bound. Under

the upper bound assumption of equally spaced hops (rm = R/M ), the per-hop probability of

success becomes:

ps(M) := exp

{
− β

SNR
M−α − λR2β

2
αKαM

−2

}
, (9)

and the probability mass function of the number of transmission attempts Tm(M) on each hop

m is geometric with probability of success ps(M):

P (Tm(M) = t) = (1− ps(M))t−1ps(M). (10)

The average number of attempts per hop is therefore E[Tm(M)] = 1/ps(M). Because the M hops

are iid it follows that the expected number of total transmissions required to move a packet from
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source to destination is E[T (M)] = ME[Tm(M)] = M/ps(M). Combining these observations

yields the following upper bound on the capacity.

Corollary 1: An upper bound on the capacity (7) is

Cub(A) = λ log(1 + β)R max
M∈{1,...,A}

ps(M)

M
. (11)

Note that although we relax the A constraint in Lemma 1 inside the optimization in (7) to

establish the upper bound, we retain a finite A in the range of M ∈ {1, . . . , A}.

B. Optimal number of hops

The next step is to determine asymptotic optimal number of hops M∗ that maximizes Cub(A)

as A → ∞. This is given by the following theorem and corollaries, which give a positive

real value for M∗ although the actual quantity would necessarily be an integer. We leave it

as a continuous quantity in this paper for tractability and generality. Once M∗ is computed,

the optimal average number of transmissions required per hop can be readily determined as

E[Tm(M∗)] = p−1
s (M∗).

Theorem 1: Optimal number of hops, M∗. The number of hops M∗ that optimizes the asymp-

totic transport capacity density upper bound limA→∞C
ub(A), i.e.,

M∗ := arg max
M=1,2,...

ps(M)

M
(12)

is the solution to the equation

Mα − 2λβ2/αKαR
2Mα−2 − βηRα

ρ
α = 0. (13)

This results in closed-form expressions3 for M only when α ∈ {3, 4, 6, 8}, in which case M∗ is

the largest positive root of (13).

Proof: The objective is

ps(M)

M
=

1

M
exp(−k1M

−α − k2M
−2) (14)

where k1 = βη
ρR−α

= β
SNR

and k2 = λβ2/αKαR
2. Taking the derivative and setting equal to zero

eventually gives

exp(k1M
−α + k2M

−2)
(
1− k1αM

−α − 2k2M
−2
)

= 0 (15)

3By closed-form, we mean direct computation is possible using only basic arithmetic operations, simple trigonometric

functions, and radicals.
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which gives that

1− k1αM
−α − 2k2M

−2 = 0 (16)

or in polynomial form

Mα − 2k2M
α−2 − k1α = 0. (17)

By the Abel-Ruffini theorem, a formula solution to a polynomial equation only exists for when

the degree of the polynomial is 4 or less. The path loss exponent α is of physical interest4 only

when 1.5 / α / 6. In this range, M can be found in closed-form only for α ∈ {2, 3, 4, 6},

although it can also be found in principle for α ∈ {1, 8}. The solutions for α = 6 and α = 8

would follow similarly to the α = 3 and α = 4 solutions.

The corollaries for α = 3 and α = 4 follow immediately. A solution in terms of Kα can

be found for α = 2, but for α → 2, Kα → ∞ so this result does not exist. Intuitively, when

α ≤ 2 the expected interference at any point in the network is infinite since the expected number

of interferers increases as d2 but the interference fall off is dα. Thus, the optimal number of

hops for α = 2 is technically infinite. In the sequel we write M∗ = M∗(α) to emphasize the

sensitivity of the optimal number of hops on the path loss exponent.

Corollary 2: Solving (13) with α = 3 yields two possible solutions, depending on the polarity

of the equation’s discriminant D =
9k2

1

4
− 8k3

2

27
. If D ≥ 0,

M∗(3) = β
1
3R

[
3

√
3η

2ρ
+ f + 3

√
3η

2ρ
− f

]
, (18)

where

f =

√(
3η

2ρ

)2

− 8K3
3

27
λ3, (19)

and K3 = 4
√

3
9
π2 ≈ 7.6. When D < 0

M∗(3) =
2
√

2λK3

3
1
6

β
1
3R cos

(
1

3
arc cos

[
3
√

3η

4
√

2ρ(λK3)
3
2

])
(20)

Proof: See Appendix.

