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Energy-Aware Utility Regions:
Multiple Access Pareto Boundary

Eduard Jorswieck, Holger Boche, and Siddharth Naik

Abstract—Power management and energy-aware communica-
tions systems have become increasingly important in mobile
computing as well as mobile communications. In future wireless
communication systems, the energy efficiency of terminals and
base stations has to be improved significantly. Therefore, we
propose a new utility function, which is the difference of the
capacity and a weighted power cost term. The generally used
individual power constraint is removed. Next, the utility region
for single-antenna and multi-antenna multiple access channels
is characterized. We show using basic principles that the single-
input single-output (SISO) multiple-access channel (MAC) utility
region is convex and provide a closed form expression for its
Pareto boundary. We need the Pareto boundary to compute effi-
cient operating points. Furthermore, the extension to multiple an-
tenna channels is indicated by an iterative algorithm for weighted
sum utility maximization in multiple-input single-output (MISO)
and multiple-input multiple-output (MIMO) MAC. All discussed
results are illustrated by numerical simulations.

Index Terms—Multiple access channel, utility region, convex
optimization, multiple-antenna.

I. INTRODUCTION

POWER management and energy efficient communication
is an important topic in future mobile communications

and computing systems. Currently 0.14% of the carbon emis-
sions are contributed by the mobile telecommunications in-
dustry[1]. In order to improve the situation, three different
approaches can be adopted: 1. development of better energy
sources, 2. network and site optimization, and 3. improved
algorithms at physical and multiple access layer. The first
approach lies outside the scope of the current paper and in
a different community. The second approach is undertaken in
[2] where a energy efficient network protocol is proposed. In
[3] an extension and simplification of the protocol is proposed.
Still at the network layer, a framework for computation of
the capacity of ad-hoc networks under energy constraints is
proposed in [4]. Finally, in [5], a Mobile Backbone Network
Power Saving protocol is developed to reduce energy con-
sumption. A lot of further recent work on wireless sensor
networks considers energy-aware routing and flow control (e.g.
[6]–[8]).
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One example for the third approach is [9] where the
energy efficiency of point-to-point communication systems
is improved by sophisticated adaptation strategies. A coding
theoretic approach is proposed in [10] where ’green codes’
for energy efficient short-range communications are devel-
oped. The multiuser scenario is more difficult because of
the conflicting interests of competing users and the resulting
multi-criteria objective function. However, fewer results are
available for energy-aware resource allocation at the physical
and multiple access layer. Therefore, there are recent proposals
to define a utility function which incorporates the cost of
transmission, e.g., the price of spending power is considered
in a binary variable in [11] and as an inverse factor in [12].

The utility region consists of utility vectors that are achiev-
able by a certain set of resource allocation and transmit strat-
egy parameters. In order to operate the system in an efficient
way, the Pareto boundary of the utility region needs to be well
understood. In Figure 1, we show a typical utility region - the
rate region of the SISO MAC with successive interference
cancellation (SIC) at the base station [13] under individual
power constraints. The typical polymatroidal structure can be
observed. The line between the operating points in which both
users apply maximum transmit power and different decoding
orders are applied, is achieved by rate splitting [14]. All points
on this line are Pareto optimal. The points on the vertical and
horizontal lines are achieved by a fixed decoding order and
the user who is decoded last varies its transmit power between
zero and maximum power. These points are called weakly
Pareto optimal.

On the Pareto boundary, different efficient operating points
can be adjusted depending on the fairness criteria, e.g., the
maximum sum utility (from an operator’s point of view),
proportional fair utility (from a long-term fairness perspec-
tive), or the max-min fair utility point (from a short-term user
perspective).

In the current paper, we propose an energy-centric point of
view and define a utility function which is the difference of
the individual capacity and an individually weighted power
cost term. The weights contain context information of the
specific user and could include battery or quality-of-service
(QoS) information. Note that in [15] a similar utility function
is proposed to improve the efficiency of the non-cooperative
Nash equilibrium. The difference of the current work is that
we characterize the Pareto boundary and do a centralized
(cooperative) optimization of transmit strategies and power
allocation. Using very basic principles, we provide a complete
characterization of the SISO MAC utility region.

The contribution and the organization of the paper are as
follows:

1) The system model, the proposed energy-aware utility
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Fig. 1. Example utility region - SISO MAC with SIC.

function, and the term Pareto-optimality are explained
in Section II.

2) The main results for the SISO MAC are collected in
Section III. First, the Pareto optimal power allocation
is characterized. Next an efficient algorithm that max-
imizes the weighted sum utility is derived. Finally, we
show that the utility region is convex.

3) The main results and differences for the SIMO MAC
are derived in Section IV. It is shown for the two user
case that the region is not convex. An algorithm for sum
utility maximization is derived and low- and high-signal-
to-noise-ratio (SNR) behavior is characterized.

4) The MIMO MAC case is studied in Section V. We pro-
pose a simple, however an efficient iterative algorithm
to solve the weighed sum utility maximization problem.

The paper is concluded in Section VI.

A. Notation

Vectors are denoted in bold letters 𝒙. Matrices are written
in bold capital letters 𝑯 . Transpose is [⋅]𝑇 , and the conjugate
transpose is [⋅]𝐻 . The matrix (pseudo) inverse is denoted by
[⋅]−1. 𝑡𝑟(𝑨) denotes the trace of the matrix 𝑨, i.e. 𝑡𝑟(𝑨) =∑𝑛

𝑘=1 𝑨𝑘,𝑘. 𝜔𝑖(𝑨) is the 𝑖th eigenvalue of the matrix 𝑨.
𝜔𝑚𝑎𝑥(𝑨) is the largest eigenvalue of the matrix 𝑨. ℛ(𝑥)
denotes the real part of the complex variable 𝑥. ℂ𝑛

+ denotes
the set of positive semidefinite matrices. ∣∣𝒂∣∣ is the l1-norm,
i.e. ∣∣𝒂∣∣ = ∑𝑛

𝑖=1 ∣𝑎𝑖∣. The order for matrices is denoted by
𝑨 ર 𝑩 and this means that the difference 𝑨−𝑩 is positive
semi-definite. diag(𝑨) is the vector with diagonal entries of
𝑨 and Diag(𝒂) is a matrix with entries of the vector 𝒂 on the
diagonal.

II. PRELIMINARIES

A. System Model and Channel Model

We consider the MAC, i.e., the uplink, where a number
of 𝐾 terminals wants to transmit their information to a base

station. In the following, we distinguish between three cases
depending on the number of antennas at the terminals or
the base. In the single-input single-output (SISO) MAC all
terminals as well as the base have a single transmit or receive
antenna, respecively. The received signal at the base station is
given by

𝑦 =

𝐾∑
𝑘=1

𝑥𝑘𝑎𝑘 + 𝑛 (1)

where 𝑥𝑘 is the transmitted signal of user 𝑘 and 𝑎𝑘 corre-
sponds to the complex channel coefficient of user 𝑘. We denote
the channel gain of user 𝑘 by 𝛼𝑘 = ∣𝑎𝑘∣2. The additive white
Gaussian noise 𝑛 is zero-mean complex Gaussian distributed
with variance 𝜎2

𝑛. If the base station has multiple receive an-
tennas, we talk about the single-input multiple-output (SIMO)
MAC, the received signal vector is given by

𝒚 =
𝐾∑

𝑘=1

𝑥𝑘𝒉𝑘 + 𝒏 (2)

where 𝑥𝑘 is the transmitted signal of user 𝑘 and 𝒉𝑘 is the
vector channel from user 𝑘 to the receive antennas at the base
station. The additive white Gaussian noise vector at the base
is zero-mean complex Gaussian distributed with covariance
matrix 𝜎2

𝑛𝑰 . In both cases (1) and (2), we denote the transmit
power of user 𝑘 as 𝑝𝑘, i.e., 𝔼[∣𝑥𝑘∣2] = 𝑝𝑘. Finally, the case
in which the users as well as the base have multiple antennas
is called multiple-input multiple-output (MIMO) MAC. The
received vector at the base station is given by

𝒚 =

𝐾∑
𝑘=1

𝑯𝑘𝒙𝑘 + 𝒏 (3)

where 𝒙𝑘 is the transmitted signal vector of user 𝑘 with
transmit covariance matrix 𝑸𝑘 = 𝔼

[
𝒙𝑘𝒙

𝐻
𝑘

]
and the channel

matrix 𝑯𝑘 collects the channel realizations from all transmit
antennas of user 𝑘 to the base. The additive white Gaussian
noise vector at the base is zero-mean complex Gaussian
distributed with covariance matrix 𝜎2

𝑛𝑰 . The transmit power
of user 𝑘 is 𝑝𝑘 = tr(𝑸𝑘).

