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Abstract—In this paper, we propose a robust transceiver design
for the K-pair quasi-static MIMO interference channel. Each
transmitter is equipped with M antennas, each receiver is
equipped with N antennas, and thekth transmitter sends Lk

independent data streams to the desired receiver. In the literature,
there exist a variety of theoretically promising transceiver designs
for the interference channel such as interference alignment-based
schemes, which have feasibility and practical limitations. In order
to address practical system issues and requirements, we consider
a transceiver design that enforces robustness against imperfect
channel state information (CSI) as well as fair performance
among the users in the interference channel. Specifically, we
formulate the transceiver design as an optimization problem
to maximize the worst-case signal-to-interference-plus-noise ratio
among all users. We devise a low complexity iterative algorithm
based on alternative optimization and semi-definite relaxation
techniques. Numerical results verify the advantages of incor-
porating into transceiver design for the interference channel
important practical issues such as CSI uncertainty and fairness
performance.

Index Terms—Interference channel, robust transceiver, imper-
fect CSI, precoder design, decorrelator design, max-min fair,
alternative optimization, semi-definite relaxation.

I. I NTRODUCTION

In many wireless network scenarios, the channel is shared
among multiple systems. The coexisting systems create mutual
interference, which poses great challenges for communication
systems design. Conventionally, interference is either treated
as noise in the weak interference case [1] or canceled at the
receiver in the strong interference case [2], [3]. In the past
decade, various schemes are proposed to utilize multiple sig-
naling dimensions for interference avoidance and mitigation.
In particular, in the recent breakthrough work [4], the authors
show that the paradigm of interference alignment (IA) can
be exploited to confine mutual interference to some lower
dimensional subspace, so that desired signals can be trans-
mitted on interference-free subspace. It is shown that thisIA
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scheme, if feasible, is optimal in the degree-of-freedom (DoF)
sense. The results of [4] has triggered a number of extensions
[5], [6] and related works [7], [8]. These IA-based schemes,
albeit theoretically promising, have various limitations. First,
IA-based schemes require ideal conditions to be feasible such
as perfect channel state information (CSI) and very large
dimensions on the signal space. For example, the conventional
IA scheme [4] requires time or frequency extensions to have
feasible solutions. ForK-pairs quasi-static MIMO interference
channels where time / frequency extensions are not viable, the
IA scheme [4] is only feasible forK ≤ 3 (cf. [9]). Second,
while IA-based schemes have promising DoF performance –
which is an asymptotic performance measure for very high
signal-to-noise ratio (SNR) – they are not optimal at medium
SNR that correspond to practical applications. When designing
practical communication systems for the interference channel,
a number of technical issues shall be considered. Specifically,
in practice only imperfect CSI is available and there are limited
signaling dimensions. Moreover, it is important to ensure
satisfactory performance among all the systems in the network.

In this paper, we consider the problem of robust transceiver
design for theK-pair quasi-static MIMO interference chan-
nel with fairness considerations. Specifically, 1) we apply
robust design principles to provide resilience against CSI
uncertainties; and 2) we formulate the transceiver design as
a precoder-decorrelator optimization problem to maximize
the worst-case signal-to-interference-plus-noise ratio(SINR)
among all users in the interference channel. In the literature,
precoder-decorrelator optimization for worst-case SINR are
proposed for broadcast and point-to-point systems [10]–[13].
Specifically, in [10], [13] the authors consider precoding
design for the worst-case SINR in MISO broadcast channel,
where it is shown that the precoder optimization problem
is always convex. In [12] the authors consider precoder-
decorrelator design for the worst-case SINR MIMO broadcast
channel using an iterative algorithm based on solving convex
subproblems. On the other hand, in [11] the authors consider
a space-time coding scheme for the point-to-point channel
with imperfect channel knowledge. However, these existing
works cannot be extended to robust transceiver design for the
MIMO interference channel, which presents the following key
technical challenges.

The Precoder-Decorrelator Optimization Problem is NP-
Hard: The precoder-decorrelator optimization problem for the
interference channel involves solving a separable homoge-
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Fig. 1. System model. There areK source-destination pairs where each
source node is equipped withM antennas and each destination node is
equipped withN antennas. Thekth transmitter sendsLk independent data
streams to the desired receiver.

neous quadratically constrained quadratic program (QCQP),
which is NP-hard in general [14], [15]. One approach to
facilitate solving this class of problems is to apply semidefinite
relaxation (SDR) by relaxing rank constraints; this method
was applied in precoding design for MISO broadcast channel
[16], [17] and for MISO multicast channel [18], [19]. Although
the resultant semidefinite program (SDP) may be solvable, the
optimization in general does not always have the desired rank
profile.

Convergence of Alternative Optimization Algorithm:
Our proposed solution is based on alternative optimization
(AO). The method of AO was proposed in [20], [21] for
precoder and decorrelator optimization for multi-user MIMO
broadcast channels. However, coupled with the rank con-
strained SDP issues as well as the absence of uplink-downlink
duality (as in the case of broadcast channels) [22], [23],
establishing the convergence proof of the AO algorithm in the
interference channel is non-trivial [24] and traditional conver-
gence proof [20], [21] cannot be applied to our situations.

Notation: In the sequel, we adopt the following notations.
RM×N , CM×N andZM×N denote the set of real, complex
and integerM × N matrices, respectively;R+ denotes the
set of positive real numbers; upper and lower case letters
denote matrices and vectors, respectively;HN denotes the set
of N × N Hermitian matrices;X � 0 denotes thatX is a
positive semi-definite matrix;(·)T and (·)† denote transpose
and Hermitian transpose, respectively; rank(·) and Tr(·) denote
matrix rank and trace, respectively;[X](a,b) denotes the(a, b)th

element ofX; || · || denotes the Frobenius norm;I(·) denotes
the indicate function;K denotes the index set{1, . . . ,K} and
Lk denotes the index set{1, . . . , Lk}; 0N denotes anN × 1
vector of zeros andIN denotes anN × N identity matrix;
E[·] denotes expectation; andCN (µ,Φ) denotes complex
Gaussian distribution with meanµ and covariance matrixΦ.

II. SYSTEM MODEL AND REVIEW OF PRIOR WORKS

A. System Model

We consider a MIMO interference channel consisting ofK
source-destination pairs where each source node is equipped
with M antennas and each destination node is equipped with

N antennas as shown in Fig. 1. For ease of exposition,
we focus on thekth user referring to source nodeSk and
destination nodeDk; nevertheless, the same model applies to
all other source-destination pairs. Specifically,Sk transmits
Lk data streamss(k) = [s

(k)
1 . . . s

(k)
Lk

]T to Dk, which performs
linear detection. The received signal ofDk is interfered by the
transmitted signals of all other users. To mitigate the impact of
mutual interference, prior to transmissionSk precodes the data
streamss(k) using the precoder matrixV(k) = [v(k)1 . . . v(k)Lk

] ∈
CM×Lk and Dk decorrelates the received signal using the
decorrelator matrixU(k) = [u(k)

1 . . .u(k)
Lk

] ∈ CN×Lk . It follows
that the transmitted signal ofSk is given by

x(k) = V(k)s(k) =
∑Lk

l=1 v(k)l s
(k)
l , (1)

the received signal ofDk is given by

y(k)=
∑K

j=1 H(k,j)x(j) + n(k)