4That is, there exist empirical studies that have found α to be in this range
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Although the expressions (18) and (20) at first appear to be quite different, in fact they have

a quite similar dependence in terms of the main parameters of interest. Finally, we have the

following corollary for α = 4.

Corollary 3: Solving (13) with α = 4 yields a single maximum positive, real solution for M∗

which is

M∗(4) = β
1
4R

√√√√λ
π2

2
+

√
λ2
π4

4
+

4η

ρ
(21)

since K4 = π2/2.

Proof: See Appendix.

C. The upper bound, Cub

The hop-optimized random access transport capacity can now be given in closed-form for any

choice of system parameters since

Cub =
λ log(1 + β)R

E[Tm(M∗)] ·M∗ = λ log(1 + β)R
ps(M

∗)

M∗ , (22)

and we now have found exact expressions for ps(M∗) and M∗. Although a few assumptions are

made to get to closed form – fixed equidistant relays, randomly located interferers, independent

retransmissions, all transmissions at the same rate – this allows a simple closed-form end-to-end

expression for multihop network throughput with both noise and interference.

For example, consider α = 4, in which case at high SNR M∗ → β
1
4Rπ
√
λ, which yields with

(9) the following quite simple exact expression for transport capacity

lim
SNR→∞

Cub∗
∣∣∣
α=4

=

√
λ log(1 + β)

πβ
1
4

exp

(
− η

ρπ4λ2
− 1

2

)
. (23)

IV. UPPER BOUND IMPLICATIONS

A. Initial Insights from Theorem 1

It can be immediately observed that all the derived solutions for M∗ are precisely proportional

to Rβ
1
α . This makes sense: the optimal number of hops should scale linearly with the source-

destination distance since this keeps the per-hop distance and hence the per-hop SNR and SINR
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constant for a certain ρ, η, λ. Similarly, since the received SINR is proportional to the received

(desired) power Pr over a distance d, we can see that

Pr = ρd−α = ρ

(
M

R

)α
. (24)

Since Pr must scale linearly with β with the interference (λ) held constant,

ρ

(
M

R

)α
= constant · β ⇒M ∝ β

1
α . (25)

Less obviously, there is a trend in the expressions that M ∝
√
λ, which also makes intuitive

sense. As the density increases, the interferers’ relative distance (statistically) decreases as
√
λ,

requiring a shorter communication distance by the same amount in order to maintain the same

SINR. Hence, R/M ∝ λ−2 or M ∝
√
λ. This trend is more difficult to see in the α = 3 case

for D < 0 (20) but since

cos

(
1

3
arc cosx

)
≈
√

3

2
+

(
1−
√

3

2

)
x, (26)

one of the two terms has
√
λ, the other having a λ−1 term. As λ increases, the λ−1 would

decrease leaving M ∝
√
λ.

In summary, from Theorem 1 and its corollaries, one can immediately determine the optimum

number of hops for any plausible integer path loss exponent in terms of the salient network pa-

rameters. Non-integer values could be accurately estimated by standard interpolation techniques.

B. Optimal success probability

Armed with the optimal number of hops M∗, it is straightforward to determine the optimum

success probability per hop, ps(M∗). Interestingly, it can be expressed in two ways, where the

first expression depends on the λ but not SNR (neither noise nor interference power affect this

expression), and for the second expression, vice versa.

Lemma 2: The optimal success probability per hop ps(M∗) as a function of M∗ is

ps(M
∗) = exp

{(
2

α
− 1

)
λβ

2
αKαR

2

(M∗)2
− 1

α

}
(27)

= exp

{(α
2
− 1
) β

SNR(M∗)α
− 1

2

}
(28)
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Proof: Since the optimal number of hops M∗ should satisfy (17), we can write the following

two expressions

k1M
−α =

1− 2k2M
−2

α
, (29)

k2M
−2 =

1− k1M
−α

2
(30)

Plugging (29) into (9) gives (27), while plugging (30) into (9) gives (28).

The two expressions for ps(M∗) can be seen as the ps which optimally balances between inter-

ference (27) and noise (28). Note additionally that the optimal number of average retransmissions

per hop is given by Tm(M∗) = 1/ps(M
∗), which is the same for each hop.

C. Relation to general transport capacity: shared scaling law

Although the primary merit of the approach of this paper is the ability to compute end-to-end

rate results in closed-form, the results here also obey the well-known Θ(
√
n) scaling law for

transport capacity [1], [8], or in the lexicon of this paper, Θ(
√
λ). This fact is formalized in the

following theorem.

