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A PAPR Reduction Method Based on Artificial Bee

Colony Algorithm for OFDM Signals
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Abstract—One of the major drawbacks of orthogonal fre-
quency division multiplexing (OFDM) signals is the high peak
to average power ratio (PAPR) of the transmitted signal. Many
PAPR reduction techniques have been proposed in the literature,
among which, partial transmit sequence (PTS) technique has
been taken considerable investigation. However, PTS technique
requires an exhaustive search over all combinations of allowed
phase factors, whose complexity increases exponentially with the
number of sub-blocks. In this paper, a newly suboptimal method
based on modified artificial bee colony (ABC-PTS) algorithm is
proposed to search the better combination of phase factors. The
ABC-PTS algorithm can significantly reduce the computational
complexity for larger PTS subblocks and offers lower PAPR
at the same time. Simulation results show that the ABC-PTS
algorithm is an efficient method to achieve significant PAPR
reduction .

Index Terms—PTS, PAPR, OFDM, ABC.

I. INTRODUCTION

In various high-speed wireless communication systems, the

orthogonal frequency division multiplexing (OFDM) has been

used widely due to its inherent robustness against multipath

fading and resistance to narrowband interference. Well-known

examples include wireless local area network (WLAN) IEEE

802.11a [1] and wireless metropolitan area network (WMAN)

IEEE 802.16a [2], digital audio broadcasting (DAB), digital

video broadcasting (DVB-T) [3].

However, one of the major drawbacks of OFDM signals is

the high peak to average power ratio (PAPR) of the transmitted

signal. The high peaks of an OFDM signal occur when the

subsymbols for each subcarrier are added up coherently. So

OFDM signals can cause serious problems including a severe

power penalty at the transmitter which is particularly not

affordable in portable wireless systems. Several solutions have

been proposed in recent years. It is known that clipping [4] is

the simplest method, but it degrades the bit-error-rate (BER)

of the system, and results in out-of-band noise and in-band
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distortion. Although coding [5], [6] can offer the best PAPR

reductions, the associated complexity and data rate reduction

limit the application of such a technique. On the other hand,

selected mapping (SLM) technique [7] modifies the phases

of the original information symbols in each OFDM block

and selects the phase-modified OFDM block with the best

PAPR performance for transmission. However, the requirement

of multiple IFFT operations increases the implementation

complexity.

In [8], [9], a tone reservation algorithm has been proposed

where several subcarriers are put apart for PAPR reduction.

In [9], a tone injection algorithm has been developed where

the constellation points of part subcarriers are modified to

obtain PAPR reduction at the cost of an increase in transmit

power. An active set extension (ASE) algorithm has been

proposed in [10], [11]. By modifying the exterior modulation

constellation over active subcarriers and not degrading the

BER performance, PAPR reduction is achieved. In [12], a

symmetric constellation extension (SCE) algorithm has been

developed for PAPR reduction, where the subsymbols for

each subcarrier are represented by two symmetric constellation

points and an optimal representation has been derived by using

a derandomization algorithm. In [13], a constellation extension

method has been developed, where the data for each subcarrier

can be represented by a point in the original constellation or

by an extension point. By selecting an optimal representation

of the data points, PAPR reduction is obtained. By modifying

the modulation constellation or constellation extension, these

algorithms require an increase in the transmit power and

computation complexity at the transmitter.

The partial transmit sequence (PTS) [14] is a distortionless

technique based on combining signal subblocks which are

phase-shifted by constant phase factors. The technique can

get sufficient PAPR reduction and side information need to be

sent at the same time. But the exhaustive search complexity

of the optimal phase combination increases exponentially

with the number of sub-blocks. So many suboptimal PTS

methods have been developed. The iterative flipping algorithm

for PTS in [15] has the computational complexity linearly

proportional to the number of subblocks. A neighborhood

search is proposed in [16] using gradient descent search. A

suboptimal method in [17] is developed by modifying the

problem into an equivalent problem of minimizing the sum

of phase-rotated vectors. A simulated annealing method is

proposed in [19]. A suboptimal PTS algorithm based on

particle swarm optimization is proposed in [20], [21]. An

intelligent genetic algorithm for PAPR reduction is developed

in [22], [23].

http://arxiv.org/abs/2003.06115v1
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In this paper, we propose a newly suboptimal phase op-

timization scheme based on modified artificial bee colony

(ABC-PTS) algorithm, which can efficiently reduce the PAPR

of OFDM signals. The proposed scheme can search the

better combination of the initial phase factors. Simulation

results show that the ABC-PTS phase optimization scheme

can achieve superior PAPR reduction performance and at the

same time requires far less computational complexity than the

previous PTS techniques. Like the original PTS, our scheme

also requires to send side information.