= H(k,k)x(k) +
∑K

j=1
j 6=k

H(k,j)x(j)

︸ ︷︷ ︸
interference

+n(k), (2)

and the decorrelator output ofDk is given by

s̃(k)= (U(k))†y(k)

= (U(k))†H(k,k)V(k)s(k)︸ ︷︷ ︸
desired signals

(3)

+
∑K

j=1
j 6=k

(U(k))†H(k,j)V(j)s(j)

︸ ︷︷ ︸
leakage interference

+(U(k))†n(k),

whereH(k,j) ∈ CN×M is the fading channel fromSj to Dk

andn(k) ∼ CN (0N , N0IN ) is the AWGN. As per (1)–(3), the
estimate of data streams(k)l is given by

s̃
(k)
l = (u(k)

l )†H(k,k)v(k)l s
(k)
l︸ ︷︷ ︸

desired signal

+
∑Lk

m=1
m 6=l

(u(k)
l )†H(k,k)v(k)m s

(k)
m

︸ ︷︷ ︸
inter-stream interference

+
∑K

j=1
j 6=k

∑Lj

m=1(u
(k)
l )†H(k,j)v(j)m s

(j)
m

︸ ︷︷ ︸
leakage interference

+(u(k)
l )†n(k), (4)

where the severity of the inter-stream and leakage interference
terms depend on the transceiver processing and CSI assump-
tion. Considering practical systems, we make the following
assumptions towards designing effective precoders and decor-
relators.

Assumption 1 (Transmit power constraint):We assume the
data streams are independent and have unit power, i.e.
E[(s(k))†s(k)] = ILk

. Furthermore, we assume the maximum
transmit power of thekth source node isPk so the pre-
coders shall satisfy the power constraintE[(x(k))†x(k)] =∑Lk

l=1(v
(k)
l )†v(k)l ≤ Pk.

Assumption 2 (Fading model):We assume quasi-static fad-
ing so the fading channelsH(k,j) remain unchanged dur-
ing a fading block. In addition, we assume rank(H(k,j)) =
min(M,N).

Assumption 3 (CSI model):We assume perfect CSI is
available at the receivers (i.e. perfect CSIR), and only imper-
fect CSI is available at the transmitters (i.e. imperfect CSIT)
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for designing the precoders and decorrelators. Specifically, we
model channel estimates at the transmitters as

Ĥ
(k,j)

= H(k,j) −∆
(k,j), ∀j, k ∈ K, (5)

where∆
(k,j) is the CSI error [10], [11], [25]. Specifically,

we assume||∆(k,j)||2 ≤ ε, which implies that the actual
channelH(k,j) belongs to a spherical uncertainty region cen-

tered at Ĥ
(k,j)

with radius ε. For notational convenience,
we denoteH = {H(k,j)}Kj,k=1 = {Ĥ

(k,j)
+∆

(k,j)}Kj,k=1 and

Ĥ = {Ĥ
(k,j)}Kj,k=1.

Remark 1 (Interpretation of the CSI error model):The
imperfect CSIT model (5) encapsulates the following
scenarios.

• Quantized CSI in FDD Systems [10, Section II-B]:For FDD
systems, the transmitters are provided with quantized CSI via
feedback. Using uniform quantizers, the quantization cells in
the interior of the quantization region can be approximated
by spherical regions of radius equal to the quantization step
size. As a result, the imperfect CSIT model corresponds to
quantized CSI obtained using a uniform vector quantizer with
quantization step size

√
ε.

• Estimated CSI in TDD Systems [11, Section IV-A]:For
TDD systems, the transmitters can estimate the channels
from the sounding signals received in the reverse link. The
imperfectness of the CSIT in this case comes from the
estimation noise as well as delay. Using MMSE channel

prediction, the CSI estimatêH
(k,j)

is unbiased, whereas the
CSI error ∆(k,j) is Gaussian distributed and independent

from the CSI estimatêH
(k,j)

. As a result,∆(k,j) is a jointly
Gaussian matrix and||∆(k,j)||2 ≤ ε corresponds to “equal
probability contour” on the probability space of∆(k,j). In
other words, the probability of the event||∆(k,j)||2 ≤ ε
depends onε only. Accordingly, we could find anε such
that Pr[||∆(k,j)||2 ≤ ε] = 0.99 (for example).

By Assumptions 1 to 3, the data stream estimates̃
(k)
l in (4)

can beequivalentlyexpressed as

s̃
(k)
l = (u(k)

l )†(Ĥ
(k,k)

+∆
(k,k))v(k)l s

(k)
l

+
∑Lk

m=1
m 6=l

(u(k)
l )†(Ĥ

(k,k)
+∆

(k,k))v(k)m s
(k)
m (6)

+
∑K

j=1
j 6=k

∑Lj

m=1(u
(k)
l )†(Ĥ

(k,j)
+∆

(k,j))v(j)m s
(j)
m +(u(k)

l )†n(k).

The actual SINR of̃s(k)l at thekth receiver is given by (7),
whereby the instantaneous mutual information between data
streams

(k)
l and estimatẽs(k)l can be expressed as

C
(k)
l (H, {{v(j)m }Lj

m=1}Kj=1, u
(k)
l ) (8)

= log2(1 + γ
(k)
l (H, {{v(j)m }Lj

m=1}Kj=1, u
(k)
l )).

B. Review of Prominent Transceiver Designs for MIMO In-
terference Channels

In the following, we review the motivations and issues of
prominent transceiver designs for MIMO interference channels
in the literature.

1) Interference Alignment in Quasi-Static MIMO Signal
Space: In [4], [9] the authors exploited IA in quasi-static
MIMO signal space for precoder-decorrelator design. Specif-
ically, assuming perfect CSI, we could obtain precoders and
decorrelators that confine the interference on each destination
node to a lower dimension subspace, such that interference can
be more effectively removed. Note that IA is only feasible with
sufficiently large number of signaling dimensions. For theK-
pair quasi-staticN×M MIMO interference channel, IA could
achieve a DoF ofK min(M,N)

2 for K ≤ 3 but might not be
feasible forK > 3. Moreover, IA is not optimal in general at
medium SNR. For example, consider the data stream estimate
s̃
(k)
l in (6); suppose IA is feasible then

(u(k)
l )†Ĥ

(k,j)
v(j)m = 0, j 6= k or l 6= m,

and the actual SINR of thelth data stream atkth receiver is
given by

γ
(k)
l (H, {{v(j)m }Lj

m=1}Kj=1, u
(k)
l )

=
||(u(k)

l
)†(Ĥ

(k,k)
+∆

(k,k))v(k)
l

||2



∑Lj

m=1
m 6=l

||(u(k)
l )†∆(k,k)v(k)

m ||2

+
∑K

j=1
j 6=k

∑Lj
m=1 ||(u(k)

l
)†∆(k,j)v(j)m ||2+N0||u

(k)
l

||2




. (9)

As per (9), the presence of CSI error∆
(k,j) creates persistent

residual interference. Even when the residual interference is
negligible, i.e.

γ
(k)
l (H, {{v(j)m }Lj

m=1}Kj=1, u
(k)
l ) ≈ ||(u(k)

l )†(Ĥ
(k,k)

+∆(k,k))v(k)
l ||2

N0||u
(k)
l ||2

,

the conventional IA scheme [4], [9] makes no attempt to
optimize SINR performance.