In all scenarios, we assume that the base station has perfect
channel state information (CSI). Further, we assume that the
transmitters are informed about their transmit strategies (either
power allocation or transmit covariance matrix) by the base
station via a control channel.

B. Energy-Aware Utilty Function

Define the utility of user 𝑘 for some 𝜇𝑘 ≥ 0 as

𝑢𝑘(𝒑) = 𝑟𝑘(𝒑)− 𝜇𝑘𝑝𝑘 (4)

where 𝑟𝑘(𝒑) is the achievable transmission rate of user 𝑘 in
one of our system environments described above and 𝒑 is the
power allocation vector 𝒑 = [𝑝1, ..., 𝑝𝐾 ].

Let us illustrate the operational meaning of the utility
function in (4) in the single-antenna scenario. We denote the
single-user rate without interference as 𝑟(𝑝) = log(1+ 𝜌𝛼𝑘𝑝)
where 𝜌 is the inverse noise power and 𝛼𝑘 is the channel
power. The corresponding utility is 𝑢(𝑝) = log(1+𝜌𝛼𝑘𝑝)−𝜇𝑝.
In contrast to the pure rate function, the utility in (4) takes
the cost of transmission into account. If some power 𝑝𝑘 is
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Fig. 2. Utility function 𝑢(𝑃 ) = log(1 + 10𝑝)− 𝜇𝑝 over 𝑝 in linear scale.

spent for transmission it linearly reduces the utility by a
factor 𝜇𝑘𝑝𝑘. Let us call 𝜇𝑘 the power price of user 𝑘. This
interpretation is illustrated by the following scenario: if 𝜇𝑘

gets too large compared to the log(1 + 𝜌𝛼𝑘𝑝𝑘) term, i.e., the
costs of allocating power are larger than the gain by reliable
transmission, the user will switch off, i.e., 𝑝𝑘 = 0, until the
gain by transmission is larger than the cost. The key design
quantities are the rate 𝑟𝑘 [bit/s], the transmit power 𝑝𝑘 [W],
and the price per unit of power 𝜇𝑘 [bit/s/W].

The variable 𝜇𝑘 occurs also in the optimization of the rates
with sum power constraints as Lagrangian dual variables [16].
In this context, 𝜇𝑘 does not posses the meaning explained
above. However, the resulting iterative algorithm could have
a similar form. The difference to [16] is that we either
completely characterize the Pareto boundary (SISO MAC) or
propose an algorithm for the weighed utility maximization
(MIMO MAC) which is a non-trivial generalization of [16].

A similar utility function is proposed in [17] for single-
antenna systems and used to characterize the Nash equilibrium
for the non-cooperative power control game. Later in [18] the
approach is extended to multiple antenna channels in a related
non-cooperative game-theoretic setting.

In Figure 2, the utility function is shown for different values
of 𝜇𝑘. By choosing the power price 𝜇𝑘 carefully, we can force
the user to operate in the energy efficient power regime. The
rate function scales logarithmically with the power. From an
energy efficiency point of view, the power regime in which
the rate scales linearly with the power is of interest.

Note, that the utility function 𝑢 is unimodal, i.e. monotonic
increasing up to the maximum and then monotonic decreasing,
and concave with respect to 𝑝. The optimal single-user oper-
ating point is easily found by computing the first derivative of
the utility with respect to 𝑝𝑘 and solving to obtain

𝑝∗𝑘 =

(
1

𝜇𝑘
− 1

𝜌𝛼𝑘

)+

. (5)

The corresponding achievable utility is

𝑢𝑘(𝑝
∗
𝑘) = log

(
𝜌𝛼𝑘

𝜇𝑘

)+

−
[
1− 𝜇𝑘

𝜌𝛼𝑘

]+
. (6)

Note that 𝑢𝑘(𝑝
∗
𝑘) in (6) decreases with 𝜇𝑘 and increases

with 𝜌𝛼𝑘. Furthermore, the optimal operating point in (5)

𝜇 = 2 𝜇 = 3

0 10 20 30
0.0

0.1

0.2

0.3

0.4

𝑝∗𝑘

𝜌𝛼𝑘

Fig. 3. Optimal single-user power allocation 𝑝𝑘 as a function of 𝜌𝛼𝑘 .

TABLE I
COMPARISON: CAPACITY REGION AND UTILITY REGION WITH PRICING

Capacity without pricing Utility including pricing

Power con-
straints

Explicit transmit power
constraints

Implicit power constraint
by prices

SISO region Decoding order depends
only on weights,

Decoding order depends on
the effective channels in-
cluding pricing

MIMO
region and
optimiza-
tion

Iterative waterfilling (IWF)
for sum capacity maxi-
mization

Inner optimization with
IWF, outer optimization
for sum transmit power

Single-user range depends
on power constraint and
channels

Single-user range depends
on channels and prices

corresponds to an effective power constraint of 1
𝜇𝑘

illustrated
in Figure 3 where the power as a function of 𝜌𝛼𝑘 is shown.
From (6) follows that zero power is allocated if the slope of
the rate 𝑟𝑘 at zero is smaller than 𝜇𝑘, i.e., if the power price
is too large compared to the rate gain.

From (5) and Figure 3 follows that for all 𝜇𝑘 > 0 an
implicit power constraint of 1

𝜇𝑘
is given. Therefore, we will

not impose an additional explicit power constraint in the
following derivation.

Remark 1: It is a remarkable fact, that we do not need
an explicit individual or sum power constraint in the single-
user scenario. Instead by using the linear power price the
system automatically operates in an efficient regime. As a
convenient byproduct the SNR cannot be defined explicitly
and the dependency of the result on the SNR is expressed
indirectly by 𝜌 which is the inverse noise variance. We note
that in interference networks, the relation between the price
𝜇𝑘 and the maximum transmit power of user 𝑘 is more
complicated and explicit power constraints could be applied.

The difference of the utility function in (4) compared to
the rate function 𝑟𝑘 with additional transmit power constraint
is that the utility function forces the user to operate in the
power efficient regime. In Table I, the relationship between
the capacity region without pricing and the proposed utility
function and its corresponding region are summarized.
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C. Pareto Optimality

Next, we study the efficient operating points in the multiuser
utility region. The achievable utility region is defined as

𝒰 ≜
∪
𝒑≥0

{𝑢1(𝒑), ..., 𝑢𝐾(𝒑)} ⊂ ℝ
𝐾
+ . (7)

We define the Pareto optimality of an operating point, i.e.,
utility tuple, as follows.

Definition 1: A utility tuple (𝑢1, ..., 𝑢𝐾) ∈ 𝒰 is Pareto
optimal if there is no other tuple (𝑞1, ..., 𝑞𝐾) ∈ 𝒰 with
(𝑞1, ..., 𝑞𝐾) ≥ (𝑢1, ..., 𝑢𝐾) and (𝑞1, ..., 𝑞𝐾) ∕= (𝑢1, ..., 𝑢𝐾)
(the inequality is component-wise).

As shown in Figure 1, all other boundary points of the utility
region are weak Pareto optimal. At a weak Pareto optimal
point it is possible to increase the utility of one user without
decreasing the other users. We are not interested in these
inefficient operating points because at those operating points
we could improve the utility of one user without reducing the
utility of another user.

III. UTILITY REGION - SISO MAC

It is well known that the capacity region of the SISO
Gaussian MAC can be theoretically achieved with SIC at the
base station and Gaussian transmit signals. Since our utility
function in (4) is linear in the user rates, we are interested in
maximizing the individual rates. Therefore, we consider the
𝐾 user Gaussian MAC with SIC at the base station.

