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Communication in a Poisson Field of Interferers –
Part I: Interference Distribution and Error
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Abstract—We present a mathematical model for communica-
tion subject to both network interference and noise. We introduce
a framework where the interferers are scattered according to
a spatial Poisson process, and are operating asynchronously in
a wireless environment subject to path loss, shadowing, and
multipath fading. We consider both cases of slow and fast-
varying interferer positions. The paper is comprised of two
separate parts. In Part I, we determine the distribution of
the aggregate network interference at the output of a linear
receiver. We characterize the error performance of the link, in
terms of average and outage probabilities. The proposed model
is valid for any linear modulation scheme (e.g.,M -ary phase
shift keying or M -ary quadrature amplitude modulation), and
captures all the essential physical parameters that affectnetwork
interference. Our work generalizes the conventional analysis of
communication in the presence of additive white Gaussian noise
and fast fading, allowing the traditional results to be extended
to include the effect of network interference. In Part II of the
paper, we derive the capacity of the link when subject to network
interference and noise, and characterize the spectrum of the
aggregate interference.

Index Terms—Spatial distribution, Poisson field, aggregate
network interference, error probability, stable laws.

I. I NTRODUCTION

I N a wireless network composed of many spatially scattered
nodes, there are several fundamental impairments that con-

strain the communication between nodes, includingthermal
noiseand network interference. Thermal noise is introduced
by the receiver electronics and is usually modeled as additive
white Gaussian noise (AWGN), which constitutes a good ap-
proximation in most cases. Interference, on the other hand,is
due to signals radiated by other transmitters, which undesirably
affect receiver nodes in the same or in a different network. For
simplicity, interference is typically approximated by AWGN
with some given power [1]. However, this elementary model
does not completely capture the physical parameters that

Manuscript received July 3, 2006; revised Apr 29, 2007; accepted Mar 20,
2008. The editor coordinating the review of this paper and approving it
for publication is D. Dardari. This research was supported,in part, by
the Portuguese Science and Technology Foundation under grant SFRH-BD-
17388-2004, the Charles Stark Draper Laboratory Robust Distributed Sensor
Networks Program, the Office of Naval Research Young Investigator Award
N00014-03-1-0489, and the National Science Foundation under Grant ANI-
0335256. This paper was presented, in part, at the IEEE Conference on
Information Sciences and Systems, Princeton, NJ, March 2006.

P. C. Pinto and M. Z. Win are with the Laboratory for Informa-
tion and Decision Systems (LIDS), Massachusetts Instituteof Technology,
Room 32-D674, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
(e-mail: ppinto@mit.edu, moewin@mit.edu).

Digital Object Identifier 10.1109/TWC.2008.XXXXXXX

affect interference, namely: 1) the spatial distribution of nodes
scattered in the network; 2) the transmission characteristics of
nodes, such as modulation, power, and synchronization; and
3) the propagation characteristics of the medium, such as path
loss, shadowing, and multipath fading. If, instead, a spatial
Poisson process is used to model the user positions, then all
these parameters are easily accounted for, and appear explicitly
in the resulting performance expressions.

The application of the Poisson field model to cellular
networks was investigated in [2] and later advanced in [3].
However, these papers either ignore random propagation ef-
fects (such as shadowing and multipath fading), or restrictthe
analysis of error probability in non-coherent FSK modulations.
In other related work [4], it is assumed that the different
interferers are synchronized at the symbol or slot level, which
may be unrealistic in most situations. In [5], the authors choose
a different approach and restrict the node locations to a disk or
ring in the two-dimensional plane. Although this ensures that
the number of interferers is finite, it complicates the analysis
and does not provide useful insights into the effects of network
interference. In [6]–[8], the authors analyze coexistenceissues
in wireless networks, but consider only a small, fixed number
of interferers. Lastly, none of the mentioned studies attempts
a system characterization that incorporates various metrics
such as error probability, channel capacity, and power spectral
density.

In this two-part paper, we introduce a more realistic frame-
work where the interferers are scattered according to a spa-
tial Poisson process, and are operating asynchronously in a
wireless environment subject to path loss, shadowing, and
multipath fading [9]–[12]. We specifically address the cases
of slow and fast-varying interferer positions. In Part I of the
paper, we determine the statistical distribution of the aggre-
gate network interference at the output of a linear receiver,
located anywhere in the two-dimensional plane. We provide
expressions for the error performance of the link (in terms
of average and outage probabilities), which are valid for any
linear modulation scheme. We then quantify these metrics as
a function of various important system parameters, such as the
signal-to-noise ratio (SNR), interference-to-noise ratio (INR),
path loss exponent, and spatial density of the interferers.Our
analysis clearly shows how the system performance depends
on these parameters, thereby providing insights that may be
of value to the network designer. In Part II of the paper [13],
we derive the capacity of the link when subject to network
interference and noise, and characterize the spectrum of the
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aggregate interference.
This paper is organized as follows. Section II describes the

system model. Section III derives the representation and dis-
tribution of the aggregate interference. Section IV analyzes the
error performance of the system, and gives plots to illustrate
its dependence on important network parameters. Section V
concludes the paper and summarizes important findings.

