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Abstract—We present a mathematical model for communica-
tion subject to both network interference and noise. We intoduce
a framework where the interferers are scattered according
a spatial Poisson process, and are operating asynchronoysin
a wireless environment subject to path loss, shadowing, and
multipath fading. We consider both cases of slow and fast-
varying interferer positions. The paper is comprised of two
separate parts. In Part I, we determine the distribution of
the aggregate network interference at the output of a linear
receiver. We characterize the error performance of the link in
terms of average and outage probabilities. The proposed med
is valid for any linear modulation scheme (e.g.,M-ary phase
shift keying or M-ary quadrature amplitude modulation), and
captures all the essential physical parameters that affeatetwork
interference. Our work generalizes the conventional analsis of
communication in the presence of additive white Gaussian nse
and fast fading, allowing the traditional results to be extaded
to include the effect of network interference. In Part Il of the
paper, we derive the capacity of the link when subject to netark
interference and noise, and characterize the spectrum of #
aggregate interference.

Index Terms—Spatial distribution, Poisson field, aggregate
network interference, error probability, stable laws.

|. INTRODUCTION

N a wireless network composed of many spatially scatter

nodes, there are several fundamental impairments that c
strain the communication between nodes, includingrmal
noise and network interferenceThermal noise is introduced
by the receiver electronics and is usually modeled as addit
white Gaussian noise (AWGN), which constitutes a good
proximation in most cases. Interference, on the other hiand
due to signals radiated by other transmitters, which unalels

affect receiver nodes in the same or in a different netwook. F

simplicity, interference is typically approximated by AWG
with some given powel J1]. However, this elementary mod
does not completely capture the physical parameters t
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affect interference, namely: 1) the spatial distributiémodes
scattered in the network; 2) the transmission charadiesisf
nodes, such as modulation, power, and synchronization; and
3) the propagation characteristics of the medium, such #s pa
loss, shadowing, and multipath fading. If, instead, a spati
Poisson process is used to model the user positions, then all
these parameters are easily accounted for, and appearitiypli

in the resulting performance expressions.

The application of the Poisson field model to cellular
networks was investigated inl[2] and later advancedin [3].
However, these papers either ignore random propagation ef-
fects (such as shadowing and multipath fading), or redtniet
analysis of error probability in non-coherent FSK modulas.

In other related work[]4], it is assumed that the different
interferers are synchronized at the symbol or slot leveicivh
may be unrealistic in most situations. [ [5], the authorsose

a different approach and restrict the node locations tolaatis
ring in the two-dimensional plane. Although this ensures th
the number of interferers is finite, it complicates the asialy
and does not provide useful insights into the effects of netw
interference. IN[[6]+[8], the authors analyze coexistersaes

in wireless networks, but consider only a small, fixed number
of interferers. Lastly, none of the mentioned studies gbtsm
gdsystem characterization that incorporates various osetri
Q¢h as error probability, channel capacity, and powertsglec
density.

. In this two-part paper, we introduce a more realistic frame-
Work where the interferers are scattered according to a spa-

afal poisson process, and are operating asynchronously in a

wireless environment subject to path loss, shadowing, and
multipath fading [9]-[12]. We specifically address the case
of slow and fast-varying interferer positions. In Part | bét

ate network interference at the output of a linear receiver
ated anywhere in the two-dimensional plane. We provide

expressions for the error performance of the link (in terms
of average and outage probabilities), which are valid for an
linear modulation scheme. We then quantify these metrics as
a function of various important system parameters, suches t
signal-to-noise ratio (SNR), interference-to-noiseadtNR),
path loss exponent, and spatial density of the interfef@us.
analysis clearly shows how the system performance depends
on these parameters, thereby providing insights that may be
of value to the network designer. In Part Il of the paper [13],
we derive the capacity of the link when subject to network
interference and noise, and characterize the spectrumeof th

%per, we determine the statistical distribution of theragg
I
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aggregate interference. o Probe vansmiter node
This paper is organized as follows. Sectidn Il describes the o probe receiver node |
system model. SectidiJIl derives the representation agd di ¢ iterferingnode 1
tribution of the aggregate interference. Secfioh 1V anedythe
error performance of the system, and gives plots to illtstra
its dependence on important network parameters. Secfion V

concludes the paper and summarizes important findings.

Il. SYSTEM MODEL . e
A. Spatial Distribution of the Nodes . '

We model the spatial distribution of the nodes according to .
a homogeneous Poisson point process in the two-dimensional R R
infinite plane. Typically, the terminal positions are uniumo
to the network designer a priori, so we may as well treat them
as completely random according to a spatial Poisson prﬂcegg'gure 1. Poisson field model for the spatial distributiomoties. Without
Then. the robabilit)AP’{n in 'R} of n nodes being inside a loss of generality, we assume the origin of the coordinatgesy coincides

o P ) g Wiih the probe receiver.

regionR (not necessarily connected) depends only on the tota

areaA of the region, and is given by [14]

. A" a4 symbols: agei®
P{n RY = e , nZO’ ‘
N oseo A ALV LA s
0

in nodes per unit area. We define theerfering nodesto
be the set of terminals which are transmitting within the
frequency band of interest, during the time interval of iegg,

where )\ is the (constant) spatial density of interfering nodes, [VAVAY, U U U U U U U U U U U U UUT VAV

and hence are effectively contributing to the total intesfee.  symbols: a;el djel?. :