Assume a decoding order of 𝐾 → 𝐾 − 1 → ... → 1. The
achievable rate of user 𝑘 is given by

𝑟𝑘(𝒑) = log

(
1 +

𝜌𝛼𝑘𝑝𝑘

1 + 𝜌
∑𝑘−1

𝑙=1 𝛼𝑙𝑝𝑙

)
. (8)

Observe that the individual user rates depend on the SIC
decoding order.

A. Pareto Boundary of the SISO MAC

The next result parameterizes the Pareto boundary of the
utility 𝒰 in (7). We assume a decoding order of 𝐾 → 𝐾−1 →
... → 1 induced by

𝛼1

𝜇1
≤ 𝛼2

𝜇2
≤ ... ≤ 𝛼𝐾

𝜇𝐾
. (9)

The reason for the optimal ordering in (9) is that we could
define a new power allocation 𝑝𝑘 = 𝜇𝑘𝑝𝑘 and rewrite the
utility function in (4) as

𝑢𝑘(𝒑̃) = log

(
1 +

𝜌𝛼𝑘

𝜇𝑘
𝑝𝑘

1 + 𝜌
∑𝑘−1

𝑙=1
𝛼𝑙

𝜇𝑙
𝑝𝑙

)
−𝑝𝑘

with the effective channels
(

𝛼1

𝜇1
, 𝛼2

𝜇2
, ..., 𝛼𝐾

𝜇𝐾

)
. Therefore, in

(9), the effective channels are ordered in increasing order. We

define the following set of power allocations

𝒫 =
{

(𝑝1, 𝑝2, ..., 𝑝𝐾) ∈ ℝ𝐾
+ :

0 ≤ 𝑝1 ≤
(

1
𝜇1

− 1
𝜌𝛼1

)+
,

0 ≤ 𝑝2 ≤
(

1
𝜇2

− 1
𝜌𝛼2

− 𝛼1

𝛼2
𝑝1

)+
,

...

0 ≤ 𝑝𝑘 ≤
(

1
𝜇𝑘

− 1
𝜌𝛼𝑘

−∑𝑘−1
𝑙=1

𝛼𝑙𝑝𝑙

𝛼𝑘

)+
,

...

𝑝𝐾 =
(

1
𝜇𝐾

− 1
𝜌𝛼𝐾

−∑𝐾−1
𝑙=1

𝛼𝑙𝑝𝑙

𝛼𝐾

)+ }
. (10)

Note that 𝑝𝐾 is a function of 𝑝1, ..., 𝑝𝐾−1.
Theorem 1: A power allocation 𝒑∗ is Pareto optimal if and

only if 𝒑∗ ∈ 𝒫 defined in (10) with SIC decoding order in
(9).

Proof: The proof consists of two parts. In the first part,
we show that the optimal SIC order is characterized by (9).
In the second part, we show that the power allocation in (10)
corresponds exactly to all Pareto optimal utility points.

The main idea for the first part of the proof is not to
study the utility region for different decoding orders but the
corresponding power regions, i.e., the set of feasible power
allocations 𝒑̃ for the effective channels 𝛼𝑘

𝜇𝑘
. It is sufficient to

consider two users 𝑘 and 𝑘 + 1 and define 𝑧 =
∑𝑘−1

𝑙=1
𝛼𝑙

𝜇𝑙
𝑝𝑙.

Define the feasible power region of user 𝑘, 𝑘 + 1 for the
decoding order 𝑘 → 𝑘 + 1 as 𝒫𝑘→𝑘+1

𝑘,𝑘+1 and for the other
decoding order 𝑘 + 1 → 𝑘 as 𝒫𝑘+1→𝑘

𝑘,𝑘+1 . They are given by

𝒫𝑘→𝑘+1
𝑘,𝑘+1 =

{
𝑝𝑘, 𝑝𝑘+1 ∈ ℝ

2
+ :

0 ≤ 𝑝𝑘 ≤
(
1− 𝜇𝑘

𝜌𝛼𝑘
− 𝜇𝑘

𝛼𝑘

𝛼𝑘+1

𝜇𝑘+1
𝑝𝑘+1 − 𝜇𝑘

𝛼𝑘
𝑧
)+

,

0 ≤ 𝑝𝑘+1 ≤
(
1− 𝜇𝑘+1

𝜌𝛼𝑘+1
− 𝜇𝑘+1

𝛼𝑘+1
𝑧
)+ }

(11)

and for the other (optimal) decoding order

𝒫𝑘+1→𝑘
𝑘,𝑘+1 =

{
𝑝𝑘, 𝑝𝑘+1 ∈ ℝ2

+ :

0 ≤ 𝑝𝑘 ≤
(
1− 𝜇𝑘

𝜌𝛼𝑘
− 𝜇𝑘

𝛼𝑘
𝑧
)+

,

0 ≤ 𝑝𝑘+1 ≤
(
1− 𝜇𝑘+1

𝜌𝛼𝑘+1
− 𝜇𝑘+1

𝛼𝑘+1

𝛼𝑘

𝜇𝑘
𝑝𝑘 − 𝜇𝑘+1

𝛼𝑘+1
𝑧
)+ }

. (12)

In order to prove that the decoding order 𝑘+ 1 → 𝑘 is better
than 𝑘 → 𝑘 + 1, we show that

𝒫𝑘→𝑘+1
𝑘,𝑘+1 ⊆ 𝒫𝑘+1→𝑘

𝑘,𝑘+1

using the assumption made above that
𝛼𝑘+1

𝜇𝑘+1

𝜇𝑘

𝛼𝑘
≥ 1. (13)

The idea is illustrated in Figure 4.
Obviously, the two regions are described by triangles since

𝑝𝑘 depends linearly on 𝑝𝑘+1 and vice versa. Hence, it suffices
to show that the two corner points ⊛ and ⊝ of 𝒫𝑘+1→𝑘

𝑘,𝑘+1

are larger than those of 𝒫𝑘→𝑘+1
𝑘,𝑘+1 . For the right corner ⊛,

𝑝𝑘 achieves its maximum value for 𝑝𝑘+1 = 0 in 𝒫𝑘→𝑘+1
𝑘,𝑘+1

but in 𝒫𝑘+1→𝑘
𝑘,𝑘+1 𝑝𝑘 achieves its maximum value already for
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1− 𝜇𝑘

𝜌𝛼𝑘
− 𝜇𝑘

𝜌𝛼𝑘
𝑧
)+

(
1− 𝜇𝑘+1

𝜌𝛼𝑘+1
− 𝜇𝑘+1

𝛼𝑘+1
𝑧
)+

(
𝛼𝑘

𝜇𝑘

𝜇𝑘+1

𝛼𝑘+1
− 𝜇𝑘+1

𝜌𝛼𝑘+1
− 𝜇𝑘+1

𝛼𝑘+1
𝑧
)+

(
1− 𝜇𝑘+1

𝛼𝑘+1

𝛼𝑘

𝜇𝑘

)
⊛

⊝

Fig. 4. Illustration of power regions 𝒫𝑘→𝑘+1
𝑘,𝑘+1 and 𝒫𝑘+1→𝑘

𝑘,𝑘+1 in the proof
of Theorem 1.

𝑝𝑘+1 =
(
1− 𝜇𝑘+1

𝛼𝑘+1

𝛼𝑘

𝜇𝑘

)
> 0 because of (13). For the

left corner ⊝, in 𝒫𝑘→𝑘+1
𝑘,𝑘+1 , 𝑝𝑘 is equal to zero if 𝑝𝑘+1 ≥(

𝛼𝑘

𝜇𝑘

𝜇𝑘+1

𝛼𝑘+1
− 𝜇𝑘+1

𝜌𝛼𝑘+1
− 𝜇𝑘+1

𝛼𝑘+1
𝑧
)+

, but in 𝒫𝑘+1→𝑘
𝑘,𝑘+1 , 𝑝𝑘 is equal to

zero if 𝑝𝑘+1 ≥
(
1− 𝜇𝑘+1

𝜌𝛼𝑘+1
− 𝜇𝑘+1

𝛼𝑘+1
𝑧
)+

. Therefore, decoding
order 𝑘+1 → 𝑘 has larger power region than decoding order
𝑘 → 𝑘 + 1. The final argument for an arbitrary permutation
𝜋 ∕= {𝐾,𝐾 − 1,𝐾 − 2, ..., 2, 1} is that successive reordering
of two neighbor indices increases the utility region.

