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Communication in a
Poisson Field of Interferers–Part I:

Interference Distribution and Error Probability
Pedro C. Pinto, Student Member, IEEE, and Moe Z. Win, Fellow, IEEE

Abstract—We present a mathematical model for communica-
tion subject to both network interference and noise. We introduce
a framework where the interferers are scattered according to
a spatial Poisson process, and are operating asynchronously in
a wireless environment subject to path loss, shadowing, and
multipath fading. We consider both cases of slow and fast-
varying interferer positions. The paper is comprised of two
separate parts. In Part I, we determine the distribution of
the aggregate network interference at the output of a linear
receiver. We characterize the error performance of the link,
in terms of average and outage probabilities. The proposed
model is valid for any linear modulation scheme (e.g., 𝑀 -ary
phase shift keying or 𝑀 -ary quadrature amplitude modulation),
and captures all the essential physical parameters that affect
network interference. Our work generalizes the conventional
analysis of communication in the presence of additive white
Gaussian noise and fast fading, allowing such results to account
for the effect of network interference. In Part II of the paper,
we derive the capacity of the link when subject to network
interference and noise, and characterize the spectrum of the
aggregate interference.

Index Terms—Stochastic geometry, Poisson field, aggregate
network interference, error probability, stable laws.

I. INTRODUCTION

IN a wireless network composed of many spatially scat-
tered nodes, there are several fundamental impairments

that constrain the communication between nodes, including
thermal noise and network interference. Thermal noise is
introduced by the receiver electronics and is usually modeled
as additive white Gaussian noise (AWGN), which constitutes
a good approximation in most cases. Interference, on the
other hand, is due to signals radiated by other transmitters,
which undesirably affect receiver nodes in the same or in
a different network. For simplicity, interference is typically
approximated by AWGN with some given power [1]. However,
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this elementary model does not completely capture the phys-
ical parameters that affect interference, namely: 1) the spatial
distribution of nodes scattered in the network; 2) the transmis-
sion characteristics of nodes, such as modulation, power, and
synchronization; and 3) the propagation characteristics of the
medium, such as path loss, shadowing, and multipath fading. If
a spatial Poisson process is used to model the user positions,
then all these parameters can be easily accounted for, and
appear explicitly in the resulting performance expressions.

The application of the Poisson field model to cellular
networks was investigated in [2] and later advanced in [3].
However, these papers either ignore random propagation ef-
fects (such as shadowing and multipath fading), or restrict
the analysis to error probability in non-coherent FSK mod-
ulations. In other related work [4], it is assumed that the
different interferers are synchronized at the symbol or slot
level, which may be unrealistic in many situations. In [5],
the authors choose a different approach and restrict the node
locations to a disk or a ring in the two-dimensional plane.
Although this ensures that the number of interferers is finite,
it complicates the analysis and provides limited insights into
the effect of network interference. In [6]–[8], the authors
analyze coexistence issues in wireless networks, but consider
only a small, fixed number of interferers. Lastly, none of
the mentioned studies attempts a system characterization that
simultaneously incorporates metrics such as error probability,
channel capacity, and power spectral density.

In this two-part paper, we introduce a framework where the
interferers are scattered according to a spatial Poisson process,
and are operating asynchronously in a wireless environment
subject to path loss, shadowing, and multipath fading. We ac-
complish such goal by using fundamental tools from stochastic
geometry.1 In Part I of the paper, we determine the statistical
distribution of the aggregate network interference at the output
of a linear receiver, located anywhere in the two-dimensional
plane. We provide expressions for the error performance of the
link (in terms of average and outage probabilities), which are
valid for any linear modulation scheme. We then quantify these
metrics as a function of various important system parameters,
such as the signal-to-noise ratio (SNR), interference-to-noise
ratio (INR), path loss exponent, and spatial density of the inter-
ferers. Our analysis clearly shows how the system performance
depends on these parameters, thereby providing insights that

1An overview on the application of stochastic geometry to various problems
in wireless communication can be found in the tutorial papers [9], [10].
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Fig. 1. Poisson field model for the spatial distribution of nodes. Without
loss of generality, we assume the origin of the coordinate system coincides
with the probe receiver.

may be of value to the network designer. In Part II of the
paper [11], we derive the capacity of the link when subject to
network interference and noise, and characterize the spectrum
of the aggregate interference.

This paper is organized as follows. Section II describes the
system model. Section III derives the representation and dis-
tribution of the aggregate interference. Section IV analyzes the
error performance of the system, and illustrates its dependence
on important network parameters. Section V concludes the
paper and summarizes important findings.

II. SYSTEM MODEL

A. Spatial Distribution of the Nodes

We model the spatial distribution of the nodes according to a
homogeneous Poisson point process Π in the two-dimensional
infinite plane. The Poisson point process [12] has been
successfully used in the context of wireless networks, most
notably in what concerns connectivity and coverage [13]–
[15], throughput [16]–[18], physical-layer security [19], and
coexistence [20], among other topics. Typically, the terminal
positions are unknown to the network designer a priori, so we
may as well treat them as completely random according to a
spatial Poisson process.2

The Poisson point process Π has a single parameter 𝜆
that corresponds to the spatial density of interfering nodes,
in nodes per unit area. We define the interfering nodes to
be the set of terminals which are transmitting within the
frequency band of interest, during the time interval of interest,
and hence are effectively contributing to the total interference.
Then, irrespective of the network topology (e.g., point-to-
point or broadcast) or multiple-access technique (e.g., time
or frequency hopping), the above model depends only on the
density 𝜆 of interfering nodes.3 The proposed spatial model is

2The spatial Poisson process is a natural choice in such situation because,
given that a node is inside a region ℛ, the probability density function (p.d.f.)
of its position is conditionally uniform over ℛ.

3Time and frequency hopping can be easily accommodated in this model,
using the splitting property of Poisson processes [21] to obtain the effective
density of nodes that contribute to the interference.
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Fig. 2. Asynchronism between different transmitting nodes. In the obser-
vation interval [0, 𝑇 ], a change in constellation symbol of node 𝑖 occurs at
random time 𝑡 = 𝐷𝑖, from 𝑎𝑖𝑒𝑗𝜃𝑖 to 𝑎′

𝑖𝑒
𝑗𝜃′𝑖 , where 𝑎 and 𝜃 denote the

transmitted symbol amplitude and phase, respectively. The distribution of 𝐷𝑖

is assumed to be 𝒰(0, 𝑇 ). Therefore, node 0 initiates symbol transmissions
at times 𝑛𝑇 by convention, while node 𝑖 initiates symbol transmissions at
times 𝑛𝑇 + 𝐷𝑖.

depicted in Fig. 1. For analytical purposes, we assume there
is a probe link composed of two nodes: the probe receiver,
located at the origin of the two-dimensional plane (without
loss of generality), and the probe transmitter (node 𝑖 = 0),
deterministically located at a distance 𝑟0 from the origin. All
the other nodes (𝑖 = 1 . . .∞) are interfering nodes, whose
random distances to the origin are denoted by {𝑅𝑖}∞𝑖=1, where
𝑅1 ≤ 𝑅2 ≤ . . .. Our goal is then to determine the effect of the
interfering nodes on the probe link.