Then, irrespective of the network topology (e.g., point-to : :

point or broadcast) or multiple-access technique (e.ggti "°%? AJ\UHU UmUmUmU/\;AUmuﬂumumumumumuﬂuﬂuﬂ ;
or frequency hopping), the above model depends only on the : :

density A of interfering nodef. D, g

The proposed spatial model is depicted in Fig. 1. For
analytical purposes, we assume theresabe linkcomposed Figure 2. Asynchronism between different transmitting emdin the
of two nodes: theprobe receiverlocated at the origin of the observation interval0, 7], a change in constellation symbol of nodeccurs
. . . . i — D 0304 / 19;:
two-dimensional plane (without loss of generality), ane thf Fandom timet = D;, from a;e™s {0 a;e?”, wherea and§ denote the
. . L transmitted symbol amplitude and phase, respectively.disteibution of D;

probe transmitter(nodei = 0), deterministically located at ais assumed to bef(0, 7). Therefore, nod@ initiates symbol transmissions
distancer, from the origin. All the other nodes & 1...0c) at timesnI by convention, while node initiates symbol transmissions at
are interfering nodes, whose random distances to the oridfes™? + Pi-

are denoted by R;}°,, whereR; < Ry <.... Our goal is
then to determine the effect of the interfering nodes on the\\e 4o not assume synchronization among interfering nodes,

probe link. but instead consider asynchronous transmissions where dif
o o ferent terminals are allowed to operate independently. As
B. Transmission Characteristics of the Nodes depicted in Fig[R, node transmits with a random delai;

To account for the transmission characteristics of usees, Vi¢lative to node), where D; ~ (0,7 8 The probe receiver
consider that all interfering nodes employ the same lineza-m employs a conventional linear detecidtypically, parameters
ulation scheme, such a-ary phase shift keying){-PSK) such as the spatial density of interferers and the propzmgati
or M-ary quadrature amplitude modulation/¢QAM), with ~characteristics of the medium (e.g., shadowing and path los
symbol periodT’. Furthermore, they all transmit at the sam@arameters) are unknown to the receiver. This lack of infor-
power P — a plausible constraint when power control is togation about the interference, together with constraimts o
complex to implement (e.g., decentralized ad-hoc networkgeceiver complexity, justify the use of a simple linear dede,

For generality, however, we allow the probe transmitter thich is optimal when only AWGN is present.
employ an arbitrary linear modulation and arbitrary pogr
not necessarily equal to those used by the interfering nodeS. Propagation Characteristics of the Medium

1The spatial Poisson process is a natural choice in sucttisitubecause, To account for the propagation characteristics of the envi-

given that a node is inside a regi@®, the probability density function (p.d.f.) fonment, we consider that the median of the signal amplitude
of its position is conditionally uniform oveR.

2Time and frequency hopping can be easily accommodated snnibidel, 3wWe usel{(a,b) to denote a real uniform distribution in the interyjal b].
using the splitting property of Poisson process$es [15] tmiabthe effective “Note that the other receiver nodes are not relevant for thdysis, since
density of nodes that contribute to the interference. they do not cause interference.



decays with the distanceaccording tok/r?, for some given transmitting continuously over many symbols. In this

constantk. The amplitude loss exponehtis environment- guasi-static scenari@ varies slowly with time, and thus
dependent, and can approximately range fi@f(e.g., hall- it is insightful to condition the interference analysis on
ways inside buildings) td (e.g., dense urban environments), a given realization of°. As we shall see, this naturally
whereb = 1 corresponds to free space propagation Eﬂi]we leads to the derivation of therror outage probabilityof
use of such a decay law also ensures that interferers located the probe link, which in this case is a more meaningful
far away have a negligible contribution to the total intezfece metric than the error probability averaged oy2(18]-
observed at the probe receiver, thus making the infinitagla [27].

model reasonable. 2) Fast-varyingP: As in the previous caseR;(t) ~ R;

To capture the shadowing effect, we model the channel during the interval of interest. However, the interferers
amplitude gainS as a log-normal random variable (r.v.) have a short session lifetime, where each node periodi-
such thatS = pe’®, where G ~ N/(0, 1)@ u=k/r’ is the cally becomes active, transmits a burst of symbols, and
median of S, and o is the shadowing coefficielit. Thus, then turns off (e.g., in a sensor or a packet network).
the shadowing is responsible for random fluctuations of the  Then, the set ofinterfering nodes(the set of nodes
channel gain around the median path gajin’. The multipath that are transmitting and contributing to the interfergnce

effect is modeled as fast fading, which is superimposed enth ~ changes often, and so does their effective posifian
path loss and shadowing. Specifically, the fading affects th which experiences a variation analogous to that of a

received signal by introducing a random phase 1/(0, 27), block fading model. In this dynamic scenario, it is
as well as an amplitude factar with arbitrary distribution insightful to average the interference analysis over all
and normalized to have unit power gain, i.&{a?} = 18 possible realizations oP, which naturally leads to the
Because of its fast nature, the fading is always averagethout derivation of theaverage error probabilityof the probe
this paper, both when determining the interference distiom link.

and the error probability.

In what follows, we consider the shadowing (and similarl)lrII
for the fading) to be independent for different nodesand '
approximately constant during at least one symbol interva#l. Complex Baseband Representation of the Interference

Additionally, the probe receiver can perfectly estimate th \;qer the system model described in Secfidn II, the ag-

shadowing and fading affecting its own link, hence ensuringeate signal (1) at the probe receiver can be written for
that coherent demodulation of the desired signal is passibl) ;7 a5

| NTERFERENCEREPRESENTATION ANDDISTRIBUTION

kage®@o [2
D. Mobility and Session Lifetime of the Interferers Z(t) = 07,71,\/ Ta0 cos(2mfet + 60) + Y (1) + W (2),
. . . . . [e'e) O
Typically, the time variation of the distance;}i2, of where the first right-hand term is the desired signal from the

the interferers is highly coupled with that of the shadow- . . . _
ing {G;}2, affecting those nodes. This is because the Sh\gfégnsmltter probe nodé&](¢) is the aggregate interference with

owing is itself associated with the movement of the nodes nea . ka,eoCi
large blocking objects. Thus, we introduce the notat®mno Y(t)= Z TR
denote“a particular realization of the distance$R;}:°, and =1 ’
shadowing{G;};°, of the interferers,”or more succinctly, +\/§
“the position of the interferers In this paper, we analyze the

following two scenarios, which differ in the speed of vaidat ] ) )
of P and W (¢t) is the AWGN with two-sided power spectral den-

sity Ny/2, and independent of (¢). In the above equations,
. . 2 “we use the following the notatiorl is the symbol periodf.
tsy|]:nb0I or packet _t|m(ta)|, the d'fta;;@ti ?j;écr:: " is the carrier frequencyy;c’® and ale?® are r.v.'s denoting
tﬁr erer |str?ppr?X|;naeyhcons aT it) ~ o I'l;r-t' successive constellation symbols transmitted by the node
ermore, he interterers have a long session fite ImSUring the interval of interegt, T'] (see Fig[R); and.(t) is
the unit step function. The overall effect of the path losg|