With the Pareto optimal decoding order, the Pareto optimal
power allocation can be obtained iteratively starting by the
last decoded user one. With the range of 𝑝𝑘 the optimal power
range of user 𝑘+1 is obtained from solving ∂𝑢𝑘+1(𝒑)

∂𝑝𝑘+1
= 0. In

order to show that all power allocations characterized by (10)
are Pareto optimal, there are two parts to prove. The first part
is to show that all power allocations 𝒑 /∈ 𝒫 are not Pareto
optimal. The second part is to show that all power allocations
𝒑 ∈ 𝒫 are Pareto optimal.

All 𝒑 /∈ 𝒫 are not Pareto optimal: ⇐= We will show this
direction by contradiction. We choose a power vector 𝒑 =
[𝑝1, ..., 𝑝𝐾 ] /∈ 𝒫 . Then either one or multiple 𝑝𝑘 for 1 ≤ 𝑘 ≤
𝐾 − 1 lie outside the interval specified by (10) or/and 𝑝𝐾 is
not equal to 𝑝∗𝑘.

1) Assume 𝑝𝐾 ∕=
(

1
𝜇𝑘

− 1
𝜌𝛼𝑘

−∑𝐾−1
𝑙=1

𝛼𝑙𝑝𝑙

𝛼𝐾

)
but all 𝑝𝑙 =

𝑝∗𝑙 for 1 ≤ 𝑙 ≤ 𝐾−1. Then we can increase the utility of
user 𝐾 , without affecting the utilities of the other users,
by choosing 𝑝𝐾 = 𝑝∗𝐾 because the global optimum
for 𝑢𝐾(𝑝∗1, 𝑝

∗
2, ..., 𝑝

∗
𝐾−1, 𝑝𝑘) for fixed 𝑝∗1, ..., 𝑝

∗
𝐾−1 is

𝑝∗𝐾 characterized in (10). Hence, 𝒑̌ cannot be Pareto
optimal.

2) At least one 𝑝ℓ > 𝑝∗ℓ in (10) for 1 ≤ ℓ ≤ 𝐾 − 1.
Then we can improve the utilities of users ℓ, ℓ+1, ...,𝐾

by reducing 𝑝ℓ to
(

1
𝜇ℓ

− 1
𝜌𝛼ℓ

−∑ℓ−1
𝑙=1

𝛼𝑙𝑝𝑙

𝛼ℓ

)
. The utility

of user ℓ is improved because the global optimum of
𝑢ℓ(𝑝

∗
1, ..., 𝑝

∗
ℓ−1, 𝑝ℓ, 𝑝ℓ+1, ..., 𝑝𝐾) for fixed 𝑝∗1, ..., 𝑝

∗
ℓ−1 is

𝑝∗ℓ . The utility of the subsequent users ℓ + 1, ...,𝐾 is
improved because they observe less interference from
user ℓ. Hence, 𝒑̌ cannot be Pareto optimal.

All 𝒑 ∈ 𝒫 are Pareto optimal: =⇒ We show this direction
by contradiction, as well. Assume that there are two power
vectors 𝒑̂, 𝒒̂ ∈ 𝒫 for which 𝒒 is not Pareto optimal, i.e.,
𝒖(𝒑̂) > 𝒖(𝒒̂), i.e., there is at least one ℓ with 𝑢ℓ(𝒑̂) > 𝑢ℓ(𝒒̂)

and 𝑢𝑘(𝒑̂) ≥ 𝑢𝑘(𝒒̂) for all 1 ≤ 𝑘 ≤ 𝐾 . Consider 𝑢ℓ(𝒑̂) and
𝑢ℓ(𝒒̂): Reduce the power of user ℓ until 𝑢ℓ(˜̂𝒑) = 𝑢ℓ(𝒒̂). Then
the following inequality holds

𝑢ℓ+𝑘(˜̂𝒑) > 𝑢ℓ+𝑘(𝒑̂) ≥ 𝑢ℓ+𝑘(𝒒̂)

for all 𝑘 > 0 because user ℓ creates less interference for ˜̂𝒑.
Especially, we have that

𝑢𝐾(˜̂𝒑) > 𝑢𝐾(𝒑̂) ≥ 𝑢𝐾(𝒒̂). (14)

From (14) follows that the constructed ˜̂𝒑 /∈ 𝒫 with the
property that 𝒖(˜̂𝒑) > 𝒖(𝒒̂) for 𝒒 ∈ 𝒫 which is a contradiction
to the first part of the proof. Hence, all 𝒑 ∈ 𝒫 must be Pareto
optimal.

Remark 2: An important special case from above is the sum
utility maximization, i.e.,

max
𝒑≥0

log

(
1 + 𝜌

𝐾∑
𝑘=1

𝛼𝑘𝑝𝑘

)
−

𝐾∑
𝑘=1

𝜇𝑘𝑝𝑘. (15)

The optimization problem is a convex optimization, i.e., maxi-
mization of concave function over convex constraint set plus at
least one feasible point [19]. Introduce Lagrangian multipliers
𝜓𝑘 for non-negativeness constraint, and derive the necessary
and sufficient Karush-Kuhn-Tucker optimality conditions

𝜌𝛼𝑙

1 + 𝜌
∑𝐾

𝑘=1 𝛼𝑘𝑝𝑘
= 𝜇𝑙 − 𝜓𝑙, 𝜓𝑙𝑝𝑙 = 0, 𝜓𝑙 ≥ 0. (16)

The Lagrangian multiplier 𝜓𝑙 is zero if 𝑝𝑙 > 0, therefore it
must hold for all active users 𝑙,𝑚 ∈ 𝒜 = {𝑘 : 𝑝𝑘 > 0}
that 𝛼𝑙

𝜇𝑙
= 𝛼𝑚

𝜇𝑚
. Therefore, the only active user is the best user

corresponding with max1≤𝑘≤𝐾
𝛼𝑘

𝜇𝑘
. This is interesting since

we do not have individual or sum power constraints.
For 𝐾 users, the Pareto boundary is a 𝐾 − 1 dimen-

sional surface parameterized by the powers of 𝐾 − 1 users
[𝑝1, ..., 𝑝𝐾−1].

Corollary 1: For the decoding order in (9), the achievable
utilities are characterized by

𝑢1(𝑝1) = log (1 + 𝜌𝑝1𝛼1)− 𝑝1𝜇1

𝑢2(𝑝1, 𝑝2) = log (1 + 𝜌𝑝1𝛼1 + 𝜌𝑝2𝛼2)

− log(1 + 𝜌𝑝1𝛼1)− 𝜇2𝑝2

𝑢𝑘(𝑝1, ..., 𝑝𝑘) = log

(
1 + 𝜌

𝑘∑
𝑙=1

𝑝𝑙𝛼𝑙

)

− log(1 + 𝜌

𝑘−1∑
𝑙=1

𝑝𝑙𝛼𝑙)− 𝜇𝑘𝑝𝑘

𝑢𝐾(𝑝1, ..., 𝑝𝐾−1) = log

(
𝜌𝛼𝐾

𝜇𝐾

)
− log(1 + 𝜌

𝐾−1∑
𝑙=1

𝛼𝑙𝑝𝑙)

−
[
1− 𝜇𝐾

𝜌𝛼𝐾
−

𝐾−1∑
𝑙=1

𝜇𝐾𝛼𝑙

𝛼𝐾

]+
. (17)

The utility region can also be expressed in terms of the
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Fig. 5. Two-user MAC utility region 𝒰 and its Pareto boundary for 𝛼1 =
2, 𝛼2 = 1, 𝜇1 = 3, 𝜇2 = 1, 𝜌 = 20𝑑𝐵.

following equalities

𝑘∑
𝑙=1

𝑢𝑙(𝒑) = log

(
1 + 𝜌

𝑘∑
𝑙=1

𝑝𝑙𝛼𝑙

)
−

𝑘∑
𝑙=1

𝜇𝑙𝑝𝑙

for all 1 ≤ 𝑘 ≤ 𝐾 − 1 and
𝐾∑
𝑙=1

𝑢𝑙(𝒑) = log

(
𝜌𝛼𝐾

𝜇𝐾

)
−
[
1− 𝜇𝐾

𝜌𝛼𝐾
−

𝐾−1∑
𝑙=1

𝜇𝐾𝛼𝑙

𝛼𝐾

]+

−
𝐾−1∑
𝑙=1

𝜇𝑙𝑝𝑙. (18)

Note that utility 𝑢𝐾 is a function of the utilities
𝑢1, ..., 𝑢𝐾−1. Denote the utility region described by (17) or
(18) as 𝒰 , i.e.,

𝒰 =
∪
𝒑∈𝒫

𝒖(𝒑).