2) Interference Alignment in Real Fading Channels:In [7],
[8] the authors consider IA along the real line by creating
fictitious signaling dimensions. Specifically, assuming perfect
CSI, we could design the leakage interference terms at each
destination node to have the same scaling factor (or pseudo
direction), such that interference can be effectively removed.
For example, consider the received signal in (2); for the
purpose of illustration letM = N = 1 andH(k,j) ∈ R so

y(k)= H(k,k)x(k) +
∑K

j=1
j 6=k

H(k,j)x(j) + n(k)

(a)
=

∑Lj

l=1(Ĥ
(k,k)+∆(k,k))v

(k)
l s

(k)
l

+
∑K

j=1
j 6=k

∑Lj

l=1 (Ĥ
(k,j)+∆(k,j))v

(j)
l s

(j)
l︸ ︷︷ ︸

leakage interference

+n(k),

where (a) follows from (1) and (5). To facilitate IA along the
real line, the data streams shall belong to the set of integers
(i.e. s(k)l ∈ Z) and we shall choose the precoders such that
Ĥ(k,j)v

(j)
l = Ĥ(k,m)v

(m)
l for j 6= m. It is shown in [7],

[8] that, if ideally CSI error is negligible (i.e.∆(k,j) ≈ 0),
this scheme could theoretically achieve a DoF ofK MN

M+N
.

However, this scheme would require infinite SNR and cannot
be implemented in practice.
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γ
(k)
l (H, {{v(j)m }Lj

m=1}Kj=1, u
(k)
l ) =

||(u(k)
l

)†(Ĥ
(k,k)

+∆
(k,k))v(k)

l
||2

∑Lk
m=1
m 6=l

||(u(k)
l )†(Ĥ

(k,k)
+∆(k,k))v(k)

m ||2+
∑K

j=1
j 6=k

∑Lj
m=1 ||(u(k)

l )†(Ĥ
(k,j)

+∆(k,j))v(j)m ||2+N0||u
(k)
l ||2

(7)

3) Iterative Algorithms to Minimize Leakage Interfer-
ence / Maximize SINR:In [5], [6] the authors exploit
uplink-downlink duality and propose iterative algorithmsfor
precoder-decorrelator design. Specifically, the algorithms in
[6, Algorithm 1], [5] are established with the objective of
sequentially minimizing the aggregate leakage interference
induced by each data stream, whereas the algorithm in [6,
Algorithm 2] is established with the objective to sequentially
maximize the SINR of each data stream. Note that the afore-
mentioned algorithms neglect the presence of CSI error, which
could have significant performance impacts. Moreover, these
algorithms neglect individual user performance and fairness.
This is undesirable because for practical systems it is important
to ensure all users have satisfactory performance.

III. PROBLEM FORMULATION : ROBUST TRANSCEIVER

DESIGN WITH FAIRNESSCONSIDERATIONS

In this section, we formulate a transceiver design for the
K-pair quasi-static MIMO interference channel that is robust
against CSI uncertainties and with the objective of enforcing
fairness among all users’ data streams. Specifically, to provide
the best resilience against CSI error, we adopt a worst-case
design approach. On the other hand, the fairness aspect is
motivated by the practical system consideration to ensure
all users in the network can have satisfactory performance.
As such, we formulate the precoder-decorrelator design with
imperfect CSIT as an optimization problem to maximize the
worst-caseSINR among all users’ data streams, subject to the
maximum transmit power per source node.

A. Optimization Problem

The robust and fair transceiver optimization problem for
the K-pair N × M MIMO interference channel consists of
the following components.

• Optimization Variables: The optimization variables include
the set of precoders{{v(j)m }Lj

m=1}Kj=1 and the set of decor-

relators{{u(j)
m }Lj

m=1}Kj=1. These variables are adaptive with

respect to imperfect CSIT̂H = {Ĥ
(k,j)}Kj,k=1.

• Optimization Objective: The optimization objective is to
maximize, with imperfect CSIT, the minimum worst-case
SINR among1 all users’ data streams (perceived by the
transmitter) given by (cf. (7) and Assumption 3)

min
∀k∈K
∀l∈Lk

min
||∆(k,j)||2≤ε

γ
(k)
l (H, {{v(j)m }Lj

m=1}Kj=1, u
(k)
l ). (10)

• Optimization Constraints: The optimization constraints
are the maximum transmit power for each source node

1Note that (10) is the worst-case SINR perceived by the transmitter based

on imperfect CSITĤ = {Ĥ
(k,j)

}K
j,k=1. We choose the worst-case SINR

perceived by the transmitter in order to incorporate robustness against CSI
error∆(k,j).

P1, . . . , PK , which give the precoder power constraints∑Lk

l=1(v
(k)
l )†v(k)l ≤ Pk, ∀k ∈ K (cf. Assumption 1).

Accordingly, the optimization problem can be formally
written as Problem 1.

Problem 1: (Robust Max-Min Fair Precoder-Decorrelator
Design):

{{{(v(j)m )⋆}Lj

m=1}Kj=1, {{(u(j)
m )⋆}Lj

m=1}Kj=1} = P(P1, . . . , PK)

argmax
v(j)m ∈C

M×1

u(j)
m ∈C

N×1

min
∀k∈K
∀l∈Lk

min
||∆(k,j)||2≤ε

γ
(k)
l (H, {{v(j)m }Lj

m=1}Kj=1, u
(k)
l )(11a)

s. t.
∑Lk

l=1(v
(k)
l )†v(k)l ≤Pk, ∀k∈K.(11b)

In (11a), the worst-case SINR with imperfect CSIT is given
by the following proposition.

Proposition 1 (Worst-Case SINR with Imperfect CSIT):

Given CSI estimateŝH = {Ĥ
(k,j)}Kj,k=1 at the transmitter

with error ||∆(k,j)||2 ≤ ε, the worst-case SINR of data stream
estimates̃(k)l perceived by the transmitter can be expressed
as (12).

Proof: Please refer to Appendix A.
Using Proposition 1 and let̃P = min(P1, . . . , PK) and

ρk = Pk/P̃ , we can recast ProblemP as

{γ⋆, {{(v(j)m )⋆}Lj

m=1}Kj=1, {{(u(j)
m )⋆}Lj

m=1}Kj=1} = P(P̃ )

min
v(j)m∈C

M×1

u(j)
m∈C

N×1

γ∈R+

−γ (13a)

s. t. γ̃
(k)
l (Ĥ,{{v(j)m }Lj

m=1}Kj=1,u
(k)
l )≥γ,∀l∈Lk,∀k∈K,(13b)

∑Lk

l=1(v
(k)
l )†v(k)l ≤ ρkP̃ , ∀k ∈ K. (13c)

B. Properties of the Optimization Problem

Note that it is not trivial to solve ProblemP since it is
non-convex and NP-hard in general as we elaborate below.
In Section IV, we shall propose a low complexity iterative
algorithm for solving ProblemP .

1) Problem P is a non-convex problem:The minimum
SINR constraints in (13b) can be rearranged as

(1 + γ)||(u(k)
l )†Ĥ

(k,k)
v(k)l ||2 + (γ − 1)ε||u(k)

l ||2||v(k)l ||2

−γN0||u(k)
l ||2 − γ

∑K
j=1

∑Lj

m=1 ||(u
(k)
l )†Ĥ

(k,j)
v(j)m ||2

−γε||u(k)
l ||2 ∑K

j=1

∑Lj

m=1 ||v
(j)
m ||2 ≥ 0,

which are non-convex inequalities consisting of non-positive
linear combinations of norms. Therefore, ProblemP is a non-
convex problem.