\/gai COS(27TfCt + 91 + gbl)u(DZ — t)

a; cos(2m fet + 0, + ¢i)u(t — D;) |, 0 <t <T,

1) Slow-varyingP: During the interval of interest (e.g., a

5Note that theamplitudeloss exponent is, while the correspondingower

loss exponent igb. normal shadowing, and fading on nodes captured by the
Swe us%/\/(u, ?) to denote a real Gaussian distribution with meaand amplitude factorka;e”:/Rt, where G; ~ N(0,1), and by
vananceo. the uniform phase; 8 We consider that r.v.s, ¢;, Gi, Ri,

"This model for combined path loss and log-normal shadowiag ke i0; 16" d Ilv ind d f .
expressed in logarithmic forni [L6]_[L7], such that the ci&nioss in dB @€ "» ;€7 and D; are mutually independent for a given
is given by Lgg = ko + k1log,o + 0gsG, where G ~ A7(0,1). The nodei, and that the sequencés.;}, {¢:}, {G:}, {aie?%},
environment-dependent parametéks, k1, 0qg) can be related tdk, b, o) {a’-ejeé}, and {Dz} are independent identically distributed
as follows: kg = —20logyok, k1 = 20b, and ogg = 2950. The "Zd .
parameteroqg is the standard deviation of the channel foss in dB (or(,"" ) Inz.
equivalently, of the received SNR in dB), and typically resgirom 6 to
12. 9Since we assume the probe receiver perfectly estimateshisgepo of

8We useE{-} andV{-} to denote the expectation and variance operatorthe multipath fading affecting its own link, we can sg = 0 without loss
respectively. of generality.



The probe receiver demodulates the desired signal frampression of the form of]8) can be well approximated by a
the aggregate signalZ(t), using a conventional lin- circularly symmetric (CS) complex Gaussian r.v., such that

ear detector. This can be achieved by projectidgt) N
X; ~ Ne(0,2Vy), Vx 2 V{X;,}. 10
onto the orthonormal set{%(t) =/2/T cos(27 fct), el x) X {Xiin} (10)
In [22], the validity of this approximation is justified both

ba(t) = —y 2/Tsm(27rfct)}' Deﬁ;nng the in-phase and, - nalyzing the Kullback-Leibler divergence and compgrin
quadrature (IQ) componenis, = [ Z(t)¥,(t)dt, n = 1,2, the error probabilities in the exact and approximated es

we can write Then, conditioned orP, the interferencey = > ° <X
kage?Go becomes a sum of independent CS Gaussian r.v.s and is
Z1= 0 ao cos bl +¥1 + W1 () therefore a CS Gaussian r.v. giverfby
k oGy Lz
Zy = 22 4y sin b + Ya + Wa, ®) Y~ Ne(0,24Vx), (11)
To

) where A is defined as
whereW; andW, are N (0, Ny/2) and mutually independent.

o oG,
After some algebra (AppendiXIAY;; andY; can be expressed AL } :QQT (12)
R-
as i—1

oo

T a'Gix_ .
Y, = / Y (£ (£)dt = Z e Yin -2 @3) Furthermore, we show in [24] that after some algebta,can
0 R; be expressed as

i=1
2
where Vx = E + %E{aia’i cos(0; —0))}, i>1, (13)

3
Xia= ka; [a; 5 cos(6; + ¢; AtE 0; + ¢i :
AT R [a 7 cos(fi + 6i) + a; ( r ) cos(6; +¢ )%4) where E £ k’E{a?} is the average symbol energy of each
D . , Doy .o interfering node, measuretim away from the interfer@f
Xip= kai [a; gt sin(0; + ¢;) + af (1 — F) sin(0; + é:)] . Because the rv.$X;}, arei.i.d.,Vyx does not depend oh
and is only a function of the interferers’ signal constétiat
Using complex baseband notat@hequations[{i1)f(5) can be For the case of equiprobable symbols and a constellatidn tha

further simplified as is symmetric with respect to the origin of the 1Q-pl&he
G (e.g., M-PSK and M-QAM), the second right-hand term in

7 — kaoi a0’ £Y + W (6) (@3 vanishes an¥x = E/3.
"o Lastly, note that sinced in (I2) depends on the interferer

Y — i e”“iX, positionsP (i.e., {R;}2; and {G;}32,), it can be seen as
~ R} a rv. whose value is different for each realization Bf
- Furthermore, Append[xIB shows that rA.has askewed stable
where distribution [25] given by

; D; 0. D; 6!
Xi = kOéi@Jd)i’ [?aie‘]el + (1 — ?) a;eﬂl} 5 (8)

()

A~S (aA - % Ba=1,~a= mcl/;e%z/“) (14
and the distribution oW is given bE whereb > 1. andC.. is defined as

: C, 2 {F(“”"wmw v#L (15)

2, r=1
K

Since different interfererstransmit asynchronously and inde-

pendently, the r.v.dX;}2, are i.i.d. e - .
The distribution of the aggregate interferend® plays This distribution is plotted in Fid:]3 for differertand \.

an important role in the evaluation of the error probability

OT the prot_)e “nk.' In what fOHOW.S’ _We Chara.lc.:tenze such 12\We can obtain[{1I0) following another approach: if we consitiat the

distribution in two important scenarios: tfeconditioned and jnterfering nodes are coded and operating close to capahity the signal

unconditional cases. transmitted by each interferer is Gaussian, suchXate Nc(0, 2Vy) [23].
13We useX ~ to denote the distribution of r.vx conditional ony".