For the two-user case, the parameterization is illustrated in
Figure 5 below.

B. Weighted Sum Utility Maximization - SISO MAC

Consider the following weighted sum utility maximization
problem

max
𝒑≥0

𝐾∑
𝑘=1

𝜆𝑘𝑢𝑘(𝒑) (19)

with 𝜆𝑘 ≥ 0 for 1 ≤ 𝑘 ≤ 𝐾 and
∑𝐾

𝑘=1 𝜆𝑘 = 1. From
the discussion around problem (15), we know that the sum
utility is maximized if only the best user transmits. Assume
the optimal decoding order induced by 𝛼1

𝜇1
≤ 𝛼2

𝜇2
≤ ... ≤ 𝛼𝐾

𝜇𝐾
,

it follows that

𝜆1 ≥ 𝜆2 ≥ ... ≥ 𝜆𝐾 . (20)

For all other weights, the maximum sum utility solution solves
also (19). In [20] it is shown that users with larger weights
𝜆𝑘 should be decoded later. There, the weights correspond
to the buffer occupancy. The inequalities in (20) induce the
same decoding order 𝐾 → 𝐾 − 1 → ... → 1 induced by
𝛼1

𝜇1
≤ 𝛼2

𝜇2
≤ ... ≤ 𝛼𝐾

𝜇𝐾
.

1) Characterization of the Optimal Power Allocation:
In the following result, we characterize the optimal power
allocation which solves the weighted sum utility maximiza-
tion. Based on this characterization, an efficient algorithm is
developed which solves the problem (19) in 𝐾 steps.

Theorem 2: The optimal power allocation 𝒑′ which solves
(19) satisfies for all 0 ≤ ℓ ≤ 𝐾 − 1

𝐾−ℓ∑
𝑙=1

𝛼𝑙𝑝
′
𝑙 =

(
𝑐𝐾−ℓ

𝜆𝐾−ℓ𝜇𝐾−ℓ

𝛼𝐾−ℓ
− 𝜆𝐾−ℓ+1𝜇𝐾−ℓ+1

𝛼𝐾−ℓ+1

− 1

𝜌

)+

= 𝜙(ℓ), (21)

where 𝑐𝑘 = (𝜆𝑘 − 𝜆𝑘+1) with 𝜆𝐾+1 = 0 by definition.
Furthermore, the following special cases can be distinguished:

1) All users allocate zero power if and only if(
𝛼𝐾

𝜇𝐾
− 1

𝜌

)
≤ 0. (22)

2) For all inverse noise variance 𝜌 ≤ 𝜌 only user 𝐾
allocates non-zero power, i.e., we operate in the so called
single-user optimality range,

𝜌 =

(
𝜆𝐾−1𝜇𝐾−1

𝛼𝐾−1
− 𝜆𝐾𝜇𝐾

𝛼𝐾

)
𝜆𝐾−1 − 𝜆𝐾

. (23)

3) There does not exists any single-user optimality range
at all, i.e., 𝜌 = 0, if and only if

𝜆𝐾−1𝜇𝐾−1

𝛼𝐾−1
− 𝜆𝐾𝜇𝐾

𝛼𝐾
≤ 0. (24)

Remark 3: Interestingly, the all zero power condition in
(22) does not depend on the weights 𝝀.

Proof: The first step is to rewrite (19) as a convex
programming problem using the Pareto optimal decoding
order and the assumption on the order of the weights in (20)
as

𝐾∑
𝑘=1

𝜆𝑘𝑢𝑘(𝒑) =

𝐾∑
𝑘=1

𝑐𝑘 log

(
1 + 𝜌

𝑘∑
𝑙=1

𝛼𝑙𝑝𝑙

)
−

𝐾∑
𝑘=1

𝜆𝑘𝜇𝑘𝑝𝑘. (25)

Hence, the non-negative sum of a concave function with
respect to 𝒑 and the sum of linear functions with respect to the
power vector 𝒑 results in a concave function. The constraint
set is convex, a feasible point exists and therefore, the Karush-
Kuhn-Tucker (KKT) optimality conditions are necessary and
sufficient for all 1 ≤ 𝜅 ≤ 𝐾

𝐾∑
𝑘=𝜅

𝑐𝑘
𝜌𝛼𝜅

1 + 𝜌
∑𝑘

𝑙=1 𝛼𝑙𝑝𝑙
= 𝜆𝜅𝜇𝜅 − 𝜓𝜅, 𝜓𝜅𝑝𝜅 = 0,

𝑝𝜅 ≥ 0, 𝜓𝜅 ≥ 0, (26)

where 𝜓𝜅 is the Lagrangian multiplier for the non-negativeness
constraint. Evaluate the optimality conditions (26) for 𝜅 = 𝐾
to obtain

𝑐𝐾𝜌𝛼𝐾

1 + 𝜌
∑𝐾

𝑙=1 𝛼𝑙𝑝𝑙
= 𝜆𝐾𝜇𝐾 .

Solving for 𝜌
∑𝐾

𝑙=1 𝛼𝑙𝑝𝑙 and note that 𝑐𝐾 = 𝜆𝐾 yields

𝐾∑
𝑙=1

𝛼𝑙𝑝𝑙 =

(
𝛼𝐾

𝜇𝐾
− 1

𝜌

)+

. (27)
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In the following, assume that 𝛼𝐾

𝜇𝐾
≥ 1

𝜌 . Otherwise, all
users would allocate zero power. Furthermore, evaluate the
optimality (26) for 𝜅 = 𝐾 − 1 to obtain

𝑐𝐾−1𝜌𝛼𝐾−1

1 + 𝜌
∑𝐾−1

𝑙=1 𝛼𝑙𝑝𝑙
+

𝑐𝐾𝜌𝛼𝐾−1

1 + 𝜌
∑𝐾

𝑙=1 𝛼𝑙𝑝𝑙
= 𝜆𝐾−1𝜇𝐾−1. (28)

Insert (27) into (28) to obtain

𝑐𝐾−1𝜌𝛼𝐾−1

1 + 𝜌
∑𝐾−1

𝑙=1 𝛼𝑙𝑝𝑙
= 𝜆𝐾−1𝜇𝐾−1 − 𝑐𝐾

𝛼𝐾−1

𝛼𝐾
𝜇𝐾 .

Solve for 𝜌
∑𝐾−1

𝑙=1 𝛼𝑙𝑝𝑙 to obtain

𝜌
𝐾−1∑
𝑙=1

𝛼𝑙𝑝𝑙 =

(
𝑐𝐾−1𝜌𝛼𝐾−1

𝜆𝐾−1𝜇𝐾−1 − 𝑐𝐾
𝛼𝐾−1

𝛼𝐾
𝜇𝐾

− 1

)+

. (29)

If the expression in bracket on the right-hand-side (RHS) of
(29) is negative, zero power is allocated to users 1, ...,𝐾 −
1 and user 𝐾 is the only active. From (29), the single-user
optimality range in (23) follows by solving for 𝜌.

Now, we consider 𝜅 = 𝐾 − ℓ for arbitrary 0 ≤ ℓ ≤ 𝐾 − 1.
For this choice of 𝜅, it follows from (26) that it holds

𝜌𝑐𝐾−ℓ

1 + 𝜌
∑𝐾−ℓ

𝑙=1 𝛼𝑙𝑝𝑙
+

𝜌𝑐𝐾−ℓ+1

1 + 𝜌
∑𝐾−ℓ+1

𝑙=1 𝛼𝑙𝑝𝑙
+ ...