2) ProblemP is NP-hard in general: To illustrate that
ProblemP is NP-hard in general, we consider theinverse
problem of jointly minimizing the transmit powers of all
source nodes subject to a minimum SINR constraint for all
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min
||∆(k,j)||2≤ε

γ
(k)
l (H, {{v(j)m }Lj

m=1}Kj=1, u
(k)
l )

=
||(u(k)

l )†Ĥ
(k,k)

v(k)
l ||2−ε||u(k)

l ||2||v(k)
l ||2

∑K
j=1

∑Lj
m=1 ||(u(k)

l
)†Ĥ

(k,j)
v(j)m ||2+ε||u(k)

l
||2
∑K

j=1

∑Lj
m=1 ||v(j)m ||2−||(u(k)

l
)†Ĥ

(k,k)
v(k)
l

||2−ε||u(k)
l

||2||v(k)
l

||2+N0||u
(k)
l

||2

, γ̃
(k)
l (Ĥ, {{v(j)m }Lj

m=1}Kj=1, u
(k)
l ).

(12)

Fig. 2. Interrelationship among the optimization problems.

users’ data streams2. In Section IV, we shall propose an
algorithm for solving ProblemP facilitated by solving the
inverse problem3 that consists of the following components.

• Optimization Variables: The optimization variables include
the set of precoders{{v(j)m }Lj

m=1}Kj=1 and the set of decorre-

lators{{u(j)
m }Lj

m=1}Kj=1.
• Optimization Objective: The optimization objective is to
minimize the required transmit power of all source nodes, by
means of minimizing the precoder powers

∑Lk

l=1(v
(k)
l )†v(k)l ,

∀k ∈ K.
• Optimization Constraints: The optimization constraint is
for all users’ data streams to meet the prescribed minimum
SINR γ, i.e. γ̃(k)

l (Ĥ, {{v(j)m }Lj

m=1}Kj=1, u
(k)
l ) ≥ γ.

Accordingly, the inverse problem can be formally written
as Problem 2.

Problem 2 (Power Minimization Precoder-Decorrelator De-
sign):

{β⋆, {{(v(j)m )⋆}Lj

m=1}Kj=1, {{(u(j)
m )⋆}Lj

m=1}Kj=1} = Q(γ)

min
v(j)m∈C

M×1

u(j)
m∈C

N×1

β∈R+

β (14a)

s. t.
∑Lk

l=1(v
(k)
l )†v(k)l ≤ ρkβ, ∀k ∈ K, (14b)

γ̃
(k)
l (Ĥ,{{v(j)m }Lj

m=1}Kj=1,u
(k)
l )≥γ,∀l∈Lk,∀k∈K.(14c)

Consider an instance of ProblemQ with minimum SINR
constraint̃γ, i.e.

{β̃, {{ṽ(j)m }Lj

m=1}Kj=1, {{ũ(j)
m }Lj

m=1}Kj=1} = Q(γ̃), (15)

and the required transmit power of thekth source node isρkβ̃.
It can be shown that

{γ̃, {{ṽ(j)m }Lj

m=1}Kj=1, {{ũ(j)
m }Lj

m=1}Kj=1} = P(β̃) (16)

2Please refer to [16]–[18], [26] and references therein for discussions on
the inverse relationship between max-min fair and minimum power precoder
design problems for MISObroadcastandmulticastchannels.

3The inverse problem will be utilized in Section IV-C.

so we can solve ProblemQ to obtain a corresponding solution
for ProblemP , and vice-versa. Since ProblemQ is NP-hard
in general, ProblemP is also NP-hard. Specifically, we define
the special caseof ProblemQ with fixed decorrelators as

Problem 3 (Power Minimization Precoder Design with Fixed
Decorrelators):

{ξ⋆, {{(v(j)m )⋆}Lj

m=1}Kj=1} = Qv(γ, {{u(j)
m }Lj

m=1}Kj=1)

min
v(j)m∈C

M×1

ξ∈R+

ξ (17a)

s. t.
∑Lk

l=1(v
(k)
l )†v(k)l ≤ ρkξ, ∀k ∈ K, (17b)

γ̃
(k)
l (Ĥ,{{v(j)m }Lj

m=1}Kj=1,u
(k)
l )≥γ,∀l∈Lk,∀k∈K.(17c)

Note that ProblemQv belongs to the class of separable
homogenous QCQP, which is NP-hard in general [14], [15].
This implies that ProblemQ, which contains ProblemQv as
special case, is also NP-hard in general4.

IV. L OW COMPLEXITY ITERATIVE SOLUTION

In this section, we propose a low complexity iterative algo-
rithm for solving the robust and fair transceiver optimization
problemP . In particular, the proposed algorithm is facilitated
by solving the inverse ProblemQ, whereby we exploit the
structure of ProblemQ to apply effective optimization tech-
niques.

A. Overview of Algorithm

The proposed algorithm for solving ProblemP is facilitated
by solving ProblemQ as illustrated in Fig. 2, which is also
detailed in Algorithm 1. Specifically, we iteratively refine
the decorrelators and precoders to monotonically improve the
minimum SINR. Each iteration consists of two stages:

• (Steps 1-3 of Algorithm 1) First, given thestatus quomini-
mum SINRγ̃ achieved with thekth source node transmitting
at powerPk, we solve ProblemQ to optimize the precoders
and decorrelators for minimizing the transmit powers, i.e.

{β̃, {{ṽ(j)m }Lj

m=1}Kj=1, {{ũ(j)
m }Lj

m=1}Kj=1} = Q(γ̃), (18)

such that the minimum SINR̃γ is achieved with the
kth source node transmitting at areduced power of∑Lk

l=1(ṽ
(k)
l )†ṽ(k)l = ρkβ̃ ≤ Pk.

• (Steps 4-5 of Algorithm 1) Second, we improve the min-
imum SINR by up-scaling the transmit precoding power5

of the kth user to the power constraintPk, i.e. ṽ(j)m =√
Pj/(ρjβ̃)ṽ

(j)
m .

4ProblemQv will be utilized in Section IV-C.
5We show in (31) that up-scaling the precoding powers improvethe

minimum SINR.
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We repeat the iteration until the minimum SINR converges to
a maximum. However, it is not trivial to solve the iteration
step as per (18) since ProblemQ is NP-hard in general as
shown in Section III-B2. As such, we shall solve ProblemQ
based on alternative optimization between the decorrelators
and the precoders, i.e. we present the algorithm for optimizing
the decorrelators withfixed precoders in Section IV-B, and
introduce the algorithm for optimizing the precoders withfixed
decorrelators in Section IV-C. The top-level detail steps of the
optimization algorithm is summarized below (Algorithm 1)
and illustrated in Fig 3. The convergence proof for Algorithm 1
is provided in Appendix D.