14Unless otherwise stated, we will simply referfibas the “average symbol

B. P-conditioned Interference Distribution energy” of the interferers.
15A constellation is said to beymmetric with respect to the origif for

To derive theP-conditioned distribution of the aggregatesvery constellation pointz,y) € R?, the point(—z, —y) also belongs to the
interferenceY in (7)-(8), we start with the results given inconstellation.

. . . . 18We useS(a, 3, ~) to denote a real stable distribution with characteristic
[22]. This work shows that in the case of Rayleigh fading, 8 ponentn € (0, 2], skewness3 € [—1, 1], and dispersiony € [0, 00). The

corresponding characteristic function is
10Boldface letters are used to denote complex quantities;ef@mple, L
) = {exp [—'y\w|a (1 — jBsign(w) tan %)} , a#l,

Z=21+jZ.
1\We useN:(0, o2) to denote a circularly symmetric (CS) complex Gaus- exp [—y|w| (14 j2Bsign(w)In|w])], a=1.

sian distribution, where the real and imaginary parts a iV (0, o2 /2).
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D. Discussion

Figure 3. P.d.f. ofA for different amplitude loss exponentisand interferer | e results of this section have to be interpreted carefully
densities\ (ogg = 10). Stable laws are a direct generalization of Gaussiabecause of the different types of conditioning involvedtHa
distributions, and include other densities with heavidgehraic) tails. unconditional case, we 162 be random, i.e., we |9{Rz‘}§.§1

be the random outcomes of an underlying spatial Poisson
process, andG;}5°, be the random shadowing affecting each
interferer. Then, the unconditional interferenteis exactly
stable-distributed and given by {16). We note tHaifl (16) and
To derive the unconditional distributibhof the aggregate (I2) hold for a broad class of fading distributions, in aidufit
interferenceY in (7)-(8), we can show that sums of the form otg Rayleigh fading. In theP-conditioned case, the positions
(@) belong to the class afymmetric stable distribution25].  of the interferers are fixed. Then} in (I2) is also a fixed
This is because the r.v.§R;}72, correspond to distances inpumber, and the interferendé is approximatelyCS Gaussian

a spatial Poisson process and §;}5°, are i.i.d. and have yjth total variance2AVy, as given in[(I0).

a CS distribution. Specifically, Appendid C shows théathas
a CS complex stable distribution given@y

C. Unconditional Interference Distribution

IV. ERRORPROBABILITY

2 In the previous section, we determined the statistical dis-
Y ~ &S (aY —y By =0, tribution of the aggregate interference at the output of a
- L1 202 2/b conventional linear receiver. We now use such result tcctlire
Ty = AnCy e E{|Xinl }) , (18)  characterize of the error probability of the probe link, whe
whereb > 1, andC, is defined in[(I5). UsindJ4J5), we Cansubject to both interf_erence and thermal noise, in bothscase
further expres®{|X; .|*/*} in (I8) as of slow and fast-varyingP.

Qi cos(b; + ¢;) + a, (1 — ?> cos(0; + ¢;)

E{|Xin|?°} = k¥ E{|oy)?/®} A. Slow-varying Interferer Position®
2/b In the quasi-static scenario of slow-varyiRgit is insightful
xE to analyze the error probability conditioned on a given +real
ization P of the distanceq R;}3°, and shadowingG;}5°,
x(b) associated with the interferers, as well as on the shado@/ing
(17)of the probe transmitter. We _denote this conditional symbol
For the particular case of Rayleigh fading,](17) reduces oo’ propab|l|ty byPe(GO’P) o
Ci12/by _ 1.2/b 1y To derive the conditional error probability, we employ the
E{|X;n|?"} = k**T(1+ 3) - x(b), where we have used the ; o AN
’ . e ) . : results of Sectiof TlI-B for theP-conditioned distribution of
moment relation for the Rayleigh r.v/s; [26]. Since different . o )
: : : . the aggregate interferendé. Specifically, using[{9) and(11),
interferersi transmit asynchronously and independently, tl}% . . i .
. ; . e received signdf in (@) can be rewritten as
parametery(b) does not depend ohand is only a function

[I>

H H 1 H k O'G() X —
of the amphtude loss expopebtand the mterfgrers signal g _ kooe a1+ W, (18)
constellation. Tabld]| provides some numerical values for rg
E{|X:x|*}.
’ where . R
W =Y + W < N(0,24Vx + Np), (19)

7Unconditional in the sense of being averaged over the pasifP. - -
19 useSe(ar, # — 0,+) to denote a CS complex stable distribution@Nd A was defined in[(T2). Our framework has thus reduced

with characteristic exponent and dispersiony, and whose characteristic the analysis to a Gaussian problem, where the combined
function is¢(w) = exp(—~|w]|%). Furthermore, the corresponding real and

imaginary components are bofh«, 5 = 0, 7). 19The notationPe(X,Y) is used as a shorthand f&{errof X, Y?}.



noise W is Gaussian when conditioned on the location of
the interferers.

The corresponding error probabilif (G, P) can be found
by taking the well-known error probability expressions for S4
coherent detection of linear modulations in the presence of
AWGN and fast fading [[27]=[30], but usin@AVx + Ny :
instead of Ny for the total noise variance. Note that this 181
substitution is valid for any linear modulation, allowinget ¢>1,4_@,_¢_3_1,3
traditional results to be extended to include the effect of R I S

53

network interference. For the case where the probe tratesmit /Y
employs an arbitrary signal constellation in the 1Q-pland a
the fading is Rayleigh-distributed, the conditional syrirdroor
probability Ps(Go, P) is given by )
52
M 1
Pe(Go,’P) = Zpk Z 2— Figure 4. Typical decision region associated with symbgl In genzeral,
k=1 leBy T for a constellation with signal points; = |sx|e’¢k and ¢, = %,
brl w -1 k=1...M, four parameters are required to compute the error pratabil
% $77A do (20) ¢, andy ; are the angles that describe the decision region corresmpnd
0 4 sin? (9 + 1/),“) ’ to sy, (as depicted)B;. is the set consisting of the indexes for the signal points
that share a decision boundary with (in the example3; = {2, 3,4}); and
where 20Go g w1 = G + G — 2V cos(§r — &1).
€ 0

nA (21)