+
𝜌𝑐𝐾−1

1 + 𝜌
∑𝐾−1

𝑙=1 𝛼𝑙𝑝𝑙
+

𝜌𝑐𝐾

1 + 𝜌
∑𝐾

𝑙=1 𝛼𝑙𝑝𝑙
=

𝜆𝐾−ℓ𝜇𝐾−ℓ

𝛼𝐾−ℓ
. (30)

For 𝜅 = 𝐾 − ℓ+ 1, (26) yields

𝜌𝑐𝐾−ℓ+1

1 + 𝜌
∑𝐾−ℓ+1

𝑙=1 𝛼𝑙𝑝𝑙
+ ...+

𝜌𝑐𝐾−1

1 + 𝜌
∑𝐾−1

𝑙=1 𝛼𝑙𝑝𝑙

+
𝜌𝑐𝐾

1 + 𝜌
∑𝐾

𝑙=1 𝛼𝑙𝑝𝑙
=

𝜆𝐾−ℓ+1𝜇𝐾−ℓ+1

𝛼𝐾−ℓ+1
. (31)

Subtracting (31) from (30) we obtain

𝜌𝑐𝐾−ℓ

1 + 𝜌
∑𝐾−ℓ

𝑙=1 𝛼𝑙𝑝𝑙
=

𝜆𝐾−ℓ𝜇𝐾−ℓ

𝛼𝐾−ℓ
− 𝜆𝐾−ℓ+1𝜇𝐾−ℓ+1

𝛼𝐾−ℓ+1
. (32)

Solving (32) for
∑𝐾−ℓ

𝑙=1 𝛼𝑙𝑝𝑙 and taking the Lagrangian mul-
tipliers for non-negativeness of 𝑝1, ..., 𝑝𝐾−ℓ into account we
obtain

𝐾−ℓ∑
𝑙=1

𝛼𝑙𝑝𝑙 =

(
𝑐𝐾−ℓ

𝜆𝐾−ℓ𝜇𝐾−ℓ

𝛼𝐾−ℓ
− 𝜆𝐾−ℓ+1𝜇𝐾−ℓ+1

𝛼𝐾−ℓ+1

− 1

𝜌

)+

= 𝜙(ℓ). (33)

The optimal power allocation 𝑝′1, ..., 𝑝
′
𝐾 has to fulfill the

necessary and sufficient optimality conditions and thereby for
all 0 ≤ ℓ ≤ 𝐾−1 the equation (33). This completes the proof.

2) Algorithm for Weighted Sum Utility Maximization:
Based on the characterization in Theorem 2, the following
algorithm described in Algorithm 1 solves (19).

The algorithm 1 works as follows. It checks first the all-
power off condition from Theorem 2 in (22). Then, power to
user 𝐾 − ℓ is computed as the difference between 𝜙(ℓ)

𝛼ℓ
and

𝜙(ℓ+1)
𝛼ℓ

. Then, it starts with ℓ = 0 and verifies that the ℓ + 1-
user optimality condition is not satisfied, e.g., for ℓ = 0 it is
(23) in Theorem 2. After at most 𝐾 steps the algorithm stops
and returns the optimal power allocation in 𝒑′.

Result: Solve optimization problem (19)
Input: Channel realizations 𝛼1, ..., 𝛼𝐾 , power costs

𝜇1, ..., 𝜇𝐾 , weights 𝜆1, ..., 𝜆𝐾
init: 𝒑′ = 0;
if 𝜙(0) ≤ 0 then

allocate zero power to all users - break;
end
for ℓ = 0...𝐾 − 1 do

𝑝′𝐾−ℓ =
𝜙(ℓ)−𝜙(ℓ+1)

𝛼𝐾−ℓ
;

if 𝜙(ℓ + 1) ≤ 0 then
𝜅 = ℓ;
return;

end
end
Output: Optimal power allocation in 𝑝′1, ..., 𝑝

′
𝐾

Algorithm 1: Optimal power allocation for weighted sum
utility maximization of SISO MAC.

C. Convexity of the Utility Region of SISO MAC

The next result shows that the utility region of the SISO
MAC is convex.

Theorem 3: The SISO MAC utility region characterized in
(17) is convex. For two utility tuples 𝒖 = [𝑢1, ..., 𝑢𝐾 ] and 𝒗 =
[𝑣1, ..., 𝑣𝐾 ] inside the utility region, the linear combination
𝒖(𝜏) = 𝜏𝒖 + (1 − 𝜏)𝒗 with 0 ≤ 𝜏 ≤ 1 is also inside the
utility region, i.e.,

𝒖 ∈ 𝒰 ,𝒗 ∈ 𝒰 =⇒ 𝒖(𝜏) ∈ 𝒰 .

Proof: We will prove Theorem 3 in two steps. In the
first step, we show that uniqueness of solution of weighted
sum utility maximization implies convexity. In the second
step, we show that the solution to the weighted sum utility
maximization problem in (19) is unique. Denote the convex
closure of 𝒰 as 𝒰 . This corresponds to the linear hull of the
extreme points with respect to the weighted sum utility.

1) If max𝒖∈𝒰
∑𝐾

𝑘=1 𝜆𝑘𝑢𝑘 has a unique solution 𝒖∗(𝝀) for
all 𝝀 = [𝜆1, . . . , 𝜆𝐾 ], with 𝜆𝑘 ∈ [0, 1], for all 𝑘, 1 ≤
𝑘 ≤ 𝐾 with

∑𝐾
𝑘=1 𝜆𝑘 = 1 then the region 𝒰 defined in

(17) or (18) is strict convex.
We show this by contradiction: Assume that 𝒰 is not
strict convex. Then there are at least two 𝒖(1) and 𝒖(2)

(extreme points) such that some part of 𝒖(𝜏) = (1 −
𝜏)𝒖(1)+𝜏𝒖(2) for 0 ≤ 𝜏 ≤ 1 is not in 𝒰 , i.e., 𝒖(𝜏) /∈ 𝒰
for some 𝜏 . It follows that there are intervals [𝜏1, 𝜏2] with
𝜏1 < 𝜏2 for which 𝒖(𝜏) does not belong to the boundary
of 𝒰 . Then, there exists a vector 𝝀 > 0 such that

𝒖(𝜏) ∈ argmax
𝒖∈𝒰

𝐾∑
𝑘=1

𝜆𝑘𝑢𝑘

leads to

max
𝒖∈𝒰

𝐾∑
𝑘=1

𝜆𝑘𝑢𝑘 = max
𝒖∈𝒰

𝐾∑
𝑘=1

𝜆𝑘𝑢𝑘 =

𝐾∑
𝑘=1

𝜆𝑘𝑢
(1)
𝑘

=
𝐾∑

𝑘=1

𝜆𝑘𝑢
(2)
𝑘

which contradicts the uniqueness of the solution.
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Fig. 6. Three-user MAC utility region for fixed channel realization and
𝜇1 = 𝜇2 = 𝜇3 = 0.01.

2) The solution to (19) is unique.
The programming problem in (19) is a strictly concave
maximization problem over convex constraint set (see
the Proof of Theorem 2). Therefore, there must be a
unique global optimum. The iterative Algorithm 1 can
easily locate the unique global optimum.

For the three-user case, the parameterization is illustrated
in Figure 6 below. The convexity of the utility region proved
in Theorem 3 can be clearly observed.

IV. SIMO MAC

If the base station has multiple receive antennas, the optimal
SIC order is far more difficult to characterize. Therefore, we
begin by investigating the special case when we have two
users. Denote the channels between the mobiles and the BS
as 𝒉1, ...,𝒉𝐾 .

A. Two User Case

Theorem 4: The optimal power allocation for the two user
case and decoding order 1 → 2 is given by

0 ≤ 𝑝2 ≤
(

1

𝜇2
− 1

𝜌∣𝒉2∣2
)+

,

𝑝1 =

(
1

𝜇1
− 1

𝜌∣𝒉1∣2 − 𝜅1

)+

(34)

where 𝜅1 =
𝜌2𝑝2∣𝒉𝐻

1 𝒉2∣2
1+𝜌𝑝2∣𝒉2∣2 . The optimal power allocation for

the decoding order 2 → 1 is given by

0 ≤ 𝑝1 ≤
(

1

𝜇1
− 1

𝜌∣𝒉1∣2
)+

,

𝑝2 =

(
1

𝜇2
− 1

𝜌∣𝒉2∣2 − 𝜅2

)+

(35)

where 𝜅2 =
𝜌2𝑝1∣𝒉𝐻

1 𝒉2∣2
1+𝜌𝑝1∣𝒉1∣2 .