II. SYSTEM MODEL

A. Spatial Distribution of the Nodes

We model the spatial distribution of the nodes according to
a homogeneous Poisson point process in the two-dimensional
infinite plane. Typically, the terminal positions are unknown
to the network designer a priori, so we may as well treat them
as completely random according to a spatial Poisson process.1

Then, the probabilityP{n in R} of n nodes being inside a
regionR (not necessarily connected) depends only on the total
areaA of the region, and is given by [14]

P{n in R} =
(λA)n

n!
e−λA, n ≥ 0,

whereλ is the (constant) spatial density of interfering nodes,
in nodes per unit area. We define theinterfering nodesto
be the set of terminals which are transmitting within the
frequency band of interest, during the time interval of interest,
and hence are effectively contributing to the total interference.
Then, irrespective of the network topology (e.g., point-to-
point or broadcast) or multiple-access technique (e.g., time
or frequency hopping), the above model depends only on the
densityλ of interfering nodes.2

The proposed spatial model is depicted in Fig. 1. For
analytical purposes, we assume there is aprobe linkcomposed
of two nodes: theprobe receiver, located at the origin of the
two-dimensional plane (without loss of generality), and the
probe transmitter(nodei = 0), deterministically located at a
distancer0 from the origin. All the other nodes (i = 1 . . .∞)
are interfering nodes, whose random distances to the origin
are denoted by{Ri}∞i=1, whereR1 ≤ R2 ≤ . . .. Our goal is
then to determine the effect of the interfering nodes on the
probe link.

B. Transmission Characteristics of the Nodes

To account for the transmission characteristics of users, we
consider that all interfering nodes employ the same linear mod-
ulation scheme, such asM -ary phase shift keying (M -PSK)
or M -ary quadrature amplitude modulation (M -QAM), with
symbol periodT . Furthermore, they all transmit at the same
powerP – a plausible constraint when power control is too
complex to implement (e.g., decentralized ad-hoc networks).
For generality, however, we allow the probe transmitter to
employ an arbitrary linear modulation and arbitrary powerP0,
not necessarily equal to those used by the interfering nodes.

1The spatial Poisson process is a natural choice in such situation because,
given that a node is inside a regionR, the probability density function (p.d.f.)
of its position is conditionally uniform overR.

2Time and frequency hopping can be easily accommodated in this model,
using the splitting property of Poisson processes [15] to obtain theeffective
density of nodes that contribute to the interference.

R3

r0

Probe transmitter node
Probe receiver node
Interfering node

R1

R2

Figure 1. Poisson field model for the spatial distribution ofnodes. Without
loss of generality, we assume the origin of the coordinate system coincides
with the probe receiver.
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Figure 2. Asynchronism between different transmitting nodes. In the
observation interval[0, T ], a change in constellation symbol of nodei occurs
at random timet = Di, from aie

jθi to a′ie
jθ′i , wherea and θ denote the

transmitted symbol amplitude and phase, respectively. Thedistribution ofDi

is assumed to beU(0, T ). Therefore, node0 initiates symbol transmissions
at timesnT by convention, while nodei initiates symbol transmissions at
timesnT +Di.

We do not assume synchronization among interfering nodes,
but instead consider asynchronous transmissions where dif-
ferent terminals are allowed to operate independently. As
depicted in Fig. 2, nodei transmits with a random delayDi

relative to node0, whereDi ∼ U(0, T ).3 The probe receiver
employs a conventional linear detector.4 Typically, parameters
such as the spatial density of interferers and the propagation
characteristics of the medium (e.g., shadowing and path loss
parameters) are unknown to the receiver. This lack of infor-
mation about the interference, together with constraints on
receiver complexity, justify the use of a simple linear detector,
which is optimal when only AWGN is present.

C. Propagation Characteristics of the Medium

To account for the propagation characteristics of the envi-
ronment, we consider that the median of the signal amplitude

3We useU(a, b) to denote a real uniform distribution in the interval[a, b].
4Note that the other receiver nodes are not relevant for the analysis, since

they do not cause interference.
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decays with the distancer according tok/rb, for some given
constantk. The amplitude loss exponentb is environment-
dependent, and can approximately range from0.8 (e.g., hall-
ways inside buildings) to4 (e.g., dense urban environments),
whereb = 1 corresponds to free space propagation [16].5 The
use of such a decay law also ensures that interferers located
far away have a negligible contribution to the total interference
observed at the probe receiver, thus making the infinite-plane
model reasonable.

To capture the shadowing effect, we model the channel
amplitude gainS as a log-normal random variable (r.v.)
such thatS = µeσG, whereG ∼ N (0, 1),6 µ = k/rb is the
median of S, and σ is the shadowing coefficient.7 Thus,
the shadowing is responsible for random fluctuations of the
channel gain around the median path gaink/rb. The multipath
effect is modeled as fast fading, which is superimposed on the
path loss and shadowing. Specifically, the fading affects the
received signal by introducing a random phaseφ ∼ U(0, 2π),
as well as an amplitude factorα with arbitrary distribution
and normalized to have unit power gain, i.e.,E{α2} = 1.8

Because of its fast nature, the fading is always averaged outin
this paper, both when determining the interference distribution
and the error probability.

In what follows, we consider the shadowing (and similarly
for the fading) to be independent for different nodesi, and
approximately constant during at least one symbol interval.
Additionally, the probe receiver can perfectly estimate the
shadowing and fading affecting its own link, hence ensuring
that coherent demodulation of the desired signal is possible.

D. Mobility and Session Lifetime of the Interferers

Typically, the time variation of the distances{Ri}∞i=1 of
the interferers is highly coupled with that of the shadow-
ing {Gi}∞i=1 affecting those nodes. This is because the shad-
owing is itself associated with the movement of the nodes near
large blocking objects. Thus, we introduce the notationP to
denote“a particular realization of the distances{Ri}∞i=1 and
shadowing{Gi}∞i=1 of the interferers,” or more succinctly,
“the position of the interferers.” In this paper, we analyze the
following two scenarios, which differ in the speed of variation
of P :

1) Slow-varyingP : During the interval of interest (e.g., a
symbol or packet time), the distanceRi of each in-
terferer is approximately constant,Ri(t) ≈ Ri. Fur-
thermore, the interferers have a long session lifetime,

5Note that theamplitudeloss exponent isb, while the correspondingpower
loss exponent is2b.