Theorem 2: The random access transport capacity upper bound is Θ(
√
λ) and can be stated

formally as

lim
λ→∞

Cub

√
λ

=
e−

1
2 log(1 + β)
√

2Kαβ
1
α

. (31)

Proof: First, it can be shown that M∗ = c0

√
λ for some constant c0. Rearranging (17)

gives

1− 2λβ
2
αKαR

2M−2 =
βα

SNRMα
. (32)

For this equation to hold as λ→∞, clearly M →∞, which means that the quantity on the left

of (32) must approach 0. Therefore, M =
√
λ ·
√

2Kαβ
1
αR, i.e., c0 =

√
2Kαβ

1
αR.

Second, from (28) it can be observed that ps → exp(−1
2
) as λ → ∞, whereas (27) can be

used to verify the value for c0. Using (22) and the scaling results just derived gives

lim
λ→∞

Cub = lim
λ→∞

λps(M
∗) log(1 + β)R

M∗ (33)

=
λ exp(−1

2
) log(1 + β)R
√
λc0

(34)

=

√
λe−

1
2 log(1 + β)
√

2Kαβ
1
α

(35)
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This theorem suggests that the random access transport capacity even subject to the assump-

tions we have adopted in this paper is order optimal: it follows the square-root scaling law for

source-destination transmissions in large wireless networks. That is, unscheduled, channel-blind

transmissions can achieve – given well-positioned relays – a transport capacity that scales the

same as optimally scheduled nearest neighbor routing. This complements a similar conclusion

for slotted ALOHA in regular networks [12].

V. NUMERICAL RESULTS AND INSIGHTS

We set R = 1, β = 3, and as a default α = 3, while the other parameters are varied. Note

that the units of R and λ are arbitrary, but in a circle with S and D on opposite sides separated

by a distance R, there would be on average λπ(R/2)2 interferers. Because only together do

the values of λ and R provide a description of the interference environment, λ � 1 may be

reasonable to model a dense network or a long S − D path when R = 1.

Fig. 1 demonstrates that the random access transport capacity upper bound is tight for a small

and large number of allowed attempts A, but fairly loose in between. This is perhaps to be

expected since the bound presumes A→∞. Figs 2 and 3 show the upper bound vs. the actual

random access transport capacity (computed numerically) for A = 6 and A = 12, respectively,

vs. the number of hops used, M . As would be expected by Fig. 1, the former is loose while the

latter is fairly tight. What is interesting is that in both cases the maximizing M is very similar.

In other words, even when the capacity upper bound is loose, the value of M∗ that it predicts

appears to be quite accurate. This is confirmed in Fig. 4: the M∗ from the UB and the actual M∗

are always within one hop of each other and asymptotically the same. Interestingly, the actual

M∗ is not necessarily monotonic in A, as Fig. 4 demonstrates.

Now focusing on the upper bound, first consider the result of Theorem 1, which gave the

optimum number of hops M∗. In Fig. 5 we observe that the M∗ is indeed Θ(
√
λ) and that it

obtains this scaling in the λ ∈ (.1, 1) range over a wide range of SNR and for both α = 3

and α = 4. The scaling law here kicks in faster at high SNR, because at low SNR a higher

contention density is required before the network becomes interference limited. Although the

path loss exponent does not appear to affect the convergence, smaller path loss exponents require

more hops to be taken in order to mitigate the cumulative interference. This may seem counter-

intuitive because larger path loss exponents cause faster attenuation of the desired signal, which
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might seem to imply that more hops would be needed to maintain the signal strength, but this

is not the case, even at very small interference densities.

In Fig. 6 we plot the random access transport capacity upper bound where we do not optimize

for M , but rather see how it varies with the number of hops. The optimum throughput occurs

at the integer value of M closest to M∗, as expected. The random access transport capacity is

considerably higher overall with larger λ (i.e., source density) and SNR, as would be expected,

and achieving that higher end-to-end throughput requires significantly more hops in order to

maintain a high enough SINR on each hop. On the contrary, if a small number of hops was

used in this case, despite the high SNR, the end-to-end throughput would be much lower than

in the lightly loaded (small λ) case. Optimizing the number of hops – or at least getting close

to M∗ – is very important.

Turning our attention to Theorem 2, we observe in Fig. 7 that the scaling law of Θ(
√
λ) holds

for large λ. Similar to Fig. 5 the scaling law kicks in faster at high SNR and the throughput

increases with α. Put optimistically, this means at low SNR (or low interference density) that the

throughput actually increases quite a bit more quickly with λ than the scaling law would suggest.