Algorithm 1 (Top-Level Algorithm):
Inputs: maximum transmit power for each source node
P1, . . . , PK

Outputs: precoders{{(v(j)m )⋆}Lj

m=1}Kj=1 and decorrelators

{{(u(j)
m )⋆}Lj

m=1}Kj=1

• Step 0: Initialize decorrelators{{ũ(j)
m }Lj

m=1}Kj=1 and pre-

coders{{ṽ(j)m }Lj

m=1}Kj=1, where the transmit power for the

j th source node is
∑Lj

m=1(ṽ
(j)
m )†ṽ(j)m = Pj .

Repeat

• Step 1: Optimize the decorrelators with fixed precoders (cf.
Section IV-B)

{{ũ(j)
m }Lj

m=1}Kj=1 = Qu({{ṽ(j)m }Lj

m=1}Kj=1).

Update the candidate decorrelators(u(j)
m )⋆ = ũ(j)

m .
• Step 2: Evaluate the minimum SINR

min
∀k∈K
∀l∈Lk

γ̃
(k)
l (Ĥ, {{ṽ(j)m }Lj

m=1}Kj=1, ũ
(k)
l ) = γ̂.

Update the target SINR̃γ = γ̂.
• Step 3: Optimize the precoders with fixed decorrelators (cf.
Section IV-C)

{ξ, {{ṽ(j)m }Lj

m=1}Kj=1} = Qv(γ̃, {{ũ(j)
m }Lj

m=1}Kj=1).

• Step 4: Evaluate the required transmit power of each source
nodeρj β̃ =

∑Lj

m=1(ṽ
(j)
m )†ṽ(j)m .

• Step 5: Evaluate the minimum SINR with up-scaled pre-
coders

min
∀k∈K
∀l∈Lk

γ̃
(k)
l (Ĥ, {{

√
Pj/(ρj β̃)ṽ

(j)
m }Lj

m=1}Kj=1, ũ
(k)
l ) = γ̂.

Update the target SINR̃γ = γ̂ and candidate precoders

(v(j)m )⋆ =
√
Pj/(ρj β̃)ṽ

(j)
m .

Until the minimum SINRγ̃ converges.
Return precoders {{(v(j)m )⋆}Lj

m=1}Kj=1 and decorrelators

{{(u(j)
m )⋆}Lj

m=1}Kj=1.

B. Decorrelator Optimization with Fixed Precoders

We define the decorrelator optimization problem with fixed
precoders to maximize the minimum SINR among all users’
data streams as

Fig. 3. Illustration of overall algorithm.

Problem 4 (Maximum SINR Decorrelator Design with Fixed
Precoders):

{{(u(j)
m )⋆}Lj

m=1}Kj=1 = Qu({{v(j)m }Lj

m=1}Kj=1)

argmax
u(j)
m ∈CN×1

min
∀k∈K
∀l∈Lk

γ̃
(k)
l (Ĥ, {{v(j)m }Lj

m=1}Kj=1, u
(k)
l ). (19)

As per (19), the worst-case SINR of data stream estimate
s̃
(k)
l only depends on decorrelatoru(k)

l . Therefore, we can
independently optimize each decorrelator, i.e.

(u(k)
l )⋆ = Q(k,l)

u ({{v(j)m }Lj

l=1}Kj=1)

argmax
u(k)
l ∈CN×1

γ̃
(k)
l (Ĥ, {{v(j)m }Lj

m=1}Kj=1, u
(k)
l ), (20)

and the optimal decorrelator is given by Theorem 1.
Theorem 1 (Optimal Decorrelator with Fixed Precoders):

Given precoders {{v(j)m }Lj

m=1}Kj=1, the optimal

decorrelator for data stream estimatẽs(k)l is given by

(u(k)
l )⋆ =

(F(k)
l )−

1
2 (w(k)

l )⋆

||(F(k)
l )−

1
2 (w(k)

l )⋆||
, where

F(k)
l =

∑K
j=1

∑Lj

m=1 Ĥ
(k,j)

v(j)m (v(j)m )†(Ĥ
(k,j)

)†

+ε
∑K

j=1

∑Lj

m=1 ||v
(j)
m ||2IN − Ĥ

(k,k)
v(k)l (v(k)l )†(Ĥ

(k,k)
)†

−ε||v(k)l ||2IN +N0IN ,

(w(k)
l )⋆ is the principle eigenvector of(F(k)

l )−
1
2 E(k)

l (F(k)
l )−

1
2 ,

andE(k)
l = Ĥ

(k,k)
v(k)l (v(k)l )†(Ĥ

(k,k)
)† − ε||v(k)l ||2IN .

Proof: Please refer to Appendix B.

C. Precoder Optimization with Fixed Decorrelators

In Section III-B2, we defined the precoder optimization
problem with fixed decorrelators, ProblemQv (cf. (17a)–
(17c)). Since ProblemQv belongs to the class of separable
homogenous QCQP, it is NP-hard in general. In the literature,
some authors consider instances of this class of problems for
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MISO broadcastchannel that are always solvable (cf. [17],
[26] and references therein), whereas some authors consider
problems for MISOmulticast channel that are always NP-
hard (cf. [18] and references therein). For theinterference
channel model considered herein, we provide an algorithm
for obtaining the optimal solution for ProblemQv.

One effective approach for solving separable homogenous
QCQP is to apply semidefinite relaxation (SDR) techniques.
Let V(k)

l = v(k)l (v(k)l )†. From (12), the worst-case SINR of
data stream estimates(k)l can be expressed as (21). It follows
that we canequivalentlyexpress the precoder optimization
problem with fixed decorrelators as

{Ξ⋆, {{(V(j)
m )⋆}Lj

m=1}Kj=1} = Q̃v(γ, {{u(j)
m }Lj

m=1}Kj=1)

min
V(j)

m∈C
M×M

Ξ∈R+

Ξ (22a)

s. t.
∑Lk

l=1 Tr(V(k)
l ) ≤ ρkΞ, ∀k ∈ K, (22b)

Γ̃
(k)
l (Ĥ,{{V(j)

m }Lj

m=1}Kj=1,u
(k)
l )≥γ,∀l∈Lk,∀k∈K,(22c)

V(k)
l � 0, ∀k ∈ K, ∀l ∈ Lk, (22d)

rank(V(k)
l ) = 1, ∀k ∈ K, ∀l ∈ Lk, (22e)

where (22d) and (22e) follow from the definition ofV(k)
l ,

(22b) are power constraints, and (22c) are SINR constraints.
Note that we could obtain the optimal precoder(v(j)m )⋆ from
the eigenvector of(V(j)

m )⋆ corresponding to the only non-zero
eigenvalue.

Comparing between Problem̃Qv and ProblemQv, the SINR
constraints of Problem̃Qv (22c) are convex inequalities, i.e.

(1+γ)Tr((Ĥ
(k,k)

)†u(k)
l (u(k)

l )†Ĥ
(k,k)

V(k)
l )− γN0||u(k)

l ||2

+(γ−1)ε||u(k)
l ||2Tr(V(k)

l )− γε||u(k)
l ||2 ∑K

j=1

∑Lj

m=1 Tr(V(j)
m )

−γ
∑K

j=1

∑Lj

m=1 Tr((Ĥ
(k,j)

)†u(k)
l (u(k)

l )†Ĥ
(k,j)

V(j)
m ) ≥ 0,

but ProblemQ̃v is still a non-convex problem due to the
rank constraints (22e). By means of SDR, weneglect the
rank constraints and Problem̃Qv degenerates into an SDP
that can be solved efficiently [27]. In general, the resultant
solution{Ξ⋆, {{(V(j)

m )⋆}Lj

m=1}Kj=1} could have arbitrary rank.
If rank((V(j)

m )⋆) = 1, ∀m ∈ Lj and∀j ∈ K, then constraints
(22e) are intrinsically satisfied and{{(V(j)

m )⋆}Lj

m=1}Kj=1 are
optimal. The following theorem summarizes the optimality of
the SDR solution in (22a)–(22e).