6We useN (µ, σ2) to denote a real Gaussian distribution with meanµ and
varianceσ2.

7This model for combined path loss and log-normal shadowing can be
expressed in logarithmic form [16], [17], such that the channel loss in dB
is given byLdB = k0 + k1 log10 r + σdBG, whereG ∼ N (0, 1). The
environment-dependent parameters(k0, k1, σdB) can be related to(k, b, σ)
as follows: k0 = −20 log10 k, k1 = 20b, and σdB = 20

ln 10
σ. The

parameterσdB is the standard deviation of the channel loss in dB (or,
equivalently, of the received SNR in dB), and typically ranges from 6 to
12.

8We useE{·} andV{·} to denote the expectation and variance operators,
respectively.

transmitting continuously over many symbols. In this
quasi-static scenario,P varies slowly with time, and thus
it is insightful to condition the interference analysis on
a given realization ofP . As we shall see, this naturally
leads to the derivation of theerror outage probabilityof
the probe link, which in this case is a more meaningful
metric than the error probability averaged overP [18]–
[21].

2) Fast-varyingP : As in the previous case,Ri(t) ≈ Ri

during the interval of interest. However, the interferers
have a short session lifetime, where each node periodi-
cally becomes active, transmits a burst of symbols, and
then turns off (e.g., in a sensor or a packet network).
Then, the set ofinterfering nodes(the set of nodes
that are transmitting and contributing to the interference)
changes often, and so does their effective positionP ,
which experiences a variation analogous to that of a
block fading model. In this dynamic scenario, it is
insightful to average the interference analysis over all
possible realizations ofP , which naturally leads to the
derivation of theaverage error probabilityof the probe
link.

III. I NTERFERENCEREPRESENTATION ANDDISTRIBUTION

A. Complex Baseband Representation of the Interference

Under the system model described in Section II, the ag-
gregate signalZ(t) at the probe receiver can be written for
0 ≤ t ≤ T as

Z(t) =
kα0e

σG0

rb0

√
2

T
a0 cos(2πfct+ θ0) + Y (t) +W (t),

where the first right-hand term is the desired signal from the
transmitter probe node,Y (t) is the aggregate interference with

Y (t) =

∞∑

i=1

kαie
σGi

Rb
i

[√
2

T
ai cos(2πfct+ θi + φi)u(Di − t)

+

√
2

T
a′i cos(2πfct+ θ′i + φi)u(t−Di)

]
, 0 ≤ t ≤ T,

andW (t) is the AWGN with two-sided power spectral den-
sity N0/2, and independent ofY (t). In the above equations,
we use the following the notation:T is the symbol period;fc
is the carrier frequency;aiejθi and a′ie

jθ′
i are r.v.’s denoting

successive constellation symbols transmitted by the nodei
during the interval of interest[0, T ] (see Fig. 2); andu(t) is
the unit step function. The overall effect of the path loss, log-
normal shadowing, and fading on nodei is captured by the
amplitude factorkαie

σGi/Rb
i , whereGi ∼ N (0, 1), and by

the uniform phaseφi.9 We consider that r.v.’sαi, φi, Gi, Ri,
aie

jθi , a′ie
jθ′

i , andDi are mutually independent for a given
node i, and that the sequences{αi}, {φi}, {Gi}, {aiejθi},
{a′iejθ

′
i}, and {Di} are independent identically distributed

(i.i.d.) in i.

9Since we assume the probe receiver perfectly estimates the phaseφ0 of
the multipath fading affecting its own link, we can setφ0 = 0 without loss
of generality.
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The probe receiver demodulates the desired signal from
the aggregate signalZ(t), using a conventional lin-
ear detector. This can be achieved by projectingZ(t)

onto the orthonormal set
{
ψ1(t) =

√
2/T cos(2πfct),

ψ2(t) = −
√
2/T sin(2πfct)

}
. Defining the in-phase and

quadrature (IQ) componentsZn =
∫ T

0
Z(t)ψn(t)dt, n = 1, 2,

we can write

Z1 =
kα0e

σG0

rb0
a0 cos θ0 + Y1 +W1 (1)

Z2 =
kα0e

σG0

rb0
a0 sin θ0 + Y2 +W2, (2)

whereW1 andW2 areN (0, N0/2) and mutually independent.
After some algebra (Appendix A),Y1 andY2 can be expressed
as

Yn =

∫ T

0

Y (t)ψn(t)dt =

∞∑

i=1

eσGiXi,n

Rb
i

, n = 1, 2, (3)

where

Xi,1= kαi

[
ai

Di

T cos(θi + φi) + a′i
(
1− Di

T

)
cos(θ′i + φi)

]

(4)

Xi,2= kαi

[
ai

Di

T sin(θi + φi) + a′i
(
1− Di

T

)
sin(θ′i + φi)

]
.

(5)

Using complex baseband notation,10 equations (1)-(5) can be
further simplified as

Z =
kα0e

σG0

rb0
a0e

jθ0 +Y +W (6)

Y =
∞∑

i=1

eσGiXi

Rb
i

(7)

where

Xi = kαie
jφi

[
Di

T
aie

jθi +

(
1− Di

T

)
a′ie

jθ′
i

]
, (8)

and the distribution ofW is given by11

W ∼ Nc(0, N0). (9)

Since different interferersi transmit asynchronously and inde-
pendently, the r.v.’s{Xi}∞i=1 are i.i.d.