- T‘gb(QAVX + No)

is the received signal-to-interference-plus-noise ré8NR), the term Vx, while the (possibly different) modulation of
averaged over the fast fading/ is the constellation size; the probe transmitter affects thigpe of error probability
{pr}} | are the symbol probabilitiesy., ¢, wk,, andyy; expression, leading to forms such Bsl(22)[od (23).

are the parameters that describe the geometry of the conin our quasi-static model, the conditional error probapiti
stellation (see Fig4)E, = k*E{a2} is the average symbol (20) is seen to be a function of the slow-varying user pasitio
energy of the probe transmitter, measuted away from the and shadowing (i.e.Gy and P). Since these quantities are
transmitter; A is defined in[IR) and distributed according teandom, the error probability itself is a r.v. Then, with ssm
(I4); andVx is given in [I3). When the probe transmitteprobability, G, and P are such that the error probability of
employsi/ -PSK andM -QAM modulations with equiprobable the probe link is above some target The system is said to

symbols, [2D) is equivalent be in outage and the error outage probability is
M — 1 v e __ *
MPSK = JRE— in2 ( — Pouw = ]P)Goyp{Pe(GOa P) >Dp }a (25)
PSR Go, P) IA< 37 sin (]V[)) (22) out

In the case of slow-varying user positions, the error outage

and probability is a more meaningful metric than the error proba
1 7T 3 bility averaged ovefP.
MQAM _ _ , ™ y g
MM (G, P) = 4 (1 M) IA(Q, i 1))
2
1 T 3 ) -
—4 (1 - \/—M> “Ia (Z’ m) ; B. Fast-varying Interferer Position®
23) In the dynamic scenario of fast-varyi®, it is insightful
respectively, where the integrdl (z, ) is given by to average the error probability over all possible reaioret
. of interferer position$. We denote this average symbol error
I 9 robability by P.(Go). Note that we choose not to average
Ta(z,9) = = 1 do. 24) P Yy By FelGro g
alz.9) 71'/0 ( + sinQGnA) (24) out the shadowingz, affecting the probe transmitter, since

In the general expression given [n120) and (21), the netwoHe have assumed the probe transmitter node is immobile at
interference is accounted for by the te@uVy, where A @ deterministic distance, from the probe receiver, and thus
depends on the spatial distribution of the interferers angp Go 1S sloyv-varylng. N
agation characteristics of the medium, whilg depends on ~ To derive the average error probability, we use the decom-
the interferer transmission characteristics. Sidd’y simply ~Position property of stable r.v.'$ [25], which allov in (16)
adds to Ny, we conclude that the effect of the interferenct® be decomposed as
on the error pr_oba}bil_ity |s simply_an_ increase in the noise Y = VBG, (26)
level, a fact which is intuitively satisfying. Furthermomote
that the modulation of the interfering nodes only affectwhere B andG are independent r.v.’s, and

20In this paper, we implicitly assume thaf-QAM employs a square signal ~ _ l _ _ K
constellation withM = 2™ points ( even). B~S|ap b’ BB 1, vB = cos % (27)



2 b

G ~ NE(0,2V5), Vo = 26/ (ArCo A B{ Xia /"))
(28)
with E{|X; ,,|>/*} given in [IT). Conditioning on the r.\3,

we then use[(9) and_(26) to rewrite the aggregate receive
signalZ in (@) as

@
oGy ) — =
Z= 7]%40(1 ape’® + W, =
To
where
N 5
W = VBG + W ~ N(0,2BVg + Np).  (29) Pe —5.10% 102,510
Again, our framework has reduced the analysis to a Gaussit
problem, where the combined noid&” is a Gaussian r.v. -40 !
. . . . 0.001 0.01 0.1
Note that this result was derived without resorting to any interferer density A (m~2)

approximations — in particular, the Gaussian approxinmabid

pp d dph Wi | d hppd JFHgure 5. INR — A curves of constanfPs;, for the case of slow-varying
m) was not neede . ere. vve rr’1ere y used the ecompOSIﬁn@ferer positionsP (BPSK,SNR =40dB, b =2, ro = 1m, o4g = 10,
property of symmetric stable r.v.'s. p* = 1072). INR is the interference-to-noise ratio, definedN& = E/No.

The corresponding error probabilit]e(Go) can be found Clearly, for a fixed error performance, there is a tradeoffvieen the density

: : - - nd energy of the interferers: if the INR (or, equivalently) increases\

by taking the error expressions for coherent detection @t dec?gase, and vicoverea, to maintaiEm e e otﬁganﬂity.
presence of AWGN and fast fading, then ustagVes + Ny
instead of N, for the total noise variance, and lastly (unlike
in Sectior[[V-A) averaging over the r.&3. For the case where interfering nodes. For that purpose, we uBel (20), although
the probe transmitter employs an arbitrary signal coriell  @=ny \would lead to similar conclusions. {20), the error
in the IQ-plane and the fading is Rayleigh-distributed, th&robabilityPe(Go,P) implicitly depends on parameteksand

average symbol error probabilithe(Go) is given by E through the productlVy in the denominator ofi4 in ().

M This is because the dispersion parameteof the stable r.vA

Py(Gy) = Zpk Z 1 depends on according to[(I¥), anffx is proportional toF’ as
k=1 B, 2 in (I3). The dependence dncan be made evident by using the

br w -1 scaling property of stable r.v.s [25] to writdVy = N AV,
x / Ep { (1 + +773) }de, (30) whereA is a normalized version aofl, independent of. We
0 4sin”(0 + ¢r.1) thus conclude that the interference teriry is proportional
to \’E, whereb > 1. Clearly, the error performance degrades
B e2 G, ) 31 faster with an increase in thgensityof interferers than with
B = rgb(g BVg + Np)’ (31) an increase in theitransmitted powerThe tradeoff between

Bis distributed according tG{27)z is given in [Z8); and the E and )\ for a fixed error performance is illustrated in Fig. 5.
other parameters have the same meaning as in Séctioh IV-A.