Until the network is saturated with interference, more users can be added without having their

throughput decrease.

APPENDIX

PROOF OF LEMMA 1

Fix a positive integer A and p ∈ [0, 1]. Define T (M) = TM ∼ Pascal(M, p) as the number

of trials required for M successes, and SA ∼ Bin(A, p) as the number of successes in A trials.

To prove the lemma it suffices to show f(M) ≥ 0 for all M = 0, . . . , A, where

f(M) := pE[TM ∧ A]−MP(TM ≤ A). (36)

The inequality is trivially true for M > A and M = 0, and is straightforward to show for M = 1

and M = A. We first prove some key relationships for binomial random variables.

p

A∑
n=M

P(Sn = M) = P(SA+1 ≥M + 1), M = 0, . . . , A− 1 (37)

P(SA ≤M − 1) = (1− p)P(SA−1 ≤M − 1) + pP(SA−1 ≤M − 2) (38)

(1− p)(M + 1)P(SA = M + 1) = p(A−M)P(SA = M) (39)
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To see (37), use the fact that pP(Sn = M) = P(TM+1 = n + 1) and {TM ≤ A} = {SA ≥ M}

to show:

p

A∑
n=M

P(Sn = M) =
A∑

n=M

P(TM+1 = n+ 1) = P(TM+1 ≤ A+ 1) = P(SA+1 ≥M + 1). (40)

To see (38) simply observe the equality of the events, where XA indicates success on hop A:

{SA ≤M − 1} = {(SA−1 ≤M − 1) ∩ (XA = 0) ∪ (SA−1 ≤M − 2) ∩ (XA = 1)}. (41)

To see (39) use the “mixed product” identity: (M + 1)
(

A
M+1

)
= (A−M)

(
A
M

)
. That is, with D

as the difference of the two sides in (39):

D ≡ (1− p)(M + 1)P(SA = M + 1)− p(A−M)P(SA = M)

= (1− p)(M + 1)

(
A

M + 1

)
pM+1(1− p)A−M−1 − p(A−M)

(
A

M

)
pM(1− p)A−M

= pM+1(1− p)A−M
(

(M + 1)

(
A

M + 1

)
− (A−M)

(
A

M

))
= 0 (42)

Using (37) we have the following development for f(M):

f(M) ≡ pE[TM ∧ A]−MP(TM ≤ A)

= p

(
A∑

n=M

nP(TM = n) + AP(TM > A)

)
−MP(TM ≤ A)

= p2

A∑
n=M

nP(Sn−1 = M − 1) + pA(1− P(TM ≤ A))−MP(TM ≤ A)

= pA+Mp
A∑

n=M

P(Sn = M)− (pA+M)P(TM ≤ A)

= pA+MP(SA+1 ≥M + 1)− (pA+M)P(SA ≥M)

= (pA+M)P(SA ≤M − 1)−MP(SA+1 ≤M) (43)

We will prove f(M) ≥ 0 by showing that ∆(M) ≡ f(M + 1) − f(M) ≥ 0 for all M =

0, . . . , A − 1. Combined with f(0) = 0, this immediately yields that f(M) ≥ 0 for all M =

0, . . . , A, establishing the upper bound. Consider the difference ∆(M) ≡ f(M + 1)−f(M) and
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apply (38) twice:

∆(M) = [(pA+M + 1)P(SA ≤M)− (M + 1)P(SA+1 ≤M + 1)]−

[(pA+M)P(SA ≤M − 1)−MP(SA+1 ≤M)]

= [(pA+M + 1)P(SA ≤M)− (M + 1) ((1− p)P(SA ≤M + 1) + pP(SA ≤M))]−

[(pA+M)P(SA ≤M − 1)−M ((1− p)P(SA ≤M) + pP(SA ≤M − 1))]

= ((1− p)(2M + 1) + pA) P(SA ≤M)− ((1− p)M + pA) P(SA ≤M − 1)−

((1− p)(M + 1)) P(SA ≤M + 1) (44)

Now use the easy facts that:

P(SA ≤M − 1) = P(SA ≤M)− P(SA = M)

P(SA ≤M + 1) = P(SA ≤M) + P(SA = M + 1). (45)

Substitution of (45) gives:

∆(M) = ((1− p)(2M + 1) + pA) P(SA ≤M)−

((1− p)M + pA) [P(SA ≤M)− P(SA = M)]−

((1− p)(M + 1)) [P(SA ≤M) + P(SA = M + 1)]