The distribution of the aggregate interferenceY plays
an important role in the evaluation of the error probability
of the probe link. In what follows, we characterize such
distribution in two important scenarios: theP-conditioned and
unconditional cases.

B. P-conditioned Interference Distribution

To derive theP-conditioned distribution of the aggregate
interferenceY in (7)-(8), we start with the results given in
[22]. This work shows that in the case of Rayleigh fading, an

10Boldface letters are used to denote complex quantities; forexample,
Z = Z1 + jZ2.

11We useNc(0, σ2) to denote a circularly symmetric (CS) complex Gaus-
sian distribution, where the real and imaginary parts are i.i.d. N (0, σ2/2).

expression of the form of (8) can be well approximated by a
circularly symmetric (CS) complex Gaussian r.v., such that

Xi ∼ Nc(0, 2VX), VX , V{Xi,n}. (10)

In [22], the validity of this approximation is justified both
by analyzing the Kullback-Leibler divergence and comparing
the error probabilities in the exact and approximated cases.12

Then, conditioned onP , the interferenceY =
∑∞

i=1
eσGiXi

Rb
i

becomes a sum of independent CS Gaussian r.v.’s and is
therefore a CS Gaussian r.v. given by13

Y
|P∼ Nc(0, 2AVX), (11)

whereA is defined as

A ,

∞∑

i=1

e2σGi

R2b
i

. (12)

Furthermore, we show in [24] that after some algebra,VX can
be expressed as

VX =
E

3
+
k2

6
E{aia′i cos(θi − θ′i)}, i ≥ 1, (13)

whereE , k2E{a2i } is the average symbol energy of each
interfering node, measured1m away from the interferer.14

Because the r.v.’s{Xi}∞i=1 are i.i.d.,VX does not depend oni
and is only a function of the interferers’ signal constellation.
For the case of equiprobable symbols and a constellation that
is symmetric with respect to the origin of the IQ-plane15

(e.g.,M -PSK andM -QAM), the second right-hand term in
(13) vanishes andVX = E/3.

Lastly, note that sinceA in (12) depends on the interferer
positionsP (i.e., {Ri}∞i=1 and {Gi}∞i=1), it can be seen as
a r.v. whose value is different for each realization ofP .
Furthermore, Appendix B shows that r.v.A has askewed stable
distribution [25] given by16

A ∼ S
(
αA =

1

b
, βA = 1, γA = λπC−1

1/be
2σ2/b2

)
, (14)

whereb > 1, andCx is defined as

Cx ,

{
1−x

Γ(2−x) cos(πx/2) , x 6= 1,
2
π , x = 1.

(15)

This distribution is plotted in Fig. 3 for differentb andλ.

12We can obtain (10) following another approach: if we consider that the
interfering nodes are coded and operating close to capacity, then the signal
transmitted by each interferer is Gaussian, such thatXi ∼ Nc(0, 2VX) [23].

13We useX
|Y∼ to denote the distribution of r.v.X conditional onY .

14Unless otherwise stated, we will simply refer toE as the “average symbol
energy” of the interferers.

15A constellation is said to besymmetric with respect to the originif for
every constellation point(x, y) ∈ R2, the point(−x,−y) also belongs to the
constellation.

16We useS(α, β, γ) to denote a real stable distribution with characteristic
exponentα ∈ (0, 2], skewnessβ ∈ [−1, 1], and dispersionγ ∈ [0,∞). The
corresponding characteristic function is

φ(w) =

{

exp
[

−γ|w|α
(

1− jβ sign(w) tan πα
2

)]

, α 6= 1,

exp
[

−γ|w|
(

1 + j 2

π
β sign(w) ln |w|

)]

, α = 1.
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Figure 3. P.d.f. ofA for different amplitude loss exponentsb and interferer
densitiesλ (σdB = 10). Stable laws are a direct generalization of Gaussian
distributions, and include other densities with heavier (algebraic) tails.

C. Unconditional Interference Distribution

To derive the unconditional distribution17 of the aggregate
interferenceY in (7)-(8), we can show that sums of the form of
(7) belong to the class ofsymmetric stable distributions[25].
This is because the r.v.’s{Ri}∞i=1 correspond to distances in
a spatial Poisson process and the{Xi}∞i=1 are i.i.d. and have
a CS distribution. Specifically, Appendix C shows thatY has
a CS complex stable distribution given by18

Y ∼ Sc

(
αY =

2

b
, βY = 0,

γY = λπC−1
2/be

2σ2/b2
E{|Xi,n|2/b}

)
, (16)

whereb > 1, andCx is defined in (15). Using (4)-(5), we can
further expressE{|Xi,n|2/b} in (16) as

E{|Xi,n|2/b} = k2/bE{|αi|2/b}

×E

{∣∣∣∣ai
Di

T
cos(θi + φi) + a′i

(
1− Di

T

)
cos(θ′i + φi)

∣∣∣∣
2/b

}

︸ ︷︷ ︸
,χ(b)

.

(17)

For the particular case of Rayleigh fading, (17) reduces to
E{|Xi,n|2/b} = k2/bΓ

(
1 + 1

b

)
·χ(b), where we have used the

moment relation for the Rayleigh r.v.’sαi [26]. Since different
interferersi transmit asynchronously and independently, the
parameterχ(b) does not depend oni and is only a function
of the amplitude loss exponentb and the interferers’ signal
constellation. Table I provides some numerical values for
E{|Xi,n|2/b}.