Theorem 2 (Optimality of the SDR Solution):The SDR
solution of ProblemQ̃v will always give rank 1 solutions (i.e.
rank((V(j)

m )⋆) = 1) and hence, the SDR solution is optimal
for Q̃v.

Proof: Please refer to Appendix C.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the proposed robust transceiver
design via numerical simulations. In particular, we compare
the performance of the proposed scheme against four baseline
schemes:

• Baseline 1the conventional IA scheme [4];
• Baseline 2the SINR maximization scheme [6, Algorithm 2];

• Baseline 3a naive max-min SINR scheme adopted from [12];
• Baseline 4a naive max-min SINR scheme adopted from [26].

As discussed in Section II-B, baselines 1 and 2 are theo-
retically promising schemes for the interference channel but
neglect important practical issues such as CSI uncertaintyand
fairness among users. On the other hand, baselines 3 and 4
are adopted from existing max-min SINR schemes that are
originally designed for the broadcast channel (i.e. there is only
a single transmitterand multiple receivers). Without loss of
generality, we assume independent and identically distributed
(iid) Rayleigh fading channels, i.e.[H(k,j)](a,b) ∼ CN (0, 1),
∀j, k ∈ K, ∀a ∈ [1, N ], and ∀b ∈ [1,M ]. For the purpose
of illustration, we consider the scenario where all users have
the same power constraintP1 = . . . = PK = P . In Fig. 4 to
Fig. 6 we present simulation results for the average data rates6

versus SNR7 with different number of users and levels of CSI
uncertainty.

A. Fairness Performance

In Fig. 4 and Fig. 5, we compare the average data rates of the
proposed and baseline schemes. For the purpose of illustration,
we consider the three-user4× 4 MIMO interference channel,
where each user transmitsL = 2 data streams and the pre-
coders are designed with imperfect CSIT withε = {0.1, 0.15},
whereas the receivers have perfect CSIR. It can be observed
that the proposed scheme achieves much higher average worst-
case data rate per user than all the baseline schemes, and thus
provides better minimum performance. For example, at CSI
error ε = 0.15, the proposed scheme has 5dB SNR gain over
the SINR maximization algorithm (baseline 2) at providing
a worst case data rate of 6 b/s/Hz and the conventional
IA scheme (baseline 1) cannot provide worst-case data rate
of 6 b/s/Hz. The superior performances of the proposed
scheme is accountable to both the SDR approach as well
as a suitably chosen utility function (optimizing the worst
case performance). Specifically, the chosen utility function
1) provide resilience against CSI uncertainties as well as 2)
achieve fair performance among users. On the other hand, the
SDR approach also contributes to obtaining a good solution
for solving the optimization problem.

B. Total Sum Data Rate Performance

In Fig. 5, we compare the average total sum data rates of
the proposed and baseline schemes forK = 3, N = M = 4,
L = 2, and CSI errorε = {0.1, 0.15}. It can be observed
that the proposed scheme not only achieves better worst-case
data rate but also achieves higher total sum data rate than
all the baseline schemes. In particular, due to the presenceof

6The average data rate is defined as the average goodput (i.e. the bits/s/Hz
successfully delivered to the receiver). Specifically, thegoodput of data
streams

(k)
l

is given by r
(k)
l

I(r
(k)
l

≤ C
(k)
l

), where r
(k)
l

= log2(1 +

γ
(k)
l

(Ĥ, {{v(j)m }
Lj
m=1}

K
j=1, u

(k)
l

)) is the scheduled data rate based on the

SINR perceived with respect to imperfect CSIT̂H = {Ĥ
(k,j)

}K
j,k=1,

and C
(k)
l

= log2(1 + γ
(k)
l

(H, {{v(j)m }
Lj

m=1}
K
j=1, u

(k)
l

)) is the actual
instantaneous mutual information.

7The SNR is defined asP
N0

, whereN0 is the AWGN variance.
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γ̃
(k)
l (Ĥ, {{v(j)m }Lj

m=1}Kj=1, u
(k)
l )=

Tr((Ĥ
(k,k)

)†u(k)
l

(u(k)
l

)†Ĥ
(k,k)

V(k)
l

)−ε||u(k)
l

||2Tr(V(k)
l

)
(∑K

j=1

∑Lj
m=1 Tr((Ĥ

(k,j)
)†u(k)

l (u(k)
l )†Ĥ

(k,j)
V(j)

m )+ε||u(k)
l ||2

∑K
j=1

∑Lj
m=1 Tr(V(j)

m )

−Tr((Ĥ
(k,k)

)†u(k)
l (u(k)

l )†Ĥ
(k,k)

V(k)
l )−ε||u(k)

l ||2Tr(V(k)
l )+N0||u

(k)
l ||2

) (21)

, Γ̃
(k)
l (Ĥ, {{V(j)

m }Lj

m=1}Kj=1, u
(k)
l ).
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CSI error, the total sum rate of the conventional IA scheme
(baseline 1) does not scale linearly with the SNR anymore.
Comparing Fig. 5 with Fig. 4, it can be observed that the
proposed scheme achieves the performance gain on fairness
without sacrificing the total sum data rate.

C. Robustness to CSI Errors

In Fig. 6, we show the average worst-case data rates of
the proposed and baseline schemes for different levels of
CSI uncertainty. It can be observed that the proposed scheme
always achieves higher average worst-case data rate than
the baseline schemes. For example, the SINR maximization
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Fig. 6. Average worst-case data rate versus CSI errors.K = 3, N = M = 4,
L = 2 and SNR 18dB and 23dB.

algorithm (baseline 2) is designed assuming perfect CSI; its
performance degrades rapidly for CSI errorε > 0.02 and it
can be observed that the achieved data rate could decrease
with increasing SNR. On the other hand, the proposed scheme
achieves a robust degradation with respect to CSI errors.

VI. CONCLUSIONS

In this paper, we proposed a robust transceiver design for
theK-pair quasi-static MIMO interference channel with fair-
ness considerations. Specifically, we formulated the precoder-
decorrelator design as an optimization problem to maximize
the worst-case SINR among all users. We devised a low com-
plexity iterative algorithm based on AO and SDR techniques.
Numerical results verify the advantages of incorporating into
transceiver design for the interference channel importantprac-
tical issues such as CSI uncertainty and fairness performance.