B. Transmission Characteristics of the Nodes

Concerning the transmission characteristics of users, we
consider that all interfering nodes employ the same lin-
ear modulation scheme, such as 𝑀 -ary phase shift key-
ing (𝑀 -PSK) or 𝑀 -ary quadrature amplitude modulation
(𝑀 -QAM), with symbol period 𝑇 . Furthermore, they all
transmit at the same power 𝑃 – a plausible constraint when
power control is too complex to implement (e.g., decentralized
ad-hoc networks). For generality, however, we allow the probe
transmitter to employ an arbitrary linear modulation and
arbitrary power 𝑃0, not necessarily equal to those used by
the interfering nodes.

The assumption of synchronization among interfering nodes
is not necessary in our analysis. Instead, we consider asyn-
chronous transmissions where different terminals are allowed
to operate independently. As depicted in Fig. 2, node 𝑖
transmits with a random delay 𝐷𝑖 relative to node 0, where
𝐷𝑖 ∼ 𝒰(0, 𝑇 ).4 We consider that the probe receiver employs
a conventional coherent demodulator, capable of estimating
the shadowing and fading affecting its own link, and hence
ensuring that coherent demodulation of the desired signal is
possible. Typically, parameters such as the spatial density of
interferers and the propagation characteristics of the medium
(e.g., shadowing and path loss parameters) are unknown to
the receiver. This lack of information about the interference,
together with constraints on receiver complexity, justify the

4We use 𝒰(𝑎, 𝑏) to denote a real uniform distribution in the interval [𝑎, 𝑏].
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use of a simple linear demodulator, which is optimal when
only AWGN is present.

C. Propagation Characteristics of the Medium

To account for the propagation characteristics of the envi-
ronment, we consider that the median of the signal amplitude
decays with the distance 𝑟 according to 𝑘/𝑟𝑏, for some given
constant 𝑘. The amplitude loss exponent 𝑏 is environment-
dependent, and can approximately range from 0.8 (e.g., hall-
ways inside buildings) to 4 (e.g., dense urban environments),
where 𝑏 = 1 corresponds to free space propagation [22].5 The
use of such a decay law also ensures that interferers located
far away have a negligible contribution to the total interference
observed at the probe receiver, thus making the infinite-plane
model reasonable.

To capture the shadowing effect, we model the channel am-
plitude gain 𝑆 as a log-normal random variable (r.v.) such that
𝑆 = 𝜇𝑒𝜎𝐺, where 𝐺 ∼ 𝒩 (0, 1),6 𝜇 = 𝑘/𝑟𝑏 is the median of
𝑆, and 𝜎 is the shadowing coefficient.7 Thus, the shadowing is
responsible for random fluctuations of the channel gain around
the median path gain 𝑘/𝑟𝑏. The multipath effect is modeled
as fast fading, which is superimposed on the path loss and
shadowing. Specifically, the fading affects the received signal
by introducing a random phase 𝜙 ∼ 𝒰(0, 2𝜋), as well as an
amplitude factor 𝛼 with arbitrary distribution and normalized
to have unit power gain, i.e., 𝔼{𝛼2} = 1.8 Because of its fast
nature, the fading due to local scattering is always averaged
out in this paper, both when determining the interference
distribution and the error probability. In what follows, we
consider the shadowing (and similarly for the fading) to be
independent for different nodes 𝑖, and approximately constant
during at least one symbol interval.

D. Mobility and Session Lifetime of the Interferers

Typically, the time variation of the distances {𝑅𝑖}∞𝑖=1 of
the interferers is highly coupled with that of the shadow-
ing {𝐺𝑖}∞𝑖=1 affecting those nodes. This is because the shad-
owing is itself associated with the movement of the nodes near
large blocking objects. Thus, we introduce the notation 𝒫 to
denote “a particular realization of the distances {𝑅𝑖}∞𝑖=1 and
shadowing {𝐺𝑖}∞𝑖=1 of the interferers,” or more succinctly,
“the position of the interferers.” In this paper, we analyze the
following two scenarios, which differ in the speed of variation
of 𝒫 :

5Note that the amplitude loss exponent is 𝑏, while the corresponding power
loss exponent is 2𝑏.

6We use 𝒩 (𝜇, 𝜎2) to denote a real Gaussian distribution with mean 𝜇 and
variance 𝜎2.

7This model for combined path loss and log-normal shadowing can be
expressed in logarithmic form [22], [23], such that the channel loss in dB
is given by 𝐿dB = 𝑘0 + 𝑘1 log10 𝑟 + 𝜎dB𝐺, where 𝐺 ∼ 𝒩 (0, 1). The
environment-dependent parameters (𝑘0, 𝑘1, 𝜎dB) can be related to (𝑘, 𝑏, 𝜎)
as follows: 𝑘0 = −20 log10 𝑘, 𝑘1 = 20𝑏, and 𝜎dB = 20

ln 10
𝜎. The

parameter 𝜎dB is the standard deviation of the channel loss in dB (or,
equivalently, of the received SNR in dB), and typically ranges from 6 to
12.

8We use 𝔼{⋅} and 𝕍{⋅} to denote the expectation and variance operators,
respectively.

1) Slow-varying 𝒫 : During the interval of interest (e.g., a
symbol or packet time), the distance 𝑅𝑖 of each in-
terferer is approximately constant, 𝑅𝑖(𝑡) ≈ 𝑅𝑖. Fur-
thermore, the interferers have a long session lifetime,
transmitting continuously over many symbols. In this
quasi-static scenario, 𝒫 varies slowly with time, and thus
it is insightful to condition the interference analysis on
a given realization of 𝒫 . As we shall see, this naturally
leads to the derivation of the error outage probability of
the probe link, which in this case is a more meaningful
metric than the error probability averaged over 𝒫 [24]–
[26].

2) Fast-varying 𝒫 : As in the previous case, 𝑅𝑖(𝑡) ≈ 𝑅𝑖

during the interval of interest. However, the interferers
have a short session lifetime, where each node peri-
odically becomes active, transmits a burst of symbols,
and then turns off (e.g., in sensor or packet networks).
Then, the set of interfering nodes (the set of nodes that
are transmitting and contributing to the interference)
changes often, and so does their effective position 𝒫 ,
which experiences a variation analogous to that of a
block fading model. In this dynamic scenario, it is
insightful to average the interference analysis over all
possible realizations of 𝒫 , which naturally leads to the
derivation of the average error probability of the probe
link.