17Unconditional in the sense of being averaged over the positionsP .
18We useSc(α, β = 0, γ) to denote a CS complex stable distribution

with characteristic exponentα and dispersionγ, and whose characteristic
function isφ(w) = exp(−γ|w|α). Furthermore, the corresponding real and
imaginary components are bothS(α, β = 0, γ).

E{|Xi,n|
2/b}

E1/b

b BPSK QPSK

1.5 0.374 0.385

2 0.423 0.441

3 0.509 0.531

4 0.576 0.599

Table I
E{|Xi,n|2/b} FOR VARIOUS AMPLITUDE LOSS EXPONENTSb AND

MODULATIONS, ASSUMING RAYLEIGH FADING . NOTE THAT FORM -PSK
MODULATIONS, THIS QUANTITY IS PROPORTIONAL TOE1/b , WHEREE IS

THE AVERAGE SYMBOL ENERGY OF THE INTERFERERS.

D. Discussion

The results of this section have to be interpreted carefully,
because of the different types of conditioning involved. Inthe
unconditional case, we letP be random, i.e., we let{Ri}∞i=1

be the random outcomes of an underlying spatial Poisson
process, and{Gi}∞i=1 be the random shadowing affecting each
interferer. Then, the unconditional interferenceY is exactly
stable-distributed and given by (16). We note that (16) and
(17) hold for a broad class of fading distributions, in addition
to Rayleigh fading. In theP-conditioned case, the positions
of the interferers are fixed. Then,A in (12) is also a fixed
number, and the interferenceY is approximatelyCS Gaussian
with total variance2AVX , as given in (11).

IV. ERROR PROBABILITY

In the previous section, we determined the statistical dis-
tribution of the aggregate interference at the output of a
conventional linear receiver. We now use such result to directly
characterize of the error probability of the probe link, when
subject to both interference and thermal noise, in both cases
of slow and fast-varyingP .

A. Slow-varying Interferer PositionsP
In the quasi-static scenario of slow-varyingP , it is insightful

to analyze the error probability conditioned on a given real-
ization P of the distances{Ri}∞i=1 and shadowing{Gi}∞i=1

associated with the interferers, as well as on the shadowingG0

of the probe transmitter. We denote this conditional symbol
error probability byPe(G0,P).19

To derive the conditional error probability, we employ the
results of Section III-B for theP-conditioned distribution of
the aggregate interferenceY. Specifically, using (9) and (11),
the received signalZ in (6) can be rewritten as

Z =
kα0e

σG0

rb0
a0e

jθ0 + W̃, (18)

where
W̃ = Y +W

|P∼ Nc(0, 2AVX +N0), (19)

andA was defined in (12). Our framework has thus reduced
the analysis to a Gaussian problem, where the combined

19The notationPe(X, Y ) is used as a shorthand forP{error|X,Y }.
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noise W̃ is Gaussian when conditioned on the location of
the interferers.

The corresponding error probabilityPe(G0,P) can be found
by taking the well-known error probability expressions for
coherent detection of linear modulations in the presence of
AWGN and fast fading [27]–[30], but using2AVX +N0

instead ofN0 for the total noise variance. Note that this
substitution is valid for any linear modulation, allowing the
traditional results to be extended to include the effect of
network interference. For the case where the probe transmitter
employs an arbitrary signal constellation in the IQ-plane and
the fading is Rayleigh-distributed, the conditional symbol error
probabilityPe(G0,P) is given by

Pe(G0,P) =

M∑

k=1

pk
∑

l∈Bk

1

2π

×
∫ φk,l

0

(
1 +

wk,l

4 sin2(θ + ψk,l)
ηA

)−1

dθ, (20)

where

ηA =
e2σG0E0

r2b0 (2AVX +N0)
(21)

is the received signal-to-interference-plus-noise ratio(SINR),
averaged over the fast fading;M is the constellation size;
{pk}Mk=1 are the symbol probabilities;Bk, φk,l, wk,l, andψk,l

are the parameters that describe the geometry of the con-
stellation (see Fig. 4);E0 , k2E{a20} is the average symbol
energy of the probe transmitter, measured1m away from the
transmitter;A is defined in (12) and distributed according to
(14); andVX is given in (13). When the probe transmitter
employsM -PSK andM -QAM modulations with equiprobable
symbols, (20) is equivalent to20

PMPSK
e (G0,P) = IA

(
M − 1

M
π, sin2

( π

M

))
(22)

and

PMQAM
e (G0,P) = 4

(
1− 1√

M

)
· IA

(
π

2
,

3

2(M − 1)

)

− 4

(
1− 1√

M

)2

· IA
(
π

4
,

3

2(M − 1)

)
,

(23)

respectively, where the integralIA(x, g) is given by

IA(x, g) =
1

π

∫ x

0

(
1 +

g

sin2 θ
ηA

)−1

dθ. (24)

In the general expression given in (20) and (21), the network
interference is accounted for by the term2AVX , whereA
depends on the spatial distribution of the interferers and prop-
agation characteristics of the medium, whileVX depends on
the interferer transmission characteristics. Since2AVX simply
adds toN0, we conclude that the effect of the interference
on the error probability is simply an increase in the noise
level, a fact which is intuitively satisfying. Furthermore, note
that the modulation of the interfering nodes only affects

20In this paper, we implicitly assume thatM -QAM employs a square signal
constellation withM = 2n points (n even).