This paper is organized as follows. In Section II, definition

of PAPR of OFDM signals and the complementary cumulative

distribution function (CCDF) are introduced. The principles

of PTS techniques are described in Section III. The modified

ABC (ABC-PTS) algorithm to search the better combination

of the phase factors is proposed in Section IV. In Section V,

the performance of ABC-PTS algorithm and other algorithms

for PAPR reduction is evaluated by computer simulation.

Conclusions are made in Section VI.

II. OFDM SYSTEM AND PAPR

In an OFDM system, a high-rate data stream is split into

N low-rate streams that are transmitted simultaneously by

subcarriers, where N is the number of subcarriers. Each of

the subcarriers is independently modulated using phase-shift

keying (PSK) or quadrature amplitude modulation (QAM).

The inverse discrete Fourier transform (IDFT) generates the

ready-to-transmit OFDM signal. For an input OFDM block

X = [X0, . . . , XN−1]
T , each symbol in X modulates one sub-

carrier of {f0, . . . , fN−1}. The N subcarriers are orthogonal,

i.e, fn = n∆f , where ∆f = 1/NT and T is the symbol

period. The complex envelope of the transmitted OFDM signal

in one symbol period is given by

x(t) =
1√
N

N−1
∑

n=0

Xne
j2πfnt, 0 ≤ t < NT . (1)

The PAPR of x(t) is defined as the ratio of the maximum

instantaneous power to the average power, that is

PAPR =

max
0≤t<NT

|x(t)|2

E[|x(t)|2] , (2)

where

E[|x(t)|2] = 1/NT

∫ NT

0

|x(t)|2dt. (3)

However, most systems use discrete-time signals in which the

OFDM signal is expressed as

x(k) =
1√
N

N−1
∑

n=0

Xn · e j2πnk

LN , k = 0, 1, · · · , LN − 1, (4)

where L is the oversampled factor. It has been shown in [18]

that the oversampled factor L = 4 is enough to provide a

sufficiently accurate estimate of the PAPR of OFDM signals.

The complementary cumulative distribution function

(CCDF) is one of the most frequently used performance

measures for PAPR reduction, representing the probability
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Fig. 1. Block diagram of the PTS technique.

that the PAPR of an OFDM symbol exceeds the given

threshold PAPR0, which is denoted as

CCDF = Pr(PAPR > PAPR0). (5)

III. PTS TECHNIQUES

The principle structure of PTS method is shown in Fig. 1.

The input data block X is partitioned into M disjoint sub-

blocks Xm,m = 1, 2, . . .M such that X =
M
∑

m=1
Xm. Sub-

blocks are combined to minimize the PAPR in the time

domain. L-times oversampled time domain signal of Xm is

denoted as xm,m = 1, 2, . . .M , which are obtained by taking

an IDFT of length NL on Xm concatenated with (L − 1)N
zeros. Each xm is multiplied by a phase weighting factor

bm = ejφm , where φm ∈ [0, 2π) for m = 1, 2, . . .M . The

goal of the PTS approach is to find an optimal phase weighted

combination to minimize the PAPR value. The transmitted

signal in the time domain after combination can be expressed

as

x
′

(b) =

M
∑

i=1

bixi, (6)

where x
′

(b) = [x
′

1(b), x
′

2(b), · · · , x
′

NL(b)].
In general, the selection of the phase factor is limited to

a set with finite number of elements to reduce the search

complexity. The set of allowed phase factors is

P = {ej2πℓ/W |ℓ = 0, 1, . . . ,W − 1}. (7)

where W is the number of allowed phase factors. We can

fix a phase factor without any performance loss. There are

only M − 1 free variables to be optimized and hence WM−1

different phase vectors are searched to find the global optimal

phase factor. The search complexity increases exponentially

with M , the number of sub-blocks.