III. INTERFERENCE REPRESENTATION AND DISTRIBUTION

A. Complex Baseband Representation of the Interference

Under the system model described in Section II, the ag-
gregate signal 𝑍(𝑡) at the probe receiver can be written for
0 ≤ 𝑡 ≤ 𝑇 as

𝑍(𝑡) =
𝑘𝛼0𝑒

𝜎𝐺0

𝑟𝑏0

√
2

𝑇
𝑎0 cos(2𝜋𝑓c𝑡+ 𝜃0) + 𝑌 (𝑡) +𝑊 (𝑡),

where the first right-hand term is the desired signal from
the transmitter probe node, 𝑌 (𝑡) is the aggregate interference
given in (1) at the top of the next page, and 𝑊 (𝑡) is the AWGN
with two-sided power spectral density 𝑁0/2, independent of
𝑌 (𝑡). In the above equations, we use the following the nota-
tion: 𝑇 is the symbol period; 𝑓c is the carrier frequency; 𝑎𝑖𝑒𝑗𝜃𝑖

and 𝑎′𝑖𝑒
𝑗𝜃′

𝑖 are r.v.’s denoting successive constellation symbols
transmitted by the node 𝑖 during the interval of interest [0, 𝑇 ]
(see Fig. 2); and 𝑢(𝑡) is the unit step function. The overall
effect of the path loss, log-normal shadowing, and fading on
node 𝑖 is captured by the amplitude factor 𝑘𝛼𝑖𝑒

𝜎𝐺𝑖/𝑅𝑏
𝑖 , where

𝐺𝑖 ∼ 𝒩 (0, 1), and by the uniform phase 𝜙𝑖.9 We consider that
the r.v.’s 𝛼𝑖, 𝜙𝑖, 𝐺𝑖, 𝑅𝑖, 𝑎𝑖𝑒𝑗𝜃𝑖 , 𝑎′𝑖𝑒

𝑗𝜃′
𝑖 , and 𝐷𝑖 are mutually

independent for a given node 𝑖, and that the sequences {𝛼𝑖},
{𝜙𝑖}, {𝐺𝑖}, {𝑎𝑖𝑒𝑗𝜃𝑖}, {𝑎′𝑖𝑒𝑗𝜃

′
𝑖}, and {𝐷𝑖} are independent

identically distributed (i.i.d.) in 𝑖.
The probe receiver demodulates the desired signal from

the aggregate signal 𝑍(𝑡), using a conventional lin-
ear demodulator. This can be achieved by projecting
𝑍(𝑡) onto the orthonormal set

{
𝜓1(𝑡) =

√
2/𝑇 cos(2𝜋𝑓c𝑡),

9Since we assume that the probe receiver can perfectly estimate the
phase 𝜙0 associated with the multipath fading affecting its own link, we
set 𝜙0 = 0 without loss of generality.
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𝑌 (𝑡) =

∞∑
𝑖=1

𝑘𝛼𝑖𝑒
𝜎𝐺𝑖

𝑅𝑏
𝑖

(√
2

𝑇
𝑎𝑖 cos(2𝜋𝑓c𝑡+ 𝜃𝑖 + 𝜙𝑖)𝑢(𝐷𝑖 − 𝑡) +

√
2

𝑇
𝑎′𝑖 cos(2𝜋𝑓c𝑡+ 𝜃′𝑖 + 𝜙𝑖)𝑢(𝑡−𝐷𝑖)

)
, 0 ≤ 𝑡 ≤ 𝑇 (1)

𝜓2(𝑡) = −√2/𝑇 sin(2𝜋𝑓c𝑡)
}

. Defining the in-phase and

quadrature (IQ) components 𝑍𝑛 =
∫ 𝑇

0 𝑍(𝑡)𝜓𝑛(𝑡)𝑑𝑡, 𝑛 = 1, 2,
we can write

𝑍1 =
𝑘𝛼0𝑒

𝜎𝐺0

𝑟𝑏0
𝑎0 cos 𝜃0 + 𝑌1 +𝑊1 (2)

𝑍2 =
𝑘𝛼0𝑒

𝜎𝐺0

𝑟𝑏0
𝑎0 sin 𝜃0 + 𝑌2 +𝑊2, (3)

where 𝑊1 and 𝑊2 are 𝒩 (0, 𝑁0/2) and mutually independent.
After some algebra (Appendix A), 𝑌1 and 𝑌2 can be expressed
as

𝑌𝑛 =

∫ 𝑇

0

𝑌 (𝑡)𝜓𝑛(𝑡)𝑑𝑡 =

∞∑
𝑖=1

𝑒𝜎𝐺𝑖𝑋𝑖,𝑛

𝑅𝑏
𝑖

, 𝑛 = 1, 2, (4)

where

𝑋𝑖,1= 𝑘𝛼𝑖

[
𝑎𝑖

𝐷𝑖

𝑇 cos(𝜃𝑖 + 𝜙𝑖) + 𝑎′𝑖
(
1− 𝐷𝑖

𝑇

)
cos(𝜃′𝑖 + 𝜙𝑖)

]
(5)

𝑋𝑖,2= 𝑘𝛼𝑖

[
𝑎𝑖

𝐷𝑖

𝑇 sin(𝜃𝑖 + 𝜙𝑖) + 𝑎′𝑖
(
1− 𝐷𝑖

𝑇

)
sin(𝜃′𝑖 + 𝜙𝑖)

]
.

(6)

Using complex baseband notation,10 equations (2)-(6) can be
further simplified as

Z =
𝑘𝛼0𝑒

𝜎𝐺0

𝑟𝑏0
𝑎0𝑒

𝑗𝜃0 +Y +W (7)

Y =

∞∑
𝑖=1

𝑒𝜎𝐺𝑖X𝑖

𝑅𝑏
𝑖

(8)

where

X𝑖 = 𝑘𝛼𝑖𝑒
𝑗𝜙𝑖

[
𝐷𝑖

𝑇
𝑎𝑖𝑒

𝑗𝜃𝑖 +

(
1− 𝐷𝑖

𝑇

)
𝑎′𝑖𝑒

𝑗𝜃′
𝑖

]
, (9)

and the distribution of W is given by11

W ∼ 𝒩c(0, 𝑁0). (10)

Since different interferers 𝑖 transmit asynchronously and in-
dependently, the r.v.’s {X𝑖}∞𝑖=1 are i.i.d.

The distribution of the aggregate interference Y plays an
important role in the performance evaluation of the probe
link. In what follows, we characterize such distribution in
two important scenarios: the 𝒫-conditioned and unconditional
cases.

B. 𝒫-conditioned Interference Distribution

To derive the 𝒫-conditioned distribution of the aggregate
interference Y in (8)-(9), we start with the results given in
[27]. This work shows that in the case of Rayleigh fading, an
expression of the form of (9) can be well approximated by a

10Boldface letters are used to denote complex quantities; for example,
Z = 𝑍1 + 𝑗𝑍2.