ψ1,2

ψ1,3
φ1,2

φ1,4

ψ1,4

s3

s2

s4

s1
φ1,3

Figure 4. Typical decision region associated with symbols1. In general,

for a constellation with signal pointssk = |sk|ejξk and ζk = |sk|2

E{|sk|
2}

,
k = 1 . . .M , four parameters are required to compute the error probability:
φk,l andψk,l are the angles that describe the decision region corresponding
to sk (as depicted);Bk is the set consisting of the indexes for the signal points
that share a decision boundary withsk (in the example,B1 = {2, 3, 4}); and
wk,l = ζk + ζl − 2

√
ζkζl cos(ξk − ξl).

the term VX , while the (possibly different) modulation of
the probe transmitter affects thetype of error probability
expression, leading to forms such as (22) or (23).

In our quasi-static model, the conditional error probability in
(20) is seen to be a function of the slow-varying user positions
and shadowing (i.e.,G0 and P). Since these quantities are
random, the error probability itself is a r.v. Then, with some
probability,G0 andP are such that the error probability of
the probe link is above some targetp∗. The system is said to
be in outage, and the error outage probability is

P e
out = PG0,P{Pe(G0,P) > p∗}, (25)

In the case of slow-varying user positions, the error outage
probability is a more meaningful metric than the error proba-
bility averaged overP .

B. Fast-varying Interferer PositionsP
In the dynamic scenario of fast-varyingP , it is insightful

to average the error probability over all possible realizations
of interferer positionsP . We denote this average symbol error
probability by Pe(G0). Note that we choose not to average
out the shadowingG0 affecting the probe transmitter, since
we have assumed the probe transmitter node is immobile at
a deterministic distancer0 from the probe receiver, and thus
G0 is slow-varying.

To derive the average error probability, we use the decom-
position property of stable r.v.’s [25], which allowsY in (16)
to be decomposed as

Y =
√
BG, (26)

whereB andG are independent r.v.’s, and

B ∼ S
(
αB =

1

b
, βB = 1, γB = cos

π

2b

)
(27)
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G ∼ Nc(0, 2VG), VG = 2e2σ
2/b

(
λπC−1

2/bE{|Xi,n|2/b}
)b

,

(28)

with E{|Xi,n|2/b} given in (17). Conditioning on the r.v.B,
we then use (9) and (26) to rewrite the aggregate received
signalZ in (6) as

Z =
kα0e

σG0

rb0
a0e

jθ0 + W̃,

where

W̃ =
√
BG+W

|B∼ Nc(0, 2BVG +N0). (29)

Again, our framework has reduced the analysis to a Gaussian
problem, where the combined noisẽW is a Gaussian r.v.
Note that this result was derived without resorting to any
approximations – in particular, the Gaussian approximation of
(10) was not needed here. We merely used the decomposition
property of symmetric stable r.v.’s.

The corresponding error probabilityPe(G0) can be found
by taking the error expressions for coherent detection in the
presence of AWGN and fast fading, then using2BVG +N0

instead ofN0 for the total noise variance, and lastly (unlike
in Section IV-A) averaging over the r.v.B. For the case where
the probe transmitter employs an arbitrary signal constellation
in the IQ-plane and the fading is Rayleigh-distributed, the
average symbol error probabilityPe(G0) is given by

Pe(G0) =

M∑

k=1

pk
∑

l∈Bk

1

2π

×
∫ φk,l

0

EB

{(
1 +

wk,l

4 sin2(θ + ψk,l)
ηB

)−1
}
dθ, (30)

where

ηB =
e2σG0E0

r2b0 (2BVG +N0)
; (31)

B is distributed according to (27);VG is given in (28); and the
other parameters have the same meaning as in Section IV-A.
When the probe transmitter employsM -PSK andM -QAM
modulations with equiprobable symbols, (20) is equivalentto

PMPSK
e (G0) = IB

(
M−1
M π, sin2

(
π
M

))
(32)

and

PMQAM
e (G0) = 4

(
1− 1√

M

)
· IB

(
π

2
,

3

2(M − 1)

)

− 4

(
1− 1√

M

)2

· IB
(
π

4
,

3

2(M − 1)

)
, (33)

respectively, where the integralIB(x, g) is given by

IB(x, g) =
1

π

∫ x

0

EB

{(
1 +

g

sin2 θ
ηB

)−1
}
dθ. (34)

C. Discussion

Using the results derived in Sections IV-A and IV-B, we
can now analyze the dependence of the error performance
on the densityλ and the average symbol energyE of the

0.001 0.01 0.1
−40

−30

−20

−10

0

10

20

30

40

50

PSfrag replacements

IN
R
(d
B
)

interferer density λ (m−2)

P e
out = 5 · 10−3, 10−2, 5 · 10−2

Figure 5. INR− λ curves of constantP e
out, for the case of slow-varying

interferer positionsP (BPSK, SNR = 40 dB, b = 2, r0 = 1m, σdB = 10,
p∗ = 10−2). INR is the interference-to-noise ratio, defined asINR = E/N0.
Clearly, for a fixed error performance, there is a tradeoff between the density
and energy of the interferers: if the INR (or, equivalently,E) increases,λ
must decrease, and vice-versa, to maintain the same outage probability.

interfering nodes. For that purpose, we use (20), although
(30) would lead to similar conclusions. In (20), the error
probabilityPe(G0,P) implicitly depends on parametersλ and
E through the productAVX in the denominator ofηA in (21).
This is because the dispersion parameterγA of the stable r.v.A
depends onλ according to (14), andVX is proportional toE as
in (13). The dependence onλ can be made evident by using the
scaling property of stable r.v.’s [25] to writeAVX = λbÃVX ,
whereÃ is a normalized version ofA, independent ofλ. We
thus conclude that the interference termAVX is proportional
to λbE, whereb > 1. Clearly, the error performance degrades
faster with an increase in thedensityof interferers than with
an increase in theirtransmitted power. The tradeoff between
E andλ for a fixed error performance is illustrated in Fig. 5.