IV. MINIMIZE PAPR USING MODIFIED ABC ALGORITHM

In order to get the OFDM signals with the minimum PAPR,

a suboptimal combination method based on the modified

artificial bee colony (ABC) algorithm is proposed to solve the

optimization problem of PTS. The modified ABC algorithm

with lower complexity can get better PAPR performance.

The minimum PAPR for PTS method is relative to the

problem:
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Minimize

f(b) =
max |x′

(b)|2]|
E[|x′(b)|2] , (8)

subject to

b ∈ {ejφm}M , (9)

where φm ∈ { 2πk
W |k = 0, 1, . . . ,W − 1}.

A. Artificial Bee Colony Algorithm

In recent years, Karaboga et al [24], [25], [26] introduced

a bee swarm algorithm called artificial bee colony (ABC)

algorithm for numerical optimization problems. In the ABC

algorithm, the colony of artificial bees contains three groups

of bees: employed bees, onlookers and scouts. Each cycle of

the search consists of three steps: (1) placing the employed

bees onto the food sources and then calculating their nectar

amounts; (2) selecting the food sources by the onlookers after

sharing the information of employed bees and determining the

nectar amount of the foods; (3) determining the scout bees and

placing them onto the randomly determined food sources. In

the ABC, a food source position represents a possible solution

to the problem to be optimized and the nectar amount of a food

source corresponds to the quality (fitness) of the associated

solution.

At the initialization step, a set of food source positions

are randomly produced and corresponding nectar amounts

are calculated. Each employed bee is moved onto her food

source area for determining a new food source within the

neighbourhood of the present one, and then its nectar amount

is evaluated. If the nectar amount of the new one is higher than

that of the previous one, she memorizes the new position and

forgets the old one. Otherwise she keeps the position of the

previous one. After all employed bees complete the search

process, they come back into the hive and share the nectar

information of the food sources (solutions) and their position

information with the onlooker bees waiting on the dance area.

All onlookers determine a food source area with a probability

based on their nectar amounts. If the nectar amount of a food

source is much higher when compared with other food sources,

this means that this source will be chosen by most of the

onlookers. Each onlooker determines a neighbourhood food

source within the neighbourhood of the one to which she has

been assigned and then its nectar amount is evaluated. The

selection of the scout bee is controlled by a control parameter

called “limit”. If a solution representing a food source can-

not be improved by a predetermined number of trials, i.e.,

“limit”, it means that the associated food source has been

exhausted by the bees and then the employed bee of this food

source becomes a scout. The position of the abandoned food

source is replaced with a randomly produced food position.

So “limit” controls the selection of the scout bee and the

qualities of solutions. These three steps are repeated until the

termination criteria are satisfied. For a complete understanding

of the ABC method, the reader is referred to [24], [25], [26].

B. Modified Artificial Bee Colony Algorithm to Reduce PAPR

Due to the facts that the original ABC algorithm is only

suitable for continuously numerical optimization problems,

we have to do some modifications for the original ABC

algorithm in order to apply ABC algorithm to search the better

combination of phase factors for PTS. We refer to the modified

ABC algorithm as ABC-PTS. In the paper, we select the phase

factor b = {−1, 1}M or b = {−1, 1, j,−j}M .

In the ABC-PTS algorithm, a food source position rep-

resents a phase vector bi = [bi1, bi2, · · · , biM ]T , i =
1, 2, · · · , S, where S denotes the size of a randomly dis-

tributed initial population. The nectar amount of a food source

or fitness value of a solution bi in the population is determined

by the following formula:

fitness(bi) =
1

1 + f(bi)
. (10)

For each employed bee, a candidate food source position

from the previous one is produced by the following formula:

b
′

il = bil + φil(bil − bkl), (11)

where l ∈ {1, 2, · · · ,M} and k ∈ {1, 2, · · · , J}, i 6= k, J is

the number of employed bees (the number of food sources),

and φil is a random number between [-1,1]. Due to b
′

il is

the discrete coordinate, thus (11) is modified to the following

formulas:

For W = 2

b
′

il =

{

1, if π/4 ≤ b
′

il < 5π/4,
−1, else,

(12)

For W = 4

b
′

il =















j, if π/4 ≤ b
′

il < 3π/4,

−1, if 3π/4 ≤ b
′

il < 5π/4,

−j, if 5π/4 ≤ b
′

il < 7π/4,
1, else,

(13)

For each onlooker bee, a food source is chosen depending

on the probability value associated with that food source, pi,
calculated by the following formula:

pi =
fitness(bi)
S
∑

i=1

fitness(bi)

. (14)

After all onlookers are distributed onto the food sources and

their nectars are tested, sources are checked whether they are

to be abandoned. If the number of cycles that a source can not

be improved is greater than a predetermined limit, the source is

considered to be exhausted. The employed bee associated with

the exhausted source becomes a scout and makes a random

search in problem domain by the following formula:

bil = bmin
l + (bmax

l − bmin
l ) ∗ rand, (15)

Our proposed modified ABC algorithm for PAPR reduction

(ABC-PTS) can thus be summarized as follows.

1) Initialize food source positions, set the value of limit and

the maximum iteration number.

2) Determine neighbour food source positions for the

employed bees using (11). Then modify food source

positions using (12) or (13).

3) Calculate the nectar amounts or fitness using (10).
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4) If all onlookers are assigned food sources, go to Step 7.

Otherwise, continue.

5) Select a food source for an onlooker using (14).

6) Determine a neighbour food source position for the

onlooker using (11). Then modify food source positions

using (12) or (13). Go to Step 4.

7) Find the abandoned food source and allocate its em-

ployed bee as scout for searching new food sources using

(15)

8) Memorize the position of the best food source.

9) If the maximum iteration number is reached, output final

food source positions and stop. Otherwise go to Step 2.

C. Complexity Analysis for ABC-PTS and the Existing PAPR

Reduction Methods

In [15], the iterative flipping algorithm for PTS (IPTS) was

proposed for PAPR reduction. The method has the computa-

tional complexity linearly proportional to the number of sub-

blocks, i.e. the search complexity is proportional to (M−1)W .

A neighborhood search using gradient descent search (GD) is

proposed in [16]. The technique first sets the initial phase fac-

tor b = [1, 1, · · · , 1] and the number of maximum iteration I ,

then searches the phase factor that achieves the smallest PAPR

in the neighbour of b with radius r. The search complexity of

this method is proportional to Cr
M−1W

rI , where Cm
n is the

binomial coefficient. A suboptimal method (TS) in [17] is de-

veloped by modifying the problem into an equivalent problem

of minimizing the sum of phase-rotated vectors. The phase

factor of the method is continuously changed in [0, 2π]. The

search complexity of this method is proportional to LN , where

N is the number of subcarrier and L is the oversampled factor.

In [20], [21], a particle swarm optimization algorithm (PSO-

PTS) is proposed to reduce PAPR. The search complexity of

this method is proportional to SG, where S is the size of

particle swarm, G is the maximal generations of PSO-PTS. An

intelligent genetic algorithm (GA) called minimum distance

guided GA (MDGA) is developed in [22], [23]. The MDGA

generates initial population by using the output of the IPTS,

perturbing the output of the IPTS with minimum Hamming

Distance and mutating the output of the IPTS randomly. Then

MDGA search the phase factor by an intelligent replacement

strategy, crossover and mutation. The search complexity of

this method is proportional to PG + (M − 1)W , where P
is the size of the population, G is the maximal generations

of MDGA. In the ABC-PTS algorithm, the randomly initial

phase factor population with the size S are produced, then

all employed bees and onlookers carry out search according

to the algorithm, when the maximum iteration number K is

reached, the phase factor with the minimum PAPR is thought

as the approximately optimal one. So the search complexity of

this method is proportional to SK . The complexity of the PTS

technique with an exhaustive search (OPTS) [14] is WM−1

by fixing a phase factor without any performance loss.