11We use 𝒩c(0, 𝜎2) to denote a circularly symmetric (CS) complex Gaus-
sian distribution, where the real and imaginary parts are i.i.d. 𝒩 (0, 𝜎2/2).

circularly symmetric (CS) complex Gaussian r.v., such that

X𝑖 ∼ 𝒩c(0, 2𝑉𝑋), 𝑉𝑋 ≜ 𝕍{𝑋𝑖,𝑛}. (11)

In [27], the validity of this approximation is justified both
by analyzing the Kullback-Leibler divergence between the
exact and approximated cases, as well as by comparing the
corresponding error probabilities.12 Then, conditioned on 𝒫 ,
the interference Y =

∑∞
𝑖=1

𝑒𝜎𝐺𝑖X𝑖

𝑅𝑏
𝑖

becomes a sum of inde-
pendent CS Gaussian r.v.’s and is therefore a CS Gaussian r.v.
given by13

Y
∣𝒫∼ 𝒩c(0, 2𝐴𝑉𝑋), (12)

where 𝐴 is defined as

𝐴 ≜
∞∑
𝑖=1

𝑒2𝜎𝐺𝑖

𝑅2𝑏
𝑖

. (13)

Furthermore, 𝑉𝑋 can be expressed after some algebra as

𝑉𝑋 =
𝐸

3
+
𝑘2

6
𝔼{𝑎𝑖𝑎′𝑖 cos(𝜃𝑖 − 𝜃′𝑖)}, 𝑖 ≥ 1, (14)

where 𝐸 ≜ 𝑘2𝔼{𝑎2𝑖 } is the average symbol energy of each in-
terfering node, measured 1m away from the interferer [29].14

Because the r.v.’s {X𝑖}∞𝑖=1 are i.i.d., 𝑉𝑋 does not depend on 𝑖
and is only a function of the interferers’ signal constellation.
For the case of equiprobable symbols and a constellation that
is symmetric with respect to the origin of the IQ-plane15

(e.g., 𝑀 -PSK and 𝑀 -QAM), the second right-hand term in
(14) vanishes and 𝑉𝑋 = 𝐸/3.

Lastly, note that since 𝐴 in (13) depends on the interferer
positions 𝒫 (i.e., {𝑅𝑖}∞𝑖=1 and {𝐺𝑖}∞𝑖=1), it can be seen as
a r.v. whose value is different for each realization of 𝒫 .
Furthermore, Appendix B shows that r.v.𝐴 has a skewed stable
distribution [30] given by16

𝐴 ∼ 𝒮
(
𝛼𝐴 =

1

𝑏
, 𝛽𝐴 = 1, 𝛾𝐴 = 𝜋𝜆𝒞−1

1/𝑏𝑒
2𝜎2/𝑏2

)
(15)

for 𝑏 > 1, where 𝒞𝑥 is defined as

𝒞𝑥 ≜
{

1−𝑥
Γ(2−𝑥) cos(𝜋𝑥/2) , 𝑥 ∕= 1,
2
𝜋 , 𝑥 = 1,

(16)

12We can obtain (11) following an alternative approach: if we consider that
the interfering nodes are coded and operating close to capacity, then the signal
transmitted by each interferer is Gaussian, such that X𝑖 ∼ 𝒩c(0, 2𝑉𝑋) [28].

13We use 𝑋
∣𝑌∼ to denote the distribution of r.v. 𝑋 conditional on 𝑌 .

14Unless otherwise stated, we will simply refer to 𝐸 as the “average symbol
energy” of the interferers.

15A constellation is said to be symmetric with respect to the origin if for
every constellation point (𝑥, 𝑦) ∈ ℝ

2, the point (−𝑥,−𝑦) also belongs to
the constellation.

16We use 𝒮(𝛼, 𝛽, 𝛾) to denote a real stable distribution with characteristic
exponent 𝛼 ∈ (0, 2], skewness 𝛽 ∈ [−1, 1], and dispersion 𝛾 ∈ [0,∞). The
corresponding characteristic function is

𝜙(𝑤) =

{
exp

[−𝛾∣𝑤∣𝛼 (
1− 𝑗𝛽 sign(𝑤) tan 𝜋𝛼

2

)]
, 𝛼 ∕= 1,

exp
[−𝛾∣𝑤∣ (1 + 𝑗 2

𝜋
𝛽 sign(𝑤) ln ∣𝑤∣)] , 𝛼 = 1.
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Fig. 3. P.d.f. of 𝐴 for different amplitude loss exponents 𝑏 and interferer
densities 𝜆 (𝜎dB = 10). Stable laws are a direct generalization of Gaussian
distributions, and include other densities with heavier (algebraic) tails.

with Γ(𝑥) =
∫∞
0
𝑡𝑥−1𝑒−𝑡𝑑𝑡 denoting the gamma function.

This distribution is plotted in Fig. 3 for different 𝑏 and 𝜆.

C. Unconditional Interference Distribution

To derive the unconditional distribution17 of the aggregate
interference Y in (8)-(9), we can show that a sum of the
form in (8) belongs to the class of symmetric stable distribu-
tions [30]. This is because {𝑅𝑖}∞𝑖=1 are defined with respect
to a spatial Poisson process, and {X𝑖}∞𝑖=1 are i.i.d. and have
a CS distribution. Specifically, Appendix C shows that Y has
a CS complex stable distribution given by18

Y ∼ 𝒮c

(
𝛼Y =

2

𝑏
, 𝛽Y = 0, (17)

𝛾Y = 𝜋𝜆𝒞−1
2/𝑏𝑒

2𝜎2/𝑏2
𝔼{∣𝑋𝑖,𝑛∣2/𝑏}

)
for 𝑏 > 1. Using (5)-(6), we can further express 𝔼{∣𝑋𝑖,𝑛∣2/𝑏}
in (17) as

𝔼{∣𝑋𝑖,𝑛∣2/𝑏} = 𝑘2/𝑏𝔼{∣𝛼𝑖∣2/𝑏} (18)

× 𝔼

{∣∣∣∣𝑎𝑖𝐷𝑖

𝑇
cos(𝜃𝑖 + 𝜙𝑖) + 𝑎′𝑖

(
1− 𝐷𝑖

𝑇

)
cos(𝜃′𝑖 + 𝜙𝑖)

∣∣∣∣2/𝑏
}

︸ ︷︷ ︸
≜𝜒(𝑏)

.

For the particular case of Rayleigh fading, eq. (18) reduces to
𝔼{∣𝑋𝑖,𝑛∣2/𝑏} = 𝑘2/𝑏Γ

(
1 + 1

𝑏

) ⋅𝜒(𝑏), where we have used the
moment relation for the Rayleigh r.v. 𝛼𝑖 [31]. Since different
interferers 𝑖 transmit asynchronously and independently, the
parameter 𝜒(𝑏) does not depend on 𝑖 and is only a function
of the amplitude loss exponent 𝑏 and the interferers’ signal
constellation. Table I provides some numerical values for
𝔼{∣𝑋𝑖,𝑛∣2/𝑏}.

17Unconditional in the sense of being averaged over the positions 𝒫 .
18We use 𝒮c(𝛼, 𝛽 = 0, 𝛾) to denote a CS complex stable distribution

with characteristic exponent 𝛼 and dispersion 𝛾, and whose characteristic
function is 𝜙(w) = exp(−𝛾∣w∣𝛼). Furthermore, the corresponding real and
imaginary components are both 𝒮(𝛼, 𝛽 = 0, 𝛾).