D. Numerical Results

Figs. 6 and 7 quantify the average and outage proba-
bilities for several scenarios, showing their dependence on
various parameters involved, such as the signal-to-noise ra-
tio SNR = E0/N0, interference-to-noise ratioINR = E/N0,
amplitude loss exponentb, interferer spatial densityλ, and
link length r0.

The plots ofP e
out andPe(G0) presented here are of semi-

analytical nature. Specifically, we resort to a hybrid method
where we employ the analytical results given in (20)-(25)
and (30)-(34), and perform a Monte Carlo simulation with
respect to the stable r.v.’s (i.e.,A andB), according to [31].
Nevertheless, we emphasize that the expressions derived in
this paper completely eliminate the need for simulation of the
interferers’ position and waveforms in the network, in order
to obtain the error performance.

For illustration purposes, the plots assume that all terminals
(i.e., the probe transmitter and interfering nodes) use BPSK
modulation. We analyze both cases of slow and fast-varying
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(a) P e
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ratios INR (BPSK,b = 2, λ = 0.01m−2, r0 = 1m,σdB = 10, p∗ = 10−2).

10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

PSfrag replacements

P
e ou

t

SNR (dB)

λ = 0, 0.01, 0.1, 1m−2

(b) P e
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densitiesλ (BPSK, INR = 10 dB, b = 2, r0 = 1m, σdB = 10, p∗ = 10−2).

Figure 6. Error outage probability plots for a heterogeneous network
(where SNR 6= INR in general) and slow-varying interferer positionsP .
SinceP is slow-varying, the meaningful performance metric is the outage
probability P e

out given in (25).

interferer positionsP , concurrently with the following two
different scenarios:

1) Heterogeneous network: The probe transmitter is al-
lowed to use an arbitrary powerP0 = E0/T , not
necessarily equal to the common power of the interfering
nodesP = E/T , and henceSNR 6= INR in general. This
scenario is useful when the goal is to evaluate the impact
of aggregate interference from a large number of identi-
cal secondary users (e.g., cognitive-radio terminals) on
the performance of a primary link.

2) Homogeneous network: The probe transmitter and in-
terfering nodes all use the same power, and thus
SNR = INR. This may correspond to a sensor network
scenario, where there is a large number of indistinguish-
able, spatially scattered nodes with similar transmission
characteristics. In such a case, the goal is to evaluate the
impact of the aggregate network self-interference on the

0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

PSfrag replacements

P
e(
G

0
)

probe link length r0 (m)

b = 4, 2, 1.5

(a) Pe(G0) versus the lengthr0 of the probe link, for various signal
loss exponentsb (BPSK, G0 = 0, SNR = INR = 20 dB, λ = 0.01m−2,
σdB = 10).

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR = INR (dB)

PSfrag replacements

P
e(
G

0
)

SNR (dB)

λ = 0, 10−3, 10−2, 10−1
m

−2

(b) Pe(G0) versus the SNR, for various interferer densitiesλ (BPSK,G0 = 0,
b = 3, r0 = 1m, σdB = 10).

Figure 7. Average error probability plots for a homogeneousnetwork (where
SNR = INR) and fast-varying interferer positionsP . SinceP is fast-varying,
the meaningful performance metric is the average error probability Pe(G0)
given in (30). For simplicity, we useG0 = 0 in these plots (no shadowing
on the probe link).

performance of each sensor node.
For the heterogeneous case depicted in Fig. 6, we conclude
that the error performance deteriorates asλ or INR increase,
for a fixed SNR. This is expected because as the density or
transmitted energy of the interferers increase, the aggregate
interference at the probe receiver becomes stronger. Note,
however, that in the homogeneous case whereSNR = INR,
the error performance improves as we increase the common
transmitted powerP of the nodes (or equivalently, the SNR),
although the gains become marginally small asP → ∞ (see
Fig. 7(b)). This happens because in the interference-limited
regime whereSNR = INR ≫ 1, the noise termN0 in (21) or
(31) becomes irrelevant, and so the SNR in the numerator can-
cels with the INR in the denominator, making the performance
independent of the transmitted powerP .

The effect of the amplitude loss exponentb on the error
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performance, on the other hand, is non-trivial. As illustrated
in Fig. 7(a), an increase inb may degrade or improve the
performance, depending on the value of the link lengthr0 and
other parameters. This is becauseb simultaneously affects both
the received signal of interest and the aggregate interference –
the former, through the term1/rb0; and the latter, throughαA

andγA in (14), or throughαB, γB, andVG in (27) and (28).

V. SUMMARY

This paper introduces a mathematical model for commu-
nication subject to network interference and noise. The in-
terferers are scattered according to a spatial Poisson process,
and are operating asynchronously in a wireless environment
subject to path loss, shadowing, and multipath fading. We
show that the aggregate network interference at the output
of a linear receiver is related to askewed stable distribution
when conditioned on the positions of interferers, and to a
symmetric stable distributionin the unconditional case. We
characterize the error performance for the cases of slow and
fast-varying interferers, in terms of outage and average error
probabilities, respectively. These expressions are validfor any
linear modulation scheme. We then quantify these metrics as
a function of various important system parameters, such as the
SNR, INR, path loss exponent, and spatial density of the inter-
ferers. In Part II of the paper [13], we characterize the capacity
of the link when subject to both network interference and
noise, and derive the spectrum of the aggregate interference
at any location in the plane. Lastly, we put forth the concept
of spectral outage probability, a new characterization of the
aggregate interference generated by communicating nodes in
a wireless network.