= ((1− p)M + pA)P(SA = M)− (1− p)(M + 1)P(SA = M + 1) (46)

Apply (39) to the previous equation

∆(M) = ((1− p)M + pA)P(SA = M)− (1− p)(M + 1)P(SA = M + 1)

= ((1− p)M + pA)P(SA = M)− (1− p)(M + 1)
p(A−M)

(1− p)(M + 1)
P(SA = M)

= P(SA = M)(((1− p)M + pA)− p(A−M))

= P(SA = M)(M − pM + pA− pA+ pM)

= MP(SA = M) ≥ 0 (47)

PROOF OF COROLLARY 2

For the D ≥ 0 case, a necessary condition on λ and the transmit power can be formulated by

inserting k1 = βη
ρR−α

= β
SNR

and k2 = λβ2/αKαR
2 to get

λ ≤
(
η

ρ

) 2
3
(

3

2

) 5
3 1

K3

⇒ ρ

η
≤

√(
3

2

)5
1

K3
3λ

3
. (48)
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The roots of such a 3rd order polynomial consist of 1 real and 2 complex roots. The real root

is given by

M =

(
3k1

2
+
√
D

) 1
3

+

(
3k1

2
−
√
D

) 1
3

(49)

which results in (18).

When D < 0 there exist three distinct real roots. The necessary conditions (48) are simply the

converse of (48), but the polynomial solution requires some trigonometric calculations. Define

ζ =
2

3

√
2k3

2

3
, cosφ =

3k1

2ζ
⇒ φ = arc cos

(
3k1

2ζ

)
, (50)

then the three possible solutions are

y1 = 2ζ
1
3 cos

(
φ

3

)
(51)

y2 = 2ζ
1
3 cos

(
φ+

2π

3

)
(52)

y3 = 2ζ
1
3 cos

(
φ+

4π

3

)
. (53)

For these three real roots, Vieta’s Theorem states that for a 3rd order polynomial a3y
3 + a2y

2 +

a1y + a0 that the roots will satisfy y1y2y3 = −a0

a3
, which gives from (17) that

y1y2y3 = 3k1 ⇒ y1y2y3 > 0. (54)

Thus the roots must either be all positive or comprise one positive and two negative. They cannot

all be positive since y1y2 +y1y3 +y2y3 = 0, also a consequence of Vieta’s Theorem. Hence, there

is a single positive root, which is y1, and by expanding ζ and φ can be expressed as M∗ = y1,

given in (20).

PROOF OF COROLLARY 3

The polynomial for α = 4 becomes

M4 − 2k2M
2 − 4k1 = 0. (55)

Using a dummy variable for M2, this can be easily solved using the quadratic formula to give

M∗(4) = ±β
1
4R

√√√√λ
π2

2
±

√
λ2
π4

4
+

4η

ρ
, (56)

of which only the solution given in (21) is both positive and real.
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TABLE I

SUMMARY OF NOTATION AND PARAMETERS

λ interference density, intensity of PPP Π

α path loss exponent (α > 2)

Kα A constant, Kα = 2π2/(α sin(2π/α))

β target (required) SINR per hop

R S − D transmit distance

rm transmit distance on hop m

ρ transmit power

η noise power

SNR S − D end-to-end signal to noise ratio, SNR := ρR−α/η

ps(M) probability of success over a single hop

M number of hops (number of relay nodes is M − 1)

Tm(M) transmissions used on hop m to achieve a successful transmission

T (M) total number of transmissions required per packet, T (M) =
P
Tm(M)

A allowance on total number of transmissions per packet, T (M) ≤ A

Pout probability of end-to-end outage, Pout = P(T (M) > A)

C(A), Cub(A) random access transport capacity, and upper bound
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Fig. 1. The capacity C(A) and its upper bound Cub(A) versus the allowed number of transmission attempts A.
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Fig. 2. The “capacity” and its upper bound versus the number of hops M for each M = 1, . . . , A when A = 6. Note the

maximizing M∗ for both curves are close to one another.
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Fig. 3. The random access transport capacity and its upper bound versus the number of hops M for each M = 1, . . . , A when

A = 12. Note the maximizing M∗ = 5 for both curves in this case.
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number of transmission attempts A.
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Fig. 5. The optimal number of hops M∗ normalized by
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λ vs. contention density λ. It can be observed that M∗ = Θ(
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as expected, with faster convergence at high SNR.
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