APPENDIX A
PROOF: WORST-CASE SINR WITH IMPERFECTCSIT

Given CSI estimatesĤ = {Ĥ
(k,j)}Kj,k=1 at the trans-

mitter, the worst-case SINR for each data stream estimate
can be expressed as follows. Considers̃

(k)
l whose SINR

γ
(k)
l (H, {{v(j)m }Lj

m=1}Kj=1, u
(k)
l ) is given by (23a). First, by the

triangle inequality

||(u(k)
l )†(Ĥ

(k,j)
+∆

(k,j))v(j)m ||2

≥ ||(u(k)
l )†Ĥ

(k,j)
v(j)m ||2 − ||(u(k)

l )†∆(k,j)v(j)m ||2,
||(u(k)

l )†(Ĥ
(k,j)

+∆
(k,j))v(j)m ||2

≤ ||(u(k)
l )†Ĥ

(k,j)
v(j)m ||2 + ||(u(k)

l )†∆(k,j)v(j)m ||2,
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γ
(k)
l (H, {{v(j)m }Lj

m=1}Kj=1, u
(k)
l )

=
||(u(k)

l )†(Ĥ
(k,k)

+∆
(k,k))v(k)

l ||2

∑Lk
m=1
m 6=l

||(u(k)
l )†(Ĥ

(k,k)
+∆(k,k))v(k)

m ||2+
∑

K
j=1
j 6=k

∑Lj
m=1 ||(u(k)

l )†(Ĥ
(k,j)

+∆(k,j))v(j)m ||2+N0||u
(k)
l ||2

(23a)

≥ ||(u(k)
l )†Ĥ

(k,k)
v(k)
l ||2−||(u(k)

l )†∆(k,k)v(k)
l ||2

∑K
j=1

∑Lj
m=1(||(u

(k)
l )†Ĥ

(k,j)
v(j)m ||2+||(u(k)

l )†∆(k,j)v(j)m ||2)−(||(u(k)
l )†Ĥ

(k,k)
v(k)
l ||2+||(u(k)

l )†∆(k,k)v(k)
l ||2)+N0||u

(k)
l ||2

(23b)

≥ ||(u(k)
l )†Ĥ

(k,k)
v(k)
l ||2−ε||u(k)

l ||2||v(k)
l ||2

∑K
j=1

∑Lj
m=1 ||(u(k)

l
)†Ĥ

(k,j)
v(j)m ||2+ε||u(k)

l
||2
∑K

j=1

∑Lj
m=1 ||v(j)m ||2−||(u(k)

l
)†Ĥ

(k,k)
v(k)
l

||2−ε||u(k)
l

||2||v(k)
l

||2+N0||u
(k)
l

||2
(23c)

, γ̃
(k)
l (Ĥ, {{v(j)m }Lj

m=1}Kj=1, u
(k)
l ).

and so the SINR is lowered bounded as (23b). Second, with
CSI error||∆(k,j)||2 ≤ ε,

||(u(k)
l )†∆(k,j)v(j)m ||2

= Tr((u(k)
l )†∆(k,j)v(j)m (v(j)m )†(∆(k,j))†u(k)

l )
(a)

≤ Tr(u(k)
l (u(k)

l )†)Tr(∆(k,j)v(j)m (v(j)m )†(∆(k,j))†)
(b)

≤ Tr(u(k)
l (u(k)

l )†)Tr((∆(k,j))†∆(k,j))︸ ︷︷ ︸
=||∆(k,j)||2

Tr(v(j)m (v(j)m )†)

= ε||u(k)
l ||2||v(j)m ||2,

where (a) and (b) follow from the properties that Tr(AB) =
Tr(BA) for A ∈ CM×N and B ∈ CN×M and Tr(CD) ≤
Tr(C)Tr(D) for positive semi-definiteC,D ∈ CN×N . Thus,
the worst-case SINR perceived by the transmitter can be
expressed as (23c).

APPENDIX B
PROOF: OPTIMAL DECORRELATOR WITHFIXED

PRECODERS

From (12), the worst-case SINR of data stream estimates̃
(k)
l

can be expressed as

γ̃
(k)
l (Ĥ, {{v(j)m }Lj

m=1}Kj=1, u
(k)
l ) =

(u(k)
l )†E(k)

l u(k)
l

(u(k)
l )†F(k)

l u(k)
l

, (24)

where

F(k)
l =

∑K
j=1

∑Lj

m=1 Ĥ
(k,j)

v(j)m (v(j)m )†(Ĥ
(k,j)

)†

+ε
∑K

j=1

∑Lj

m=1 ||v
(j)
m ||2IN − Ĥ

(k,k)
v(k)l (v(k)l )†(Ĥ

(k,k)
)†

−ε||v(k)l ||2IN +N0IN ,

which is a Hermitian and positive definite matrix, and

E(k)
l = Ĥ

(k,k)
v(k)l (v(k)l )†(Ĥ

(k,k)
)† − ε||v(k)l ||2IN ,

which is a non-negative definite8 Hermitian matrix. Without
loss of generality, letu(k)

l = c(F(k)
l )−

1
2 w(k)

l for arbitrary
scaling factorc ∈ C. We can equivalently expressed (24) as

(u(k)
l )†E(k)

l u(k)
l

(u(k)
l )†F(k)

l u(k)
l

=
(w(k)

l )†(F(k)
l )−

1
2 E(k)

l (F(k)
l )−

1
2 w(k)

l

(w(k)
l )†w(k)

l

(25)

=
(w(k)

l )†QΛQ†w(k)
l

(w(k)
l )†w(k)

l

,

8If E(k)
l

is negative definite, then the CSI errorε is too high. Without loss
of generality, we assumeε is sufficiently small.

where QΛQ† denotes the eigen-decomposition of
(F(k)

l )−
1
2 E(k)

l (F(k)
l )−

1
2 . It can be shown that9 (25) is

maximized with (w(k)
l )⋆ being the principal eigenvector10

of (F(k)
l )−

1
2 E(k)

l (F(k)
l )−

1
2 . In turn, the optimal unit norm

decorrelator is given by(u(k)
l )⋆ =

(F(k)
l )−

1
2 (w(k)

l )⋆

||(F(k)
l )−

1
2 (w(k)

l )⋆||
.

APPENDIX C
PROOF: OPTIMALITY OF THE SDR SOLUTION FOR

PROBLEM Q̃V

By using SDR, we solve the following SDP problem with
complex-valued parameters:

min
V(j)

m ,Ξ

Ξ (26a)

s. t.
∑Lj

m=1 Tr(V(j)
m ) ≤ ρjΞ, ∀j ∈ K

∑K

j=1

∑Lj

m=1Tr(A(k,j)
(l,m)V

(j)
m )≥b

(k)
l , ∀l∈Lk, ∀k∈K,(26b)

Ξ ≥ 0, (26c)

V(j)
m � 0, ∀m ∈ Lj , ∀j ∈ K, (26d)

whereA(k,j)
(l,m) ∈ HM is given by

A
(k,j)
(l,m)=




(Ĥ

(k,k)
)†u(k)

l (u(k)
l )†Ĥ

(k,k)−ε||u(k)
l ||2I if j=k

andm= l

−γ((Ĥ(k,j)
)†u(k)

l (u(k)
l )†Ĥ

(k,j)
+ε||u(k)

l ||2I) otherwise

andb(k)l = γN0||u(k)
l ||2 > 0. The corresponding dual problem

is given by the following SDP:

max
y
(k)
l

x(j)

∑K

k=1

∑Lk

l=1 y
(k)
l b

(k)
l (27a)

s. t. x(j)
I−∑K

k=1

∑Lk

l=1 y
(k)
l ρjA

(k,j)
(l,m)︸ ︷︷ ︸

=Z
(j)
m

�0, ∀m∈Lj , ∀j∈K,(27b)

1−∑K

j=1 x
(j) ≥ 0, (27c)

y
(k)
l ≥ 0, ∀k ∈ K, ∀l ∈ Lk, (27d)

x(j) ≥ 0, ∀j ∈ K, (27e)

9Please refer to [28, Appendix E].
10As per [29, Theorem 7.6.3] the principle eigenvalue of

(F(k)
l

)−
1
2 E(k)

l
(F(k)

l
)−

1
2 is always positive.
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Z
(j)
m = x(j)

I−∑K
k=1

∑Lk

l=1 y
(k)
l ρjA

(k,j)
(l,m) (29)

= x(j)
I+

∑K
k=1

∑Lk

l=1 y
(k)
l ρjγ

(
(Ĥ

(k,j)
)†u(k)

l (u(k)
l )†Ĥ

(k,j)
+ ε||u(k)

l ||2I
)
I{k 6= j&l 6= m}+ y

(j)
m ρjε||u(j)

m ||2I
︸ ︷︷ ︸

rankM

− y(j)m ρj(Ĥ
(j,j)

)†u(j)
m (u(j)

m )†Ĥ
(j,j)

︸ ︷︷ ︸
rank 1

.