Proof: The proof for the decoding order 1 → 2 is shown.
The proof for the other decoding order is analogue. Denote

the utility of user one for decoding order 1 → 2 as 𝑢1,1. The
utility of user one can be written as

𝑢1,1(𝒑) = log det
(
𝑰 + 𝜌𝑝1𝒁

−1
1 𝒉1𝒉

𝐻
1

)
− 𝜇1𝑝1,

with 𝒁1 =
[
𝑰 + 𝜌𝑝2𝒉2𝒉

𝐻
2

]
. By the matrix-inversion lemma

𝒁1
−1 =

[
𝑰 + 𝜌𝑝2𝒉2𝒉

𝐻
2

]−1

= 𝑰 − 𝜌𝑝2𝒉2𝒉
𝐻
2

1+𝜌𝑝2∣𝒉2∣2 we obtain the
utility

𝑢1,1(𝒑) = log

(
1 + 𝜌∣𝒉1∣2𝑝1 − 𝜌𝑝1𝑝2∣𝒉𝐻

1 𝒉2∣2
1 + 𝜌𝑝2∣𝒉2∣2

)
− 𝜇1𝑝1. (36)

Next, the upper bound for the power 𝑝2 is obtained from the
maximum of 𝑢2,1(𝑝2) by

∂𝑢2,1(𝑝2)

∂𝑝2
=

𝜌∣𝒉2∣2
1 + 𝜌∣𝒉2∣2𝑝2 − 𝜇2 = 0

which leads to

0 ≤ 𝑝2 ≤
(

1

𝜇2
− 1

𝜌∣𝒉2∣2
)+

. (37)

The optimal power 𝑝1 is now obtained from (36) as a function
of 𝑝2 by setting the derivative with respect to 𝑝1 to zero, i.e.,

∂𝑢1,1(𝒑)

∂𝑝1
=

𝜌∣𝒉1∣2 − 𝜅1
1 + 𝜌∣𝒉1∣2𝑝1 − 𝑝1𝜅1

− 𝜇1 = 0 (38)

where 𝜅1 =
𝜌2𝑝2∣𝒉𝐻

2 𝒉1∣2
1+𝜌𝑝2∣𝒉2∣2 . Solving (38) for 𝑝1, we obtain the

optimal power allocation

𝑝1 =

(
1

𝜇1
− 1

𝜌∣𝒉1∣2 − 𝜅1

)+

which completes the proof.
From the result follows the set of achievable utilities de-

noted by 𝑢1,1, 𝑢1,2 for user one and decoding order 1 → 2
and 2 → 1, respectively, and 𝑢2,1, 𝑢2,2 for user two and for
the two decoding orders.

Corollary 2: The utilities on the Pareto boundary for fixed
decoding order 1 → 2 are

𝑢1,1(𝑝2) = log

(
𝜌∣𝒉1∣2 − 𝜅1

𝜇1

)+

−[
1− 𝜇1

𝜌∣𝒉1∣2 − 𝜅1

]+
(39)

𝑢2,1(𝑝2) = log
(
1 + 𝜌∣𝒉2∣2𝑝2

)− 𝜇2𝑝2. (40)

For fixed decoding order 2 → 1 they are

𝑢1,2(𝑝1) = log
(
1 + 𝜌∣𝒉1∣2𝑝1

)− 𝜇1𝑝1 (41)

𝑢2,2(𝑝1) = log

(
𝜌∣𝒉2∣2 − 𝜅2

𝜇2

)+

−[
1− 𝜇2

𝜌∣𝒉2∣2 − 𝜅2

]+
. (42)

Remark 4: In the optimal power allocation as well as in the
utility expressions the impact of the spatial correlation of the
channels 𝒉1 and 𝒉2 can be clearly observed

0 ≤ 𝜅1,2 ≤ 𝜌2𝑝2∣𝒉1∣∣𝒉2∣
1 + 𝜌𝑝2∣𝒉2∣2

where the lower bound is achieved for completely uncorrelated
channels 𝒉1 and 𝒉2.

The characterization of the Pareto boundary is illustrated in
Figure 7 below.
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Fig. 7. Two-user SIMO MAC utility region and its Pareto boundary for fixed
channel realization and SNR 0 dB.

B. Sum Utility Maximization - SIMO MAC

The sum utility of the SIMO MAC with SIC (arbitrary
decoding order) reads

𝑢𝑠(𝒑) = log det

(
𝑰 + 𝜌

𝐾∑
𝑘=1

𝑝𝑘𝒉𝑘𝒉
𝐻
𝑘

)
−

𝐾∑
𝑘=1

𝜇𝑘𝑝𝑘. (43)

The corresponding programming problem

max
𝒑≥0

𝑢𝑠(𝒑) (44)

is a convex optimization problem and standard interior point
methods could be used to find the optimal power allocation
vector. In the next section, we will propose an iterative water-
filling type of algorithm to solve the sum utility maximization
of the MIMO MAC. This algorithm could be obviously used
to solve (43) using power 𝑝𝑘 instead of transmit covariance
matrices 𝑸𝑘 for inner optimization. However, in the single
transmit antenna case, we can characterize the optimal power
allocation for low SNR. First, we convert the programming
problem in (44) into a familiar representation. Define

𝑞𝑘 = 𝑝𝑘𝜇𝑘 −→ 𝑝𝑘 =
𝑞𝑘
𝜇𝑘

(45)

and define
∑𝐾

𝑘=1 𝑞𝑘 = 𝑄. Then the programming problem
(44) is equivalent to

max
𝑄≥0

max
𝑞𝑘≥0

∑𝐾
𝑘=1 𝑞𝑘≤𝑄

log det

(
𝑰 + 𝜌

𝐾∑
𝑙=1

𝑞𝑘𝒉̃𝑘𝒉̃
𝐻

𝑘

)
−𝑄 (46)

with effective channel 𝒉̃𝑘 = 𝒉𝑘√
𝜇𝑘

. Note that the inner maxi-
mization is similar to the SIMO MAC sum rate maximation
with sum power constraint [21]. Next, we are interested in
a characterization of the optimal power allocation by the
parameter range in which only one user is active, i.e., 𝑝1 > 0
and 𝑝2 = ... = 𝑝𝐾 = 0.

Theorem 5: If the users are ordered according to

∣𝒉1∣2
𝜇1

≥ ∣𝒉2∣2
𝜇2

≥ ... ≥ ∣𝒉𝐾 ∣2
𝜇𝐾

(47)

then there is a range - the so called single-user range - of
0 ≤ 𝜌 ≤ 𝜌 such that 𝜇1 ≤ 𝜌∣𝒉1∣2 and

𝜌 = 𝜇1

( ∣𝒉1∣2𝜇2 − ∣𝒉2∣2𝜇1

∣𝒉1∣2∣𝒉2∣2 − ∣𝒉𝐻
1 𝒉2∣2

+
1

∣𝒉1∣2
)

(48)
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Fig. 8. Three-user SIMO MAC sum utility and corresponding optimal power
allocation. Single-user optimality range 𝜌 = −4.5632 dB as given in (48).

such that only one user is active with the optimal power
allocation

𝑝1 =

(
1

𝜇1
− 1

𝜌∣𝒉1∣2
)
.