V. SIMULATION RESULTS

To evaluate and compare the performance of the ABC-PTS

algorithm for OFDM PAPR reduction, numerous simulations
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Fig. 2. Comparison of PAPR reduction among ABC-PTS with different
iterations and the other methods, W=2.

have been conducted. In order to get CCDF, 100000 random

OFDM symbols are generated. The transmitted signal is over-

sampled by a factor of L = 4 for accurate PAPR. In our

simulation, 16-QAM modulation with N = 256 sub-carriers is

used and the phase factor W = 2 is chosen. When larger phase

factor, for example, W = 4 is chosen, the similar simulation

results can be obtained, while the performance will be better.

In the ABC-PTS algorithm, there are three control param-

eters: the number of the food sources, the value of limit and

the maximum iteration number. Employed bees or onlooker

bees carry out the exploiting process in the search space, the

scouts control the exploration process in the ABC-PTS algo-

rithm. The two processes are implemented together. Different

maximum iteration number, different size of population and

different limit value are chosen to evaluate the performance

of the ABC-PTS algorithm for PAPR reduction. In simulation,

S denotes the number of the food sources or the size of

population, K denotes the maximum iteration number, Limit
denotes the value of limit.

In Fig. 2, the CCDF for M = 16 sub-blocks using

random partition is shown. Here S = 30, Limit = 5 and

different iteration K = 20, K = 40 for the ABC-PTS.

When Pr(PAPR > PAPR0) = 10−3, the PAPR of the

original OFDM is 11.3 dB. The PAPR by IPTS is 7.95 dB.

The PAPR by the ABC-PTSs with iteration number 20 and 40
are approximately 6.75 dB and 6.65 dB respectively. Using the

random search (RS) in [15], when the numbers of randomly

selected phase factors are 600 and 1200, the PAPRs are

reduced to 7.15 dB and 6.8 dB respectively. The PAPR by

the gradient descent search (GD) with the search complexity

Cr
M−1W

rI = C2
152

23 = 1260 in [16] is 7.1 dB. The PAPR

by the OPTS with exhaustive search number 215 = 32768
is 6.4 dB. There is a 0.25 dB gap between the PAPR by

OPTS and by ABC-PTS with iteration number K = 40.

But from the analysis in section IV-C, we can know that

the search complexity of the ABC-PTS with K = 40 is

only SK/W (M−1) = 1200/32768 = 3.66% of that by the

OPTS. For the same or almost same search complexity, the
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performance of the ABC-PTS with K = 40 is also better than

that of RS and GD.

Table. I shows comparison of computational complexity

among different methods for M = 16 subblocks, where the

size of population for PSO-PTS [20], [21], MDGA [22], [23]

and ABC-PTS are S = P = 30, the number of maximal

generations or iterations are G = K = 30. It can be seen that

the performance of swarm intelligence algorithms, i.e.PSO-

PTS, MDGA and ABC-PTS excels that of other methods. For

the same search complexity, the PAPR of the ABC-PTS is

smaller 0.3 dB than that of PSO-PTS. For the almost same

search complexity, the PAPR of the ABC-PTS is smaller

0.2 dB than that of MDGA.

TABLE I
WHEN CCDF = 10−3 , COMPARISON OF COMPUTATIONAL
COMPLEXITY AMONG DIFFERENT METHODS FOR PHASE

FACTOR W = 2, M = 16 SUB-BLOCKS, SIZE OF
POPULATION/PARTICLEP = S = 30 AND MAXIMAL

GENERATIONS/ITERATIONSG = K = 30

methods computational complexity PAPR

IPTS (M − 1)W = 15 ∗ 2 = 30 7.95 dB

GD Cr

M−1
W rI = C2

15
223 = 1260 7.15 dB

TS LN = 4 ∗ 256 = 1024 7.25 dB

PSO-PTS SG = 30 ∗ 30 = 900 7.1 dB

MDGA PG+ (M − 1)W = 30 ∗ 30 + 15 ∗ 2 = 930 7.0 dB

ABC-PTS SK = 30 ∗ 30 = 900 6.8 dB

OPTS WM−1 = 215 = 32768 6.45 dB

In Fig. 3, we compare the PAPR reduction performance

of the ABC-PTS with the other methods in [15], [16], [17],

[20], [21], [22], [23] for the same or almost same search

complexity. Fig. 3 shows the simulation results of the ABC-

PTS with different size of population, the same maximum

iteration number K = 30 and Limit = 5, where sub-

blocks M = 16 are generated by random partition. When

Pr(PAPR > PAPR0) = 10−3, the PAPR by OPTS is

approximately 6.45 dB. By using the ABC-PTS with S = 30
and S = 40, the PAPRs are reduced to 6.8 dB and 6.7 dB, re-