Note that(V(j)
m )⋆ 6= 0, ∀j ∈ K, ∀m ∈ Lj , and from the

complementary conditions for the primal and dual SDP:

Tr(Z(j)
m (V(j)

m )⋆) = 0, ∀j ∈ K, ∀m ∈ Lj (28)

we can infer thatZ(j)
m 6≻ 0. Suppose that one of the optimal

values{{(y(k)l )⋆}Lk

l=1}Kk=1 for the dual problem, say(y(1)1 )⋆ =
0, then

Z
(1)
1 = x(1)

I+
K∑

k=1

Lk∑

l=1

y
(k)
l (−ρ1A

(k,1)
(l,1) )I{k 6= 1&l 6= 1} ≻ 0.

It contradicts the factZ(1)
1 6≻ 0, and hence(y(k)l )⋆ > 0, ∀k ∈

K, ∀l ∈ Lk. From (27b) and (29), rank(Z(j)
m ) ≥ M − 1. On

the other hand, from (28), sinceZ(j)
m ⊁ 0 so rank(Z(j)

m ) < M .
It follows that rank(Z(j)

m ) = M −1. Moreover, due to (28) the
optimal solution{{(V(j)

m )⋆}Lj

m=1}Kj=1 of primal problem (26)
must be of rank one. In other words, there will be zero duality
gap between the primal non-convex problem̃Qv and the dual
problem obtained by relaxing the rank constraint given by (27).

APPENDIX D
PROOF: CONVERGENCE OFALGORITHM 1

At the nth iteration of Algorithm 1, we denote
the precoders as{{ṽ(j)m [n]}Lj

m=1}Kj=1, the decorrelators as

{{ũ(j)
m [n]}Lj

m=1}Kj=1, the minimum SINR as̃γ[n], and the
transmit power scaling factor as̃β[n].

Upon initialization, we define the minimum SINR as
γ̃[0] = 0 and start with arbitrary precoders{{ṽ(j)m [0]}Lj

m=1}Kj=1,
where the transmit power of thej th source node is∑Lj

m=1(ṽ
(j)
m [0])†ṽ(j)m [0] = Pj , and the transmit power scaling

factor is β̃[0] = min(P1, . . . , PK).
In the following, we show that each iteration of Algorithm 1

increases the minimum SINR, i.e.̃γ[n] ≥ γ̃[n − 1], so
Algorithm 1 must converge.

In Step 1, given the precoders{{ṽ(j)m [n− 1]}Lj

m=1}Kj=1, the

decorrelators{{ũ(j)
m [n]}Lj

m=1}Kj=1 are optimized to increase the
minimum SINR, i.e.

γ̂= min
l∈Lk
k∈K

γ̃
(k)
l (Ĥ, {{ṽ(j)m [n−1]}Lj

m=1}Kj=1, ũ
(k)
l [n])

≥ min
l∈Lk
k∈K

γ̃
(k)
l (Ĥ, {{ṽ(j)m [n−1]}Lj

m=1}Kj=1, ũ
(k)
l [n−1])

= γ̃[n−1]. (30)

In Step 3, given the decorrelators{{ũ(j)
m [n]}Lj

m=1}Kj=1

and the minimum SINR constraint̂γ, the precoders

{{ṽ(j)m [n]}Lj

m=1}Kj=1 are optimized to jointly reduce the trans-
mit powers of all nodes, i.e. the minimum SINR is unchanged

γ̂= min
l∈Lk
k∈K

γ̃
(k)
l (Ĥ, {{ṽ(j)m [n]}Lj

m=1}Kj=1, ũ
(k)
l [n])

= min
l∈Lk
k∈K

γ̃
(k)
l (Ĥ, {{ṽ(j)m [n−1]}Lj

m=1}Kj=1, ũ
(k)
l [n])

whereas the transmit powers of all source nodes are reduced

ρj β̃[n]=
∑Lj

m=1(ṽ
(j)
m [n])†ṽ(j)m [n]

≤ ∑Lj

m=1(ṽ
(j)
m [n− 1])†ṽ(j)m [n− 1]

= Pj .

In Step 5, the precoders are up-scaled to the power con-

straint, i.e.v(j)m [n] =

√
Pj/(ρj β̃[n])v

(j)
m [n], where by defini-

tion P1/ρ1 = . . . = PK/ρK . As such, the minimum SINR is
increased according to

γ̂ = min
l∈Lk
k∈K

γ̃
(k)
l (Ĥ, {{v(j)m [n]}Lj

m=1}Kj=1, u
(k)
l [n])

=min
l∈Lk
k∈K

||(u(k)
l

[n])†Ĥ
(k,k)

v(k)
l

[n]||2−ε||u(k)
l

[n]||2||v(k)
l

[n]||2



∑K
j=1

∑Lj
m=1 ||(u(k)

l [n])†Ĥ
(k,j)

v(j)m [n]||2

+ε||u(k)
l [n]||2

∑K
j=1

∑Lj
m=1 ||v(j)m [n]||2−ε||u(k)

l [n]||2||v(k)
l [n]||2

−||(u(k)
l [n])†Ĥ

(k,k)
v(k)
l [n]||2+N0||u

(k)
l [n]||2




< min
l∈Lk
k∈K

γ̃
(k)
l (Ĥ, {{

√
PK/(ρK β̃[n])v(j)m [n]}Lm=1}Kj=1, u

(k)
l [n])

=min
l∈Lk
k∈K

||(u(k)
l [n])†Ĥ

(k,k)
v(k)
l [n]||2−ε||u(k)

l [n]||2||v(k)
l [n]||2



∑K
j=1

∑Lj
m=1 ||(u(k)

l [n])†Ĥ
(k,j)

v(j)m [n]||2

+ε||u(k)
l [n]||2

∑K
j=1

∑Lj
m=1 ||v(j)m [n]||2−ε||u(k)

l [n]||2||v(k)
l [n]||2

−||(u(k)
l

[n])†Ĥ
(k,k)

v(k)
l

[n]||2+
N0

(PK/ρK )(1/β̃[n])
||u(k)

l
[n]||2




= γ̃[n]. (31)

It follows from (30) and (31) that the minimum SINR increases
with each iteration, i.e.̃γ[n] ≥ γ̂ ≥ γ̃[n−1], and Algorithm 1
must converge.
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