TABLE I
𝔼{∣𝑋𝑖,𝑛∣2/𝑏} FOR VARIOUS AMPLITUDE LOSS EXPONENTS 𝑏 AND

MODULATIONS, ASSUMING RAYLEIGH FADING. NOTE THAT FOR 𝑀 -PSK
MODULATIONS, THIS QUANTITY IS PROPORTIONAL TO 𝐸1/𝑏 , WHERE 𝐸 IS

THE AVERAGE SYMBOL ENERGY OF THE INTERFERERS.

𝔼{∣𝑋𝑖,𝑛∣2/𝑏}
𝐸1/𝑏

𝑏 BPSK QPSK

1.5 0.374 0.385

2 0.423 0.441

3 0.509 0.531

4 0.576 0.599

D. Discussion

The results of this section have to be interpreted carefully,
because of the different types of conditioning involved. In the
unconditional case, we let 𝒫 be random, i.e., we let {𝑅𝑖}∞𝑖=1

be the random outcomes of an underlying spatial Poisson
process, and {𝐺𝑖}∞𝑖=1 be the random shadowing affecting each
interferer. Then, the unconditional interference Y is exactly
stable-distributed and given by (17). We note that (17) and
(18) hold for a broad class of fading distributions, in addition
to Rayleigh fading. In the 𝒫-conditioned case, the positions
of the interferers are fixed. Then, 𝐴 in (13) is also a fixed
number, and the interference Y is approximately CS Gaussian
with total variance 2𝐴𝑉𝑋 , as given in (12).

IV. ERROR PROBABILITY

In the previous section, we determined the statistical dis-
tribution of the aggregate interference at the output of a
conventional linear receiver. We now use such result to directly
characterize of the error probability of the probe link, when
subject to network interference and thermal noise, in both
cases of slow and fast-varying 𝒫 .

A. Slow-varying Interferer Positions 𝒫
In the quasi-static scenario of slow-varying 𝒫 , it is insight-

ful to analyze the error probability conditioned on a given re-
alization 𝒫 of the distances {𝑅𝑖}∞𝑖=1 and shadowing {𝐺𝑖}∞𝑖=1

associated with the interferers, as well as on the shadowing𝐺0

of the probe transmitter. We denote this conditional symbol
error probability by 𝑃e(𝐺0,𝒫).19

To derive the conditional error probability, we employ the
results of Section III-B for the 𝒫-conditioned distribution of
the aggregate interference Y. Specifically, using (10) and (12),
the received signal Z in (7) can be rewritten as

Z =
𝑘𝛼0𝑒

𝜎𝐺0

𝑟𝑏0
𝑎0𝑒

𝑗𝜃0 + W̃, (19)

where
W̃ = Y +W

∣𝒫∼ 𝒩c(0, 2𝐴𝑉𝑋 +𝑁0). (20)

Our framework has thus reduced the analysis to a Gaussian
scenario, where the combined noise W̃ is Gaussian when
conditioned on the location of the interferers.

19The notation 𝑃e(𝑋, 𝑌 ) is used as a shorthand for ℙ{error∣𝑋, 𝑌 }.
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The corresponding error probability 𝑃e(𝐺0,𝒫) can be found
by taking the well-known error probability expressions for
coherent detection of linear modulations in the presence of
AWGN and fast fading [32]–[35], but using 2𝐴𝑉𝑋 +𝑁0

instead of 𝑁0 for the total noise variance. Note that this
substitution is valid for any linear modulation, allowing the
traditional results to be extended to include the effect of
network interference. For the particular case where the probe
transmitter employs an arbitrary signal constellation in the IQ-
plane and the fading is Rayleigh-distributed, the conditional
symbol error probability 𝑃e(𝐺0,𝒫) is given by

𝑃e(𝐺0,𝒫) =
𝑀∑
𝑘=1

𝑝𝑘
∑
𝑙∈ℬ𝑘

1

2𝜋
(21)

×
∫ 𝜙𝑘,𝑙

0

(
1 +

𝑤𝑘,𝑙

4 sin2(𝜃 + 𝜓𝑘,𝑙)
𝜂𝐴

)−1

𝑑𝜃,

where

𝜂𝐴 =
𝑒2𝜎𝐺0𝐸0

𝑟2𝑏0 (2𝐴𝑉𝑋 +𝑁0)
(22)

is the received signal-to-interference-plus-noise ratio (SINR),
averaged over the fast fading; 𝑀 is the constellation size;
{𝑝𝑘}𝑀𝑘=1 are the symbol probabilities; ℬ𝑘, 𝜙𝑘,𝑙, 𝑤𝑘,𝑙, and 𝜓𝑘,𝑙

are the parameters that describe the geometry of the con-
stellation (see Fig. 4); 𝐸0 ≜ 𝑘2𝔼{𝑎20} is the average symbol
energy of the probe transmitter, measured 1m away from the
transmitter; 𝐴 is defined in (13) and distributed according to
(15); and 𝑉𝑋 is given in (14). When the probe transmitter
employs𝑀 -PSK and 𝑀 -QAM modulations with equiprobable
symbols, eq. (21) is equivalent to20

𝑃MPSK
e (𝐺0,𝒫) = ℐ𝐴

(
𝑀 − 1

𝑀
𝜋, sin2

( 𝜋
𝑀

))
(23)

and

𝑃MQAM
e (𝐺0,𝒫) = 4

(
1− 1√

𝑀

)
⋅ ℐ𝐴

(
𝜋

2
,

3

2(𝑀 − 1)

)
− 4

(
1− 1√

𝑀

)2

⋅ ℐ𝐴
(
𝜋

4
,

3

2(𝑀 − 1)

)
,

(24)

respectively, where the integral ℐ𝐴(𝑥, 𝑔) is given by

ℐ𝐴(𝑥, 𝑔) = 1

𝜋

∫ 𝑥

0

(
1 +

𝑔

sin2 𝜃
𝜂𝐴

)−1

𝑑𝜃. (25)

In the general expression given in (21) and (22), the network
interference is accounted for by the term 2𝐴𝑉𝑋 , where 𝐴
depends on the spatial distribution of the interferers and prop-
agation characteristics of the medium, while 𝑉𝑋 depends on
the interferer transmission characteristics. Since 2𝐴𝑉𝑋 simply
adds to 𝑁0, we conclude that the effect of the interference
on the error probability is simply an increase in the noise
level, a fact which is intuitively satisfying. Furthermore, note
that the modulation of the interfering nodes only affects
the term 𝑉𝑋 , while the (possibly different) modulation of
the probe transmitter affects the type of error probability
expression, leading to forms such as (23) or (24).

20In this paper, we implicitly assume that 𝑀 -QAM employs a square signal
constellation with 𝑀 = 2𝑛 points (𝑛 even).