When the probe transmitter employg-PSK and M-QAM
modulations with equiprobable symbolg,}20) is equivatent

PPS(Go) = Ip (457, sin® (7))

where

D. Numerical Results

Figs. [6 and[l7 quantify the average and outage proba-
(32) pilities for several scenarios, showing their dependente o

and various parameters involved, such as the signal-to-naise r
1 - 3 tio SNR = Ey/Ny, interference-to-noise ratitNR = E /Ny,
pPMAM Gy =4(1- — ) -Zp| =, ———— amplitude loss exponerit, interferer spatial density,, and

) link length rg.
4 (1 _ L) Ty (ﬁ’ 3 ) _(33)  The plots of P, and Pe(Go) presented here are of semi-
VM 47 2(M —1) analytical nature. Specifically, we resort to a hybrid mdtho
respectively, where the integrdk (z, ) is given by where we employ the analytical results give_n IEI(_ZIIII-(%)
and [30){34%), and perform a Monte Carlo simulation with
I 1 ””]E 1.9 -1 40 34 respect to the stable r.v.s (i.e4 and B), according to[[31].
5(w,9) = 7T/0 B Tz - (3% Nevertheless, we emphasize that the expressions derived in
this paper completely eliminate the need for simulationhef t
) ) interferers’ position and waveforms in the network, in arde
C. Discussion to obtain the error performance.
Using the results derived in Sections TV-A ahd 1V-B, we For illustration purposes, the plots assume that all teatain
can now analyze the dependence of the error performarfce., the probe transmitter and interfering nodes) use KBPS
on the density\ and the average symbol enerdy of the modulation. We analyze both cases of slow and fast-varying
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densities\ (BPSK,INR = 10dB, b =2, 7o = 1 m, ogg = 10, p* = 1072).  (b) Pe(Go) versus the SNR, for various interferer densite@PSK,G( = 0,

Figure
(where

b=3,70 =1m, ogg = 10).
6. Error outage probability plots for a heterogemsemetwork
SNR # INR in general) and slow-varying interferer positioid.  Figure 7. Average error probability plots for a homogenewoetsvork (where

Since P is slow-varying, the meaningful performance metric is thdage SNR = INR) and fast-varying interferer positiori8. SinceP is fast-varying,

probab

ility PE,; given in [23). the meaningful performance metric is the average errorghitity Pe(Go)
given in [30). For simplicity, we us€&o = 0 in these plots (no shadowing
on the probe link).

interferer positionsP, concurrently with the following two
different scenarios: performance of each sensor node.

1)

2)

Heterogeneous netwarkThe probe transmitter is al- For the heterogeneous case depicted in Hig. 6, we conclude
lowed to use an arbitrary poweP, = E,/7T, not that the error performance deteriorateshasr INR increase,
necessarily equal to the common power of the interferirfgr a fixed SNR. This is expected because as the density or
nodesP = E/T, and hencéNR # INR in general. This transmitted energy of the interferers increase, the aggeeg
scenario is useful when the goal is to evaluate the impanterference at the probe receiver becomes stronger. Note,
of aggregate interference from a large number of identiowever, that in the homogeneous case wHM& = INR,

cal secondary users (e.g., cognitive-radio terminals) one error performance improves as we increase the common
the performance of a primary link. transmitted power” of the nodes (or equivalently, the SNR),
Homogeneous netwarkrhe probe transmitter and in-although the gains become marginally small/as+ co (see
terfering nodes all use the same power, and th&%g.[7(b}). This happens because in the interferencedimit
SNR = INR. This may correspond to a sensor networkegime whereéSNR = INR >> 1, the noise termV, in (Z1)) or
scenario, where there is a large number of indistinguis(B1) becomes irrelevant, and so the SNR in the numerator can-
able, spatially scattered nodes with similar transmissi@els with the INR in the denominator, making the performance
characteristics. In such a case, the goal is to evaluate thdependent of the transmitted power

impact of the aggregate network self-interference on theThe effect of the amplitude loss exponénbn the error



performance, on the other hand, is non-trivial. As illustdca

in Fig. [7(a), an increase ih may degrade or improve the +a_§ /T
performance, depending on the value of the link lengtlnd 2
other parameters. This is becavs@multaneously affects both
the received signal of interest and the aggregate interéere —
the former, through the terrh/r5; and the latter, through 4 _ Z LA |
and~,4 in (@), or throughn g, v5, and Vg in (24) and [28). P Ry

cos(4r fot + 0; + ¢;)dt
D;

~0 for f.T>1

where

Di Di
V. SUMMARY X1 = ko [ai? cos(0; + ¢;) + a (1 — ?> cos(0; + (bl)} .
This paper introduces a mathematical model for commu- . ) .
The signalY(¢) can be projected onto the basis func-

nication subject to network interference and noise. The in- . . _
terferers are scattered according to a spatial Poissoregspc!!o" a(t) = —/2/Tsin(2m ft) in an entirely analogous

and are operating asynchronously in a wireless environm&¥Y: leading to S
subject to path loss, shadowing, and multipath fading. We Yy = Z$7
show that the aggregate network interference at the output = R