spectively. Compared to the PAPR by OPTS, the PAPR by the
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Fig. 4. Comparison of PAPR reduction among ABC-PTS with different Limit
and the other methods, W=2.

ABC-PTS with S = 30 and S = 40 has a gap approximately

0.35 dB and 0.25 dB, respectively. But the search complexity

of the ABC-PTS is only 2.75% and 3.66% of that by the

OPTS, respectively. Using RS in [15], when the numbers of

randomly selected phase factors are 900 and 1200, the PAPRs

are reduced to 7 dB and 6.9 dB, respectively. The PAPR by

GD with the search complexity Cr
M−1W

rI = C2
152

23 = 1260
in [16] is 7.15 dB. The PAPR by TS with the search complexity

LN = 4∗256 = 1024 in [17] is 7.3 dB. Using the MDGA with

the search complexity PG+(M−1)W = 30∗30+15∗2 = 930
in [22], [23], the PAPR is reduced to 6.95 dB. The PAPR by

the PSO-PTS with the search complexity SG = 30∗30 = 900
in [20], [21] is 7.1 dB. From Fig. 3, it can be seen that apart

from the PAPR by OPTS , the PAPR reduction performance

of the ABC-PTS is the best among that of all methods for the

same or almost same search complexity.

In Fig. 4, we compare the PAPR reduction performance of

the ABC-PTS with different Limit, the same size of population

S = 30 and the same maximum iteration number K = 30 for

M = 16 sub-blocks . When Pr(PAPR > PAPR0) = 10−3,

the PAPR of the original OFDM is 11.3 dB, the PAPRs by

the ABC-PTS with Limit = 3 and Limit = 8 are 6.8 dB

and 6.8 dB respectively. The PAPR by the OPTS is 6.5 dB.

The PAPR by IPTS is 7.95 dB. The PAPR by RS [15] with

900 randomly selected phase factors is 6.95 dB. The PAPR by

GD [16] is 7.1 dB. From Fig. 4, it can be discovered that the

difference of the PAPR between Limit = 3 and Limit = 8
is negligible. Little performance improvement can be obtained

by increasing Limit.

For three swarm intelligence algorithms, i.e. the PSO-

PTS [20], [21], the MDGA [22], [23] and the ABC-PTS,

100 experiments are performed to compare PAPR convergence

performance for an OFDM symbol, where subblocks M = 16
are generated by random partition, the same size of population

is S = P = 30 and the same maximum iteration number

G = K = 60. Fig. 5 shows the simulation results of three

different methods on the mean of the best cost function

values. In initial phase (approximately 1 − 3 iterations), the
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Fig. 5. Comparison of mean of best cost function values for different swarm
intelligence methods.

performance of the ABC-PTS is inferior to that of PSO-PTS

and MDGA. As the increase of iterations, the performance

of the ABC-PTS is better than that of PSO-PTS and MDGA.

Although the PAPR performance is improved with the increase

of iteration number, the mean of PAPR getting by the iteration

number K = 30 is only less 0.1 dB than that of PAPR getting

by the iteration number K = 60, so iteration number K = 30
can be a suitable choice for our proposed ABC-PTS algorithm.

VI. CONCLUSION

In this paper, we propose a modified ABC based PTS

algorithm (ABC-PTS) to search better combination of phase

factors for OFDM signals. Compared to the existing PAPR

reduction methods, the ABC-PTS algorithm can get better

PAPR reduction and significantly reduce the computational

complexity for larger PTS subblocks at the same time. More-

over, because the ABC-PTS algorithm only has three control

parameters, so it is easy to be adjusted. Simulation results

show that the ABC-PTS algorithm is an efficient method which

can provide a better PAPR performance.
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