𝑠1

𝑠2

𝑠3
𝑠4

𝜓1,2

𝜓1,3

𝜓1,4

𝜙1,2

𝜙1,3𝜙1,4

Fig. 4. Typical decision region associated with symbol 𝑠1. In general,

for a constellation with signal points 𝑠𝑘 = ∣𝑠𝑘∣𝑒𝑗𝜉𝑘 and 𝜁𝑘 =
∣𝑠𝑘∣2

𝔼{∣𝑠𝑘∣2} ,
𝑘 = 1 . . . 𝑀 , four parameters are required to compute the error probability:
𝜙𝑘,𝑙 and 𝜓𝑘,𝑙 are the angles that describe the decision region corresponding
to 𝑠𝑘 (as depicted); ℬ𝑘 is the set consisting of the indexes for the signal points
that share a decision boundary with 𝑠𝑘 (in the example, ℬ1 = {2, 3, 4}); and
𝑤𝑘,𝑙 = 𝜁𝑘 + 𝜁𝑙 − 2

√
𝜁𝑘𝜁𝑙 cos(𝜉𝑘 − 𝜉𝑙).

In our quasi-static model, the conditional error probability in
(21) is seen to be a function of the slow-varying user positions
and shadowing (i.e., 𝐺0 and 𝒫). Since these quantities are
random, the error probability itself is a r.v. Then, with some
probability, 𝐺0 and 𝒫 are such that the error probability of the
probe link is above some target 𝑝∗. In this case, the system is
said to be in outage, and the error outage probability is

𝑃 e
out = ℙ𝐺0,𝒫{𝑃e(𝐺0,𝒫) > 𝑝∗}, (26)

In the case of slow-varying user positions, the error outage
probability is a more meaningful metric than the error proba-
bility averaged over 𝒫 .

B. Fast-varying Interferer Positions 𝒫
In the dynamic scenario of fast-varying 𝒫 , it is insightful to

average the error probability over all possible realizations of
interferer positions 𝒫 . We denote this average symbol error
probability by 𝑃e(𝐺0). Note that we choose not to average
out the shadowing 𝐺0 affecting the probe transmitter, since
we consider the probe transmitter node to be immobile at a
deterministic distance 𝑟0 from the probe receiver, and thus 𝐺0

is slow-varying.
To derive the average error probability, we use the decom-

position property of stable r.v.’s [30], which allows Y in (17)
to be decomposed as

Y =
√
𝐵G, (27)

where 𝐵 and G are independent r.v.’s, and

𝐵 ∼ 𝒮
(
𝛼𝐵 =

1

𝑏
, 𝛽𝐵 = 1, 𝛾𝐵 = cos

𝜋

2𝑏

)
(28)

G ∼ 𝒩c(0, 2𝑉𝐺), 𝑉𝐺 = 2𝑒2𝜎
2/𝑏

(
𝜋𝜆𝒞−1

2/𝑏𝔼{∣𝑋𝑖,𝑛∣2/𝑏}
)𝑏

,

(29)

with 𝔼{∣𝑋𝑖,𝑛∣2/𝑏} given in (18). Conditioning on the r.v. 𝐵,
we then use (10) and (27) to rewrite the aggregate received
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signal Z in (7) as

Z =
𝑘𝛼0𝑒

𝜎𝐺0

𝑟𝑏0
𝑎0𝑒

𝑗𝜃0 + W̃,

where

W̃ =
√
𝐵G+W

∣𝐵∼ 𝒩c(0, 2𝐵𝑉𝐺 +𝑁0). (30)

Again, our framework has reduced the analysis to a Gaussian
scenario, where the combined noise W̃ is a Gaussian r.v.
Note that this result was derived without resorting to any
approximations – in particular, the Gaussian approximation of
(11) was not needed here. We merely used the decomposition
property of symmetric stable r.v.’s.

The corresponding error probability 𝑃e(𝐺0) can be found
by taking the error expressions for coherent detection in the
presence of AWGN and fast fading, then using 2𝐵𝑉𝐺 +𝑁0

instead of 𝑁0 for the total noise variance, and lastly (unlike
in Section IV-A) averaging over the r.v. 𝐵. For the particular
case where the probe transmitter employs an arbitrary signal
constellation in the IQ-plane and the fading is Rayleigh-
distributed, the average symbol error probability 𝑃e(𝐺0) is
given by

𝑃e(𝐺0) =

𝑀∑
𝑘=1

𝑝𝑘
∑
𝑙∈ℬ𝑘

1

2𝜋
(31)

×
∫ 𝜙𝑘,𝑙

0

𝔼𝐵

{(
1 +

𝑤𝑘,𝑙

4 sin2(𝜃 + 𝜓𝑘,𝑙)
𝜂𝐵

)−1
}
𝑑𝜃,

where

𝜂𝐵 =
𝑒2𝜎𝐺0𝐸0

𝑟2𝑏0 (2𝐵𝑉𝐺 +𝑁0)
; (32)

𝐵 is distributed according to (28); 𝑉𝐺 is given in (29); and the
other parameters have the same meaning as in Section IV-A.
When the probe transmitter employs 𝑀 -PSK and 𝑀 -QAM
modulations with equiprobable symbols, eq. (31) is equivalent
to

𝑃MPSK
e (𝐺0) = ℐ𝐵

(
𝑀−1
𝑀 𝜋, sin2

(
𝜋
𝑀

))
(33)

and

𝑃MQAM
e (𝐺0) = 4

(
1− 1√

𝑀

)
⋅ ℐ𝐵

(
𝜋

2
,

3

2(𝑀 − 1)

)
− 4

(
1− 1√

𝑀

)2

⋅ ℐ𝐵
(
𝜋

4
,

3

2(𝑀 − 1)

)
, (34)

respectively, where the integral ℐ𝐵(𝑥, 𝑔) is given by

ℐ𝐵(𝑥, 𝑔) = 1

𝜋

∫ 𝑥

0

𝔼𝐵

{(
1 +

𝑔

sin2 𝜃
𝜂𝐵

)−1
}
𝑑𝜃. (35)

C. Discussion

The results derived in Sections IV-A and IV-B provide
insights into the dependence of the error performance on the
density 𝜆 and the average symbol energy 𝐸 of the interfering
nodes. Recall from (21) that the error probability 𝑃e(𝐺0,𝒫)
implicitly depends on parameters 𝜆 and 𝐸 through the prod-
uct 𝐴𝑉𝑋 in the denominator of 𝜂𝐴 in (22). This is because
the dispersion parameter 𝛾𝐴 of the stable r.v. 𝐴 depends on 𝜆
according to (15), and 𝑉𝑋 is proportional to 𝐸 as in (14). The
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Fig. 5. INR− 𝜆 curves of constant 𝑃 e
out, for the case of slow-varying

interferer positions 𝒫 (BPSK, SNR = 40 dB, 𝑏 = 2, 𝑟0 = 1m, 𝜎dB = 10,
𝑝∗ = 10−2). The INR is defined as INR = 𝐸/𝑁0. Clearly, for a fixed
error performance, there is a tradeoff between the density and energy of the
interferers: if the INR (or, equivalently, 𝐸) increases, 𝜆 must decrease, and
vice-versa, to maintain the same outage probability.

dependence on 𝜆 can be made evident by using the scaling
property of stable r.v.’s [30] to write 𝐴𝑉𝑋 = 𝜆𝑏𝐴𝑉𝑋 , where
𝐴 is a normalized version of 𝐴, independent of 𝜆. We thus
conclude that the interference term 𝐴𝑉𝑋 is proportional to
𝜆𝑏𝐸, where 𝑏 > 1. Clearly, the error performance degrades
faster with an increase in the density of interferers than with
an increase in their transmitted power. The tradeoff between
𝐸 and 𝜆 for a fixed error performance is illustrated in Fig. 5.