Proof: As in [21, Theorem 6], we sort the users according
to their effective channels

∣𝒉̃1∣2 ≥ ∣𝒉̃2∣2 ≥ ... ≥ ∣𝒉̃𝐾 ∣2 (49)

which is the same order as in (47). Then the result says that
for fixed 𝑄 ≥ 0, only the first user is supported, i.e., 𝑞1 = 𝑄
and 𝑞2 = ... = 𝑞𝐾 = 0, if and only if

𝒉̃
𝐻

1

[
𝑰 + 𝜌𝑄𝒉̃1𝒉̃

𝐻

1

]−1

𝒉̃1 ≥ 𝒉̃
𝐻

2

[
𝑰 + 𝜌𝑄𝒉̃1𝒉̃

𝐻

1

]−1

𝒉̃2. (50)

Using the matrix-inversion lemma again, it follows from (50)

∣𝒉̃1∣2 − ∣𝒉̃2∣2 ≥ 𝜌𝑄
(
∣𝒉̃1∣2∣𝒉̃2∣2 − ∣𝒉̃𝐻

1 𝒉̃2∣2
)
. (51)

On the other hand, in the single-user range, we have the
optimal power allocation

𝑄∗ =

(
1

𝜇1
− 1

𝜌∣𝒉1∣2
)
. (52)

Using the optimal single-user power allocation 𝑄∗ from (52)
in (51) leads to the desired single-user optimality range in
(48).

Let us illustrate the single-user optimality range in Figure 8.
Three users with power prices 𝝁 = [1.2, 1, 0.8], four receive
antennas and three channel realizations given by

𝑯 = [𝒉1,𝒉2,𝒉3] =⎛
⎜⎝

−0.73− 0.08𝑖 0.51 + 0.01𝑖 −0.31− 0.06𝑖
−0.54 + 0.09𝑖 0.02 + 0.57𝑖 0.02− 0.72𝑖
1.53− 0.56𝑖 1.08 + 0.49𝑖 −0.22 + 0.66𝑖
0.30− 0.16𝑖 −1.20− 0.16𝑖 0.69− 0.80𝑖

⎞
⎟⎠ (53)

are used to compute the optimal power allocation (using the
iterative single-user optimization outline in the MIMO MAC
section) and the corresponding maximum sum utility. The
optimal user order for this set of channels and power prices
is 2 → 1 → 3 for small SNR.

One interesting observation is that the order of the users
regarding their power allocation changes completely from
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small SNR 𝑝2 ≥ 𝑝1 ≥ 𝑝3 to high SNR 𝑝3 ≥ 𝑝1 ≥ 𝑝2. For
high SNR, the optimal power allocation converges to 1

𝜇𝑘
, in

the example above this corresponds to

𝑝1 → 1

1.2
≈ 0.833, 𝑝2 → 1, 𝑝3 → 1.25.

The low- and high- SNR characterization corresponds well
with the behavior of the power allocation observed in Figure
8. In the next section, we allow the transmitter to have multiple
antennas and study the sum utility maximization of the MIMO
MAC.

V. MIMO MAC

In the MIMO MAC, each multiple antenna transmitter
can optimize its transmit covariance matrix 𝑸𝑘 including its
overall transmit power tr(𝑸𝑘).

In [22], an iterative waterfilling algorithm is proposed to
solve the sum capacity maximization of the MIMO MAC.
The idea is to perform alternating optimization by keeping
all users transmit covariance matrices fixed expect user 𝑙
and optimize the utility with respect to user 𝑙. This is done
iteratively until the algorithm converges. The convergence
follows because the objective is increased in each step and
it is concave and bounded. Therefore, the iterative algorithm
must converge. A generalization to a broader class of utility
functions is developed in [21]. In [23], an algorithm based
on dual decomposition is developed to solve the sum rate
maximization for the Gaussian broadcast channel. The power
prices 𝜇𝑘 correspond exactly to the dual variables.

However, the iterative waterfilling algorithm and the dual
decomposition approach cannot be applied to the weighted
sum utility maximization problem. Therefore, we present here
an alternative approach. Consider the following programming
problem

max
𝑸𝑘ર0

𝐾∑
𝑘=1

𝜆𝑘 log det

(
𝑰 + 𝜌

𝑘∑
𝑙=1

𝑯 𝑙𝑸𝑙𝑯
𝐻
𝑙

)

−𝜆𝑘 log det
(
𝑰 + 𝜌

𝑘−1∑
𝑙=1

𝑯 𝑙𝑸𝑙𝑯
𝐻
𝑙

)

−𝜆𝑘𝜇𝑘tr(𝑸𝑘). (54)

Define 𝜆𝐾+1 = 0, the objective function can be reformulated
as

𝐾∑
𝑘=1

(𝜆𝑘 − 𝜆𝑘+1) log det

(
𝑰 + 𝜌

𝑘∑
𝑙=1

𝑯 𝑙𝑸𝑙𝑯
𝐻
𝑙

)

−
𝐾∑
𝑘=1

𝜆𝑘𝜇𝑘tr(𝑸𝑘). (55)

The objective function in (55) is jointly concave in 𝑸1, ...,𝑸𝐾

and therefore the algorithm developed in [24] can be adapted.
The main difference is that here we do not have a trace
constraint on 𝑸𝑘 and thus do not need the normalization step.

The convergence of Algorithm 2 can be shown following
similar arguments as in [24]. If 𝜇𝑘 in Algorithm 2 is chosen
as tr(𝑸𝑘) then it corresponds to the normalization step in
[24]. The convergence rate of the fixed point optimization
algorithm is only linear [25] and any Newton style algorithm
has local super-linear convergence. However, it provides a
simple universal approach to weighted sum rate maximization.

Result: Solve weighted sum utility optimization problem
Input: Channel realizations 𝑯1, ...,𝑯𝐾 , power costs

𝜇1, ..., 𝜇𝐾 , inverse noise power 𝜌.
init: 𝑸𝑘 = 0 for all 1 ≤ 𝑘 ≤ 𝐾 ;
while required accuracy not reached do

for 𝑘 = 1...𝐾 do

𝑸𝑘 =
1

𝜇𝑘𝜆𝑘

𝐾∑
𝑙=𝑘

(𝜆𝑙 − 𝜆𝑙+1)𝜌𝑸
1/2
𝑘 𝑯𝐻

𝑘

⋅
[
𝑰 +

𝑙∑
𝑚=1

𝑯𝑚𝑸𝑚𝑯𝐻
𝑚

]−1

𝑯𝑘𝑸
1/2
𝑘

end
end
Output: Optimal 𝑸1, ...,𝑸𝐾

Algorithm 2: Weighed sum utility maximization for
MIMO MAC.
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Fig. 9. Two-user MIMO (𝑛𝑇 = 2, 𝑛𝑅 = 2) MAC optimal weighted sum
utility power allocation.

Corollary 3: The Algorithm 2 converges always to a global
optimal set of transmit covariance matrices 𝑸1, ...,𝑸𝐾 .

A. Illustration of MIMO MAC Weighted Sum Utility Maxi-
mization

In Figure 9, the optimal power allocation is shown for a two-
user MIMO (𝑛𝑡 = 2, 𝑛𝑅 = 2) MAC with fixed but random
channel matrices and power prices 𝝁 = [1.2, 1]. The weights
are 𝜆1 = 0.8, 𝜆2 = 0.2. The sum utility optimization 𝜆1 =
𝜆2 = 0.5 is shown for comparison.

Furthermore, the difference to the case with single antenna
transmitters can be clearly observed. At different points 𝜌
multiple eigenmodes of the two transmitters are activated.
Therefore, the order of the allocated power varies. Note that
for sum utility maximization asymptotically, the allocated
power of user 𝑙 converges to 𝑛𝑇

𝜇𝑙
. In general, the quantita-

tive behavior of the optimal power allocation is difficult to
characterize for medium SNR values because it depends on
the spatial signatures of the involved users and their weights.

VI. CONCLUSION

We proposed a utility function for energy-aware resource
allocation and transmit optimization in multiuser uplink sys-
tems based on the difference of the individual capacity and
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a weighted power penalty term. For the SISO MAC, we
completely characterized the utility region and proposed an ef-
ficient algorithm to achieve any point on the Pareto boundary.
The region is always convex. However, in the SIMO MAC, the
utility region is no longer convex due to the additional spatial
degrees of freedom and due to the different decoding orders
at the base station. In the MIMO MAC case, we extended
the iterative waterfilling algorithm to solve the maximum sum
utility problem. The important question, how to choose the
prices in order to optimize system utility functions is left for
future research. The decentralized implementation of the two
proposed algorithms is another interesting research direction.
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