APPENDIX A
DERIVATION OF THE COMPLEX BASEBAND INTERFERENCE

REPRESENTATION

To derive the representation (7) and (8) of the aggregate
interferenceY (t), we project Y (t) onto the basis func-
tion ψ1(t) =

√
2/T cos(2πfct) as follows:

Y1 =

∫ T

0

Y (t)ψ1(t)dt

=

∞∑

i=1

∫ T

0

kαie
σGi

Rb
i

[√
2

T
ai cos(2πfct+ θi + φi)u(Di − t)

+

√
2

T
a′i cos(2πfct+ θ′i + φi)u(t−Di)

]

×
√

2

T
cos(2πfct)dt

=

∞∑

i=1

2

T

kαie
σGi

Rb
i

[
ai
2

∫ Di

0

cos(θi + φi)dt

+
ai
2

∫ Di

0

cos(4πfct+ θi + φi)dt

︸ ︷︷ ︸
≈0 for fcT≫1

+
a′i
2

∫ T

Di

cos(θ′i + φi)dt

+
a′i
2

∫ T

Di

cos(4πfct+ θ′i + φi)dt

︸ ︷︷ ︸
≈0 for fcT≫1




=

∞∑

i=1

eσGiXi,1

Rb
i

,

where

Xi,1 = kαi

[
ai
Di

T
cos(θi + φi) + a′i

(
1− Di

T

)
cos(θ′i + φi)

]
.

The signalY (t) can be projected onto the basis func-
tion ψ2(t) = −

√
2/T sin(2πfct) in an entirely analogous

way, leading to

Y2 =

∞∑

i=1

eσGiXi,2

Rb
i

,

where

Xi,2 = kαi

[
ai
Di

T
sin(θi + φi) + a′i

(
1− Di

T

)
sin(θ′i + φi)

]
.

We can combine Xi,1 and Xi,2 in the complex
r.v. Xi = Xi,1 + jXi,2 as

Xi = kαie
jφi

[
Di

T
aie

jθi +

(
1− Di

T

)
a′ie

jθ′
i

]
,

which completes the derivation.

APPENDIX B
DERIVATION OF THE DISTRIBUTION OFA

To derive the distribution ofA given in (14), we start with
the following theorem.

Theorem B.1:Let {τi}∞i=1 denote the arrival times of a
one-dimensional Poisson process with rateλ; let {Wi}∞i=1

be a sequence of nonnegative i.i.d. r.v.’s, independent of the
sequence{τi} and satisfyingE{|Wi|α} <∞. If 0 < α < 1,
then

∞∑

i=1

Wi

τ
1/α
i

a.s.∼ S
(
α, β = 1, γ = λC−1

α E{|Wi|α}
)
,

whereCα is defined in (15).
Proof: See [25].

If an homogeneous Poisson point processin the planehas
spatial densityλ, and Ri denotes the distance of nodei
to the origin, then the sequence{R2

i }∞i=1 represents Poisson
arrival timeson the linewith the constant arrival rateλπ. This
can be easily shown by mapping the spatial Poisson process
from Cartesian into polar coordinates, and then applying the
mapping theorem [14]. Using this fact, we can then apply the
above theorem to (12) and write

A =

∞∑

i=1

e2σGi

R2b
i

=

∞∑

i=1

Wi︷ ︸︸ ︷
e2σGi

( R2
i︸︷︷︸

τi

)b

a.s.∼ S
(
α =

1

b
, β = 1, γ = λπC−1

1/bE{|e2σGi |1/b}
)
, (35)
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for b > 1. Using the moment property of log-normal r.v.’s, i.e.,
E{ekG} = ek

2/2 for G ∼ N (0, 1), (35) simplifies to

A
a.s.∼ S

(
α =

1

b
, β = 1, γ = λπC−1

1/be
2σ2/b2

)
,

for b > 1. This is the result in (14) and the derivation is
complete.

APPENDIX C
DERIVATION OF THE DISTRIBUTION OFY

To derive the distribution ofY given in (16), we start with
the following theorem.

Theorem C.1:Let {τi}∞i=1 denote the arrival times of a one-
dimensional Poisson process with rateλ; let {Zi}∞i=1 be a
sequence of CS i.i.d. complex r.v.’sZi = Zi,1 + jZi,2, inde-
pendent of the sequence{τi} and satisfyingE{|Zi|α} <∞.
If 0 < α < 2, then

∞∑

i=1

Zi

τ
1/α
i

a.s.∼ Sc

(
α, β = 0, γ = λC−1

α E{|Zi,n|α}
)
,

whereCα is defined in (15).
Proof: See [25]. For an alternative proof based on the

influence function method, see [32].
Using the Poisson mapping theorem as in Appendix B, we

can apply the above theorem to (7) and write

Y =

∞∑

i=1

eσGiXi

Rb
i

=

∞∑

i=1

CS i.i.d.︷ ︸︸ ︷
eσGiXi

( R2
i︸︷︷︸

τi

)b/2

a.s.∼ Sc

(
α =

2

b
, β = 0, γ = λπC−1

2/bE{|eσGiXi,n|2/b}
)
,

(36)

for b > 1. Note thatXi, whose expression is given in (8),
is CS due to the uniform phaseφi. As a result,eσGiXi is
also CS. Using the moment property of log-normal r.v.’s, i.e.,
E{ekG} = ek

2/2 with G ∼ N (0, 1), (36) simplifies to

Y
a.s.∼ Sc

(
α =

2

b
, β = 0, γ = λπC−1

2/be
2σ2/b2

E{|Xi,n|2/b}
)
,

for b > 1. This is the result in (16) and the derivation is
complete.
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