D. Numerical Results

Figs. 6 and 7 quantify the average and outage proba-
bilities for several scenarios, showing their dependence on
various parameters involved, such as the signal-to-noise ra-
tio SNR = 𝐸0/𝑁0, interference-to-noise ratio INR = 𝐸/𝑁0,
amplitude loss exponent 𝑏, interferer spatial density 𝜆, and
link length 𝑟0.

The plots of 𝑃 e
out and 𝑃e(𝐺0) presented here are of semi-

analytical nature. Specifically, we resort to a hybrid method
where we employ the analytical results given in (21)-(26)
and (31)-(35), and perform a Monte Carlo simulation with
respect to the stable r.v.’s (i.e., 𝐴 and 𝐵), according to
[36]. We emphasize that the expressions derived in this paper
completely eliminate the need for simulation of the interferers’
position and waveforms in the network, in order to obtain the
error performance.

For illustration purposes, we consider that all terminals
(i.e., the probe transmitter and interfering nodes) use BPSK
modulation. We analyze both cases of slow and fast-varying
interferer positions 𝒫 , concurrently with the following two
different scenarios:

1) Heterogeneous network: The probe transmitter is al-
lowed to use an arbitrary power 𝑃0 = 𝐸0/𝑇 , not
necessarily equal to the common power of the interfering
nodes 𝑃 = 𝐸/𝑇 , and hence SNR ∕= INR in general.
This scenario is useful when the goal is to evaluate the
impact of aggregate interference from a large number
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Fig. 6. Error outage probability plots for a heterogeneous network (where
SNR ∕= INR in general) and slow-varying interferer positions 𝒫 . Since 𝒫
is slow-varying, the meaningful performance metric is the outage probabil-
ity 𝑃 e

out given in (26).

of identical secondary users (e.g., cognitive-radio termi-
nals) on the performance of a primary link.

2) Homogeneous network: The probe transmitter and in-
terfering nodes all use the same power, and thus
SNR = INR. This may correspond to a sensor network
scenario, where there is a large number of indistinguish-
able, spatially scattered nodes with similar transmission
characteristics. In such a case, the goal is to evaluate the
impact of the aggregate network self-interference on the
performance of each sensor node.

For the heterogeneous case depicted in Fig. 6, we conclude
that the error performance deteriorates as 𝜆 or INR increase,
for a fixed SNR. This is expected because as the density or the
transmitted energy of the interferers increase, the aggregate
interference at the probe receiver becomes stronger. Note,
however, that in the homogeneous case where SNR = INR,
the error performance improves as we increase the common
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(a) 𝑃e(𝐺0) versus the length 𝑟0 of the probe link, for various signal loss ex-
ponents 𝑏 (BPSK, 𝐺0 = 0, SNR = INR = 20 dB, 𝜆 = 0.01m−2, 𝜎dB = 10).
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Fig. 7. Average error probability plots for a homogeneous network (where
SNR = INR) and fast-varying interferer positions 𝒫 . Since 𝒫 is fast-varying,
the meaningful performance metric is the average error probability 𝑃e(𝐺0)
given in (31). For simplicity, we use 𝐺0 = 0 in these plots (no shadowing
on the probe link).

transmitted power 𝑃 of the nodes (or equivalently, the SNR),
although the gains become marginally small as 𝑃 → ∞ (see
Fig. 7(b)). This happens because in the interference-limited
regime where SNR = INR ≫ 1, the noise term 𝑁0 in (22) or
(32) becomes irrelevant, and so the SNR in the numerator can-
cels with the INR in the denominator, making the performance
independent of the transmitted power 𝑃 .

The effect of the amplitude loss exponent 𝑏 on the error
performance, on the other hand, is non-trivial. As illustrated
in Fig. 7(a), an increase in 𝑏 may degrade or improve the
performance, depending on the distance 𝑟0 and other parame-
ters. This is because 𝑏 simultaneously affects both the received
signal of interest and the aggregate interference – the former,
through the term 1/𝑟𝑏0; and the latter, through 𝛼𝐴 and 𝛾𝐴 in
(15), or through 𝛼𝐵 , 𝛾𝐵 , and 𝑉𝐺 in (28) and (29).
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𝑌1 =

∫ 𝑇

0

𝑌 (𝑡)𝜓1(𝑡)𝑑𝑡

=

∞∑
𝑖=1

∫ 𝑇

0

𝑘𝛼𝑖𝑒
𝜎𝐺𝑖

𝑅𝑏
𝑖

[√
2

𝑇
𝑎𝑖 cos(2𝜋𝑓c𝑡+ 𝜃𝑖 + 𝜙𝑖)𝑢(𝐷𝑖 − 𝑡)

+

√
2

𝑇
𝑎′𝑖 cos(2𝜋𝑓c𝑡+ 𝜃′𝑖 + 𝜙𝑖)𝑢(𝑡−𝐷𝑖)

]
×
√

2

𝑇
cos(2𝜋𝑓c𝑡)𝑑𝑡

=

∞∑
𝑖=1

2

𝑇

𝑘𝛼𝑖𝑒
𝜎𝐺𝑖

𝑅𝑏
𝑖

⎡⎢⎢⎢⎣𝑎𝑖2
∫ 𝐷𝑖

0

cos(𝜃𝑖 + 𝜙𝑖)𝑑𝑡+
𝑎𝑖
2

∫ 𝐷𝑖

0

cos(4𝜋𝑓c𝑡+ 𝜃𝑖 + 𝜙𝑖)𝑑𝑡︸ ︷︷ ︸
≈0 for 𝑓c𝑇≫1

+
𝑎′𝑖
2

∫ 𝑇

𝐷𝑖

cos(𝜃′𝑖 + 𝜙𝑖)𝑑𝑡+
𝑎′𝑖
2

∫ 𝑇

𝐷𝑖

cos(4𝜋𝑓c𝑡+ 𝜃′𝑖 + 𝜙𝑖)𝑑𝑡︸ ︷︷ ︸
≈0 for 𝑓c𝑇≫1

⎤⎥⎥⎥⎦
=

∞∑
𝑖=1

𝑒𝜎𝐺𝑖𝑋𝑖,1

𝑅𝑏
𝑖

(36)

V. CONCLUSIONS

This paper introduces a mathematical model for com-
munication subject to network interference and noise. The
interferers are scattered according to a spatial Poisson process,
and are operating asynchronously in a wireless environment
subject to path loss, shadowing, and multipath fading. We
show that the aggregate network interference at the output
of a linear receiver is related to a skewed stable distribution
when conditioned on the positions of interferers, and to a
symmetric stable distribution in the unconditional case. We
characterize the error performance for the cases of slow and
fast-varying interferers, in terms of outage and average error
probabilities, respectively. These expressions are valid for any
linear modulation scheme. We then quantify these metrics as
a function of various important system parameters, such as the
SNR, INR, path loss exponent, and spatial density of the inter-
ferers. In Part II of the paper [11], we characterize the capacity
of the link when subject to both network interference and
noise, and derive the spectrum of the aggregate interference
at any location in the plane. Lastly, we put forth the concept
of spectral outage probability, a new characterization of the
aggregate interference generated by communicating nodes in
a wireless network.