of a linear receiver is related to skewed stable distribution ;. .o

when conditioned on the positions of interferers, and to a
symmetri(_: stable distributiom the unconditional case. WeXL2 = koy [ai% sin(6; + ¢;) + al (1 _ %) sin(6) + (M} )
characterize the error performance for the cases of slow and
fast-varying interferers, in terms of outage and averagererwe can combine X;; and X,» in the complex
probabilities, respectively. These expressions are Vatidny r.v. X; = X;; + jX; o as
linear modulation scheme. We then quantify these metrics as
: e 0 | Di o D; T
a function of various important system parameters, suches t X; = ka;el® {_aieﬂf’m + (1 - _> a;eﬂf’m] ,
SNR, INR, path loss exponent, and spatial density of the-inte T T
ferers. In Part Il of the paper [13], we characterize the ciapa which completes the derivation.
of the link when subject to both network interference and
noise, and derive the spectrum of the aggregate interferenc APPENDIXB
at any location in the plane. Lastly, we put forth the concept DERIVATION OF THE DISTRIBUTION OF A

of spectral outage probability, a new characterizationhaf t To derive the distribution of given in [I3), we start with
aggregate interference generated by communicating n<mde§hie following theorem

a wireless network. Theorem B.1l:Let {7;}°, denote the arrival times of a
one-dimensional Poisson process with ratelet {W;}°,
be a sequence of nonnegative i.i.d. r.v.'s, independenh®f t

APPENDIXA o
DERIVATION OF THE COMPLEX BASEBAND INTERFERENCE sequence(7;} and satisfyingE{|W;|*} < co. If 0 <a <1,
REPRESENTATION then
o Wi e -1 a
To derive the representatiof] (7) arid (8) of the aggregate > e ~ S (a, B=1, 7= ACS'E{|W;|*}),

interferenceY'(¢), we project Y (¢) onto the basis func- i=1Ti
tion ¢ (t) = \/2/T cos(2r f.t) as follows: whereC,, is defined in[(Ib).

T Proof: See [25]. O
Y, :/ Y () (t)dt If an homogeneous Poisson point processhe planehas

0 spatial density)\, and R; denotes the distance of node

2 to the origin, then the sequend&?}>°, represents Poisson
T cos(2m fet +0i + ¢1)u(Di — 1) arrival timeson the linewith the constant arrival rater. This
can be easily shown by mapping the spatial Poisson process

i=170 Rf
2

/ from Cartesian into polar coordinates, and then applyirgg th
—al cos(2m ft + 6’ i)u(t — D; ; i i
+ 7% cos(2mfet + 6; + di)u( )] mapping theoreni[14]. Using this fact, we can then apply the
5 above theorem td_(12) and write
X 4/ T cos(2m ft)dt W,
Yy g | 7 cos(0s + o)t PR i
_i:1 R? 2 Jo . ' _; Rz‘% _;(Rzg)b
a; Ds ag T / Ti
+ 5 / cos(4m fot + 0; + ¢;)dt —l—; / cos(0; + ¢;)dt N 1 ) ,
0 D < <a =3, B=1,7 = rCy,E{le* |V }) , (35)

~0 for foT>>1
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for b > 1. Using the moment property of log-normal r.v.’s, i.e.,[3]
E{eFC} = e¥*/2 for G ~ N(0,1), (B8) simplifies to
a.s. 1 _ 2 /72
A~S(a—g,ﬁ—l,v—MCl/%e%/b), 4]
for b > 1. This is the result in[{14) and the derivation is 5]
complete.

APPENDIXC (6]

DERIVATION OF THE DISTRIBUTION OFY

To derive the distribution o given in [18), we start with Y

the following theorem.

Theorem C.1:Let {r;}3°, denote the arrival times of a one- [8]
dimensional Poisson process with ratelet {Z;}°, be a
sequence of CS i.i.d. complex rv%; = Z; 1 + jZ; 2, inde-
pendent of the sequende;} and satisfyingE{|Z;|*} < .
If 0 < <2, then

i=1 Til/a
whereC,, is defined in [(Ib).

Proof: See [25]. For an alternative proof based on the
influence function method, see [32]. O nz
Using the Poisson mapping theorem as in Appefdix B, we

can apply the above theorem g (7) and write

El

(10

Se (o, B=0, v =AC'E{|Zin|*})

(11]

CS iid. [13]
> G 0 G
e?“iX; e’ X,
Y= i = s [14)
- — (1Y)
=1 ? =1 \_ v, [15]

a.s. 2
~ S, (a = 37 ﬂ = ()’ v = /\WC’;/%)EHQUG?;XLMQ/Z)} :
(36)

for b > 1. Note thatX;, whose expression is given ih](8),
is CS due to the uniform phasg. As a result,e?“iX; is 19]
also CS. Using the moment property of log-normal r.v.’s, i.e
E{eF9} = ek*/2 with G ~ N(0, 1), (38) simplifies to [20]

[16]

[17]
(18]

2
Y WS, <a =2, 8=0,7= ch;/;e%z/szﬂXi,n|2/b}> ,

for b > 1. This is the result in[{16) and the derivation i422]
complete.

[23]
[24]
The authors would like to thank L. Greenstein, J. H. Winters,
G. J. Foschini, M. Chiani, and A. Giorgetti for their helpful

suggestions. 25]

ACKNOWLEDGEMENTS

[26]
REFERENCES [27]
[1] A. J. Viterbi and |. M. Jacobs, “Advances in coding and nladion
for noncoherent channels affected by fading, partial band, multiple-
access interference,” iAdvances in Communication Systems: Theory
and Applications vol. 4. New York: Academic Press Inc., 1975, pp.[28]
279-308.
E. Sousa, “Performance of a spread spectrum packet reafigork link
in a Poisson field of interfererslEEE Trans. Inf. Theoryvol. 38, no. 6,
pp. 1743-1754, 1992.

(2] [29]

J. llow, D. Hatzinakos, and A. Venetsanopoulos, “Perfance of FH SS
radio networks with interference modeled as a mixture of<Sin and
alpha-stable noisefEEE Trans. Communvol. 46, no. 4, pp. 509-520,
1998.

X. Yang and A. Petropulu, “Co-channel interference nliode and
analysis in a Poisson field of interferers in wireless comications,”
IEEE Trans. Signal Processvol. 51, no. 1, pp. 64-76, 2003.

E. Salbaroli and A. Zanella, “A connectivity model foretranalysis of
a wireless ad hoc network in a circular area,”Hroc. IEEE Int. Conf.
on Commun.June 2007, pp. 4937-4942.

B. Glance and L. Greenstein, “Frequency-selective rfigdeffects in
digital mobile radio with diversity combiningJEEE Trans. Commun.
vol. 31, no. 9, pp. 1085-1094, 1983.

A. Giorgetti, M. Chiani, and M. Z. Win, “The effect of nawband in-
terference on wideband wireless communication systetBEE Trans.
Commun. vol. 53, no. 12, pp. 2139-2149, Dec. 2005.

A. Giorgetti, M. Chiani, and D. Dardari, “Coexistencesigs in cognitive
radios based on ultra-wide bandwidth systems,”Froc. |IEEE Int.
Conf. on Cognitive Radio Oriented Wireless Networks and it@om
Mykonos, GREECE, June 2006.

P. C. Pinto and M. Z. Win, “Communication in a Poisson fiel
interferers,” inProc. Conf. on Inform. Sci. and Sy®rinceton, NJ, Mar.
2006, pp. 432-437.

——, “Spectral characterization of wireless netwdrkEEE Wireless
Commun. Mag.vol. 14, no. 6, pp. 27-31, Dec. 2007, special Issue on
Wireless Sensor Networking.

P. C. Pinto, C.-C. Chong, A. Giorgetti, M. Chiani, and K1.Win, “Nar-
rowband communication in a Poisson field of ultrawidebarndrferers,”
in Proc. of IEEE Int. Conf. on Ultra-Wideband (ICUWB)altham, MA,
Sept. 2006, pp. 387-392.

M. Z. Win, P. C. Pinto, A. Giorgetti, M. Chiani, and L. Ah®pp, “Error
performance of ultrawideband systems in a Poisson field wbwaand
interferers,” inProc. IEEE Int. Symp. on Spread Spectrum Techniques
& Applications Manaus, BRAZIL, Aug. 2006, pp. 410-416.

P. C. Pinto and M. Z. Win, “Communication in a Poisson dieif
interferers - Part Il: Channel capacity and interferenocecspm,” IEEE
Trans. Wireless Commuyr009, accepted pending revision.

J. Kingman,Poisson Processes Oxford University Press, 1993.

D. P. Bertsekas and J. N. Tsitsiklisitroduction to Probability Athena
Scientific, 2002.

A. Goldsmith,Wireless Communications Cambridge University Press,
2005.

G. L. Stiber,Principles of Mobile Communication Springer, 2000.
O. Andrisano, V. Tralli, and R. Verdone, “Millimeter was for short-
range multimedia communication systemBroc. IEEE vol. 86, no. 7,
pp. 1383-1401, 1998.

A. Conti, M. Z. Win, and M. Chiani, “Invertible bounds fa\/-QAM
in fading channels,1EEE Trans. Wireless Commurvol. 4, no. 5, pp.
1994-2000, Sept. 2005.

——, “On the inverse symbol error probability for divéysreception,”
IEEE Trans. Communvol. 51, no. 5, pp. 753-756, May 2003.

A. Conti, M. Z. Win, M. Chiani, and J. H. Winters, “Bit esr outage
for diversity reception in shadowing environmerd&EE Commun. Lett.
vol. 7, no. 1, pp. 15-17, Jan. 2003.

A. Giorgetti and M. Chiani, “Influence of fading on the Gssian
approximation for BPSK and QPSK with asynchronous cochanne
interference,’|EEE Trans. Wireless Communrol. 4, no. 2, pp. 384-389,
2005.

G. J. Foschini, “Private conversation,” AT&T Labs-Resch, May 2007.
P. C. Pinto, Communication in a Poisson Field of InterfergrMaster’s
thesis, Department of Electrical Engineering and Comp&eience,
Massachusetts Institute of Technology, Cambridge, MA, .D#206,
thesis advisor: Professor Moe Z. Win.

G. Samoradnitsky and M. Tagq&table Non-Gaussian Random Pro-
cesses Chapman and Hall, 1994.

J. ProakisDigital Communications McGraw-Hill, 2000.

M. Z. Win and J. H. Winters, “Virtual branch analysis ofrsbol error
probability for hybrid selection/maximal-ratio combiginn Rayleigh
fading,” IEEE Trans. Communyol. 49, no. 11, pp. 1926-1934, Nov.
2001.

M. K. Simon and M.-S. Alouini,Digital Communication over Fading
Channels Wiley-IEEE Press, 2004.

J. W. Craig, “A new, simple and exact result for calcingt the
probability of error for two-dimensional signal constébas,” in Proc.
Military Commun. Conf.Boston, MA, 1991, pp. 25.5.1-25.5.5.



[30] W. M. Gifford, M. Z. Win, and M. Chiani, “Diversity with pactical
channel estimation,JEEE Trans. Wireless Commurvol. 4, no. 4, pp.
1935-1947, July 2005.

[31] J. Chambers, C. Mallows, and B. Stuck, “A method for dating stable

random variables,J. Amer. Statist. Assqovol. 71, pp. 340-344, 1976.

[32] V. M. Zolotarev, One-Dimensional Stable Distributions American
Mathematical Society, 1986.

11



	I Introduction
	II System Model
	II-A Spatial Distribution of the Nodes
	II-B Transmission Characteristics of the Nodes
	II-C Propagation Characteristics of the Medium
	II-D Mobility and Session Lifetime of the Interferers

	III Interference Representation and Distribution
	III-A Complex Baseband Representation of the Interference
	III-B P-conditioned Interference Distribution
	III-C Unconditional Interference Distribution
	III-D Discussion

	IV Error Probability
	IV-A Slow-varying Interferer Positions P
	IV-B Fast-varying Interferer Positions P
	IV-C Discussion
	IV-D Numerical Results

	V Summary
	Appendix A: Derivation of the Complex Baseband Interference Representation
	Appendix B: Derivation of the Distribution of A
	Appendix C: Derivation of the Distribution of Y
	References