APPENDIX A
DERIVATION OF THE INTERFERENCE REPRESENTATION IN

(4)-(6)

To obtain the desired representation, we project 𝑌 (𝑡) onto
the basis function 𝜓1(𝑡) =

√
2/𝑇 cos(2𝜋𝑓c𝑡) as given in (36)

at the top of this page, where

𝑋𝑖,1 = 𝑘𝛼𝑖

[
𝑎𝑖
𝐷𝑖

𝑇
cos(𝜃𝑖 + 𝜙𝑖) + 𝑎′𝑖

(
1− 𝐷𝑖

𝑇

)
cos(𝜃′𝑖 + 𝜙𝑖)

]
.

The signal 𝑌 (𝑡) can be projected onto the basis func-
tion 𝜓2(𝑡) = −√2/𝑇 sin(2𝜋𝑓c𝑡) in an entirely analogous

way, leading to

𝑌2 =

∞∑
𝑖=1

𝑒𝜎𝐺𝑖𝑋𝑖,2

𝑅𝑏
𝑖

,

where

𝑋𝑖,2 = 𝑘𝛼𝑖

[
𝑎𝑖
𝐷𝑖

𝑇
sin(𝜃𝑖 + 𝜙𝑖) + 𝑎′𝑖

(
1− 𝐷𝑖

𝑇

)
sin(𝜃′𝑖 + 𝜙𝑖)

]
.

This completes the derivation.

APPENDIX B
DERIVATION OF THE DISTRIBUTION OF 𝐴

To derive the distribution of 𝐴 given in (15), we start with
the following theorem.

Theorem B.1: Let {𝜏𝑖}∞𝑖=1 denote the arrivals of a one-
dimensional Poisson process with rate 𝜆; let {𝑊𝑖}∞𝑖=1 be
a sequence of nonnegative i.i.d. r.v.’s, independent of the
sequence {𝜏𝑖} and satisfying 𝔼{∣𝑊𝑖∣𝛼} <∞. If 0 < 𝛼 < 1,
then

∞∑
𝑖=1

𝑊𝑖

𝜏
1/𝛼
𝑖

a.s.∼ 𝒮 (𝛼, 𝛽 = 1, 𝛾 = 𝜆𝒞−1
𝛼 𝔼{∣𝑊𝑖∣𝛼}

)
,

where 𝒞𝛼 is defined in (16).

Proof: See [30].

If an homogeneous Poisson point process in the plane has
spatial density 𝜆, and 𝑅𝑖 denotes the distance of node 𝑖 to
the origin, then the sequence {𝑅2

𝑖 }∞𝑖=1 represents Poisson
arrivals on the line with the constant arrival rate 𝜋𝜆. This
can be easily shown by mapping the spatial Poisson process
from Cartesian into polar coordinates, and then applying the
mapping theorem [12]. Using this fact, we can then apply the
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above theorem to (13) and write

𝐴 =

∞∑
𝑖=1

𝑒2𝜎𝐺𝑖

𝑅2𝑏
𝑖

=

∞∑
𝑖=1

𝑊𝑖︷ ︸︸ ︷
𝑒2𝜎𝐺𝑖

( 𝑅2
𝑖︸︷︷︸

𝜏𝑖

)𝑏

a.s.∼ 𝒮
(
𝛼 =

1

𝑏
, 𝛽 = 1, 𝛾 = 𝜋𝜆𝒞−1

1/𝑏𝔼{∣𝑒2𝜎𝐺𝑖 ∣1/𝑏}
)

(37)

for 𝑏 > 1. Using the moment property of log-normal r.v.’s, i.e.,
𝔼{𝑒𝑘𝐺} = 𝑒𝑘

2/2 for 𝐺 ∼ 𝒩 (0, 1), eq. (37) simplifies to

𝐴
a.s.∼ 𝒮

(
𝛼 =

1

𝑏
, 𝛽 = 1, 𝛾 = 𝜋𝜆𝒞−1

1/𝑏𝑒
2𝜎2/𝑏2

)
for 𝑏 > 1. This is the result in (15) and the derivation is
complete.

APPENDIX C
DERIVATION OF THE DISTRIBUTION OF Y

To derive the distribution of Y given in (17), we start with
the following theorem.

Theorem C.1: Let {𝜏𝑖}∞𝑖=1 denote the arrivals of a one-
dimensional Poisson process with rate 𝜆; let {Z𝑖}∞𝑖=1 be a
sequence of CS i.i.d. complex r.v.’s Z𝑖 = 𝑍𝑖,1 + 𝑗𝑍𝑖,2, inde-
pendent of the sequence {𝜏𝑖} and satisfying 𝔼{∣Z𝑖∣𝛼} <∞.
If 0 < 𝛼 < 2, then

∞∑
𝑖=1

Z𝑖

𝜏
1/𝛼
𝑖

a.s.∼ 𝒮c

(
𝛼, 𝛽 = 0, 𝛾 = 𝜆𝒞−1

𝛼 𝔼{∣𝑍𝑖,𝑛∣𝛼}
)
,

where 𝒞𝛼 is defined in (16).
Proof: See [30]. For an alternative proof based on the

influence function method, see [37].
Using the Poisson mapping theorem as in Appendix B, we

can apply the above theorem to (8) and write

Y =

∞∑
𝑖=1

𝑒𝜎𝐺𝑖X𝑖

𝑅𝑏
𝑖

=

∞∑
𝑖=1

CS i.i.d.︷ ︸︸ ︷
𝑒𝜎𝐺𝑖X𝑖

( 𝑅2
𝑖︸︷︷︸

𝜏𝑖

)𝑏/2

a.s.∼ 𝒮c

(
𝛼 =

2

𝑏
, 𝛽 = 0, 𝛾 = 𝜋𝜆𝒞−1

2/𝑏𝔼{∣𝑒𝜎𝐺𝑖𝑋𝑖,𝑛∣2/𝑏}
)

(38)

for 𝑏 > 1. Note that X𝑖, whose expression is given in (9),
is CS due to the uniform phase 𝜙𝑖. As a result, 𝑒𝜎𝐺𝑖X𝑖 is
also CS. Using the moment property of log-normal r.v.’s, i.e.,
𝔼{𝑒𝑘𝐺} = 𝑒𝑘

2/2 with 𝐺 ∼ 𝒩 (0, 1), eq. (38) simplifies to

Y
a.s.∼ 𝒮c

(
𝛼 =

2

𝑏
, 𝛽 = 0, 𝛾 = 𝜋𝜆𝒞−1

2/𝑏𝑒
2𝜎2/𝑏2

𝔼{∣𝑋𝑖,𝑛∣2/𝑏}
)

for 𝑏 > 1. This is the result in (17) and the derivation is
complete.
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