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Abstract

A fast algorithm for inverse Cholesky factorization is proposed, to compute a triangular square-root of the

estimation error covariance matrix for Vertical Bell Laboratories Layered Space-Time architecture (V-BLAST). It is

then applied to propose an improved square-root algorithm for V-BLAST, which speedups several steps in the previous

one, and can offer further computational savings in MIMO Orthogonal Frequency Division Multiplexing (OFDM)

systems. Compared to the conventional inverse Cholesky factorization, the proposed one avoids the back substitution

(of the Cholesky factor), and then requires only half divisions. The proposed V-BLAST algorithm is faster than the

existing efficient V-BLAST algorithms. The expected speedups of the proposed square-root V-BLAST algorithm over

the previous one and the fastest known recursive V-BLAST algorithm are 3.9 ∼ 5.2 and 1.05 ∼ 1.4, respectively.

Index Terms

MIMO, V-BLAST, square-root, fast algorithm, inverse Cholesky factorization.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless communication systems can achieve huge channel capacities

[1] in rich multi-path environments through exploiting the extra spatial dimension. Bell Labs Layered Space-Time

architecture (BLAST) [2], including the relative simple vertical BLAST (V-BLAST) [3], is such a system that

maximizes the data rate by transmitting independent data streams simultaneously from multiple antennas. V-BLAST

often adopts the ordered successive interference cancellation (OSIC) detector [3], which detects the data streams

iteratively with the optimal ordering. In each iteration, the data stream with the highest signal-to-noise ratio (SNR)

among all undetected data streams is detected through a zero-forcing (ZF) or minimum mean-square error (MMSE)

filter. Then the effect of the detected data stream is subtracted from the received signal vector.
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Some fast algorithms have been proposed [4]–[11] to reduce the computational complexity of the OSIC V-BLAST

detector [3]. An efficient square-root algorithm was proposed in [4] and then improved in [5], which also partially

inspired the modified decorrelating decision-feedback algorithm [6]. In additon, a fast recursive algorithm was

proposed in [7] and then improved in [8]–[11]. The improved recursive algorithm in [8] requires less multiplications

and more additions than the original recursive algorithm [7]. In [9], the author gave the “fastest known algorithm”

by incorporating improvements proposed in [10], [11] for different parts of the original recursive algorithm [7], and

then proposed a further improvement for the “fastest known algorithm”.

On the other hand, most future cellular wireless standards are based on MIMO Orthogonal Frequency Division

Multiplexing (OFDM) systems, where the OSIC V-BLAST detectors [3]–[11] require an excessive complexity to

update the detection ordering and the nulling vectors for each subcarrier. Then simplified V-BLAST detectors with

some performance degradation are proposed in [12], [13], which update the detection [12] or the detection ordering

[13] per group of subcarriers to reduce the required complexity.

In this letter, a fast algorithm for inverse Cholesky factorization [14] is deduced to compute a triangular square-

root of the estimation error covariance matrix for V-BLAST. Then it is employed to propose an improved square-root

V-BLAST algorithm, which speedups several steps in the previous square-root V-BLAST algorithm [5], and can

offer further computational savings in MIMO OFDM systems.

This letter is organized as follows. Section II describes the V-BLAST system model. Section III introduces the

previous square-root algorithm [5] for V-BLAST. In Section IV, we deduce a fast algorithm for inverse Cholesky

factorization. Then in Section V, we employ it to propose an improved square-root algorithm for V-BLAST. Section

VI evaluates the complexities of the presented V-BLAST algorithms. Finally, we make conclusion in Section VII.

In the following sections, (•)T , (•)∗ and (•)H denote matrix transposition, matrix conjugate, and matrix conjugate

transposition, respectively. 0M is the M × 1 zero column vector, while IM is the identity matrix of size M .

II. SYSTEM MODEL

The considered V-BLAST system consists of M transmit antennas and N(≥ M) receive antennas in a rich-

scattering and flat-fading wireless channel. The signal vector transmitted from M antennas is a = [a1, a2, · · · , aM ]T

with the covariance E(aaH) = σ2
aIM . Then the received signal vector

x = H · a+w, (1)

where w is the N × 1 complex Gaussian noise vector with the zero mean and the covariance σ2
wIN , and

H = [h1,h2, · · · ,hM ] = [h1,h2, · · · ,hN ]H

is the N × M complex channel matrix. Vectors hm and hH
n represent the mth column and the nth row of H,

respectively.

Define α = σ2
w/σ

2
a. The linear MMSE estimate of a is

â =
(

HHH+ αIM
)

−1
HHx. (2)
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As in [4], [5], [7]–[11], we focus on the MMSE OSIC detector, which usually outperforms the ZF OSIC detector

[7]. Let

R = HHH+ αIM . (3)

Then the estimation error covariance matrix [4]

P = R−1 =
(

HHH+ αIM
)

−1
. (4)

The OSIC detection detects M entries of the transmit vector a iteratively with the optimal ordering. In each

iteration, the entry with the highest SNR among all the undetected entries is detected by a linear filter, and then its

interference is cancelled from the received signal vector [3]. Suppose that the entries of a are permuted such that

the detected entry is aM , the M th entry. Then its interference is cancelled by

x(M−1) = x(M) − hMaM , (5)

where aM is treated as the correctly detected entry, and the initial x(M) = x. Then the reduced-order problem is

x(M−1) = HM−1aM−1 +w, (6)

where the deflated channel matrix HM−1 = [h1,h2 · · · ,hM−1], and the reduced transmit vector aM−1 =

[a1, a2, · · · , aM−1]
T . Correspondingly we can deduce the linear MMSE estimate of aM−1 from (6). The detection

will proceed iteratively until all entries are detected.

III. THE SQUARE-ROOT V-BLAST ALGORITHMS

The square-root V-BLAST algorithms [4], [5] calculate the MMSE nulling vectors from the matrix F that satisfies

FFH = P. (7)

Correspondingly F is a square-root matrix of P. Let

Hm = [h1,h2, · · · ,hm] (8)

denote the first m columns of H. From Hm, we define the corresponding Rm, Pm and Fm by (3), (4) and (7),

respectively. Then the previous square-root V-BLAST algorithm in [5] can be summarized as follows.

The Previous Square-Root V-BLAST Algorithm

Initialization:

P1) Let m = M . Compute an initial F = FM : Set P
1/2
0 = (1/

√
α)IM . Compute Πi =





1 hH
i P

1/2
i−1

0M P
1/2
i−1



 and

ΠiΘi =





× 0T
M

× P
1/2
i



 iteratively for i = 1, 2, · · · , N , where “×” denotes irrelevant entries at this time,

and Θi is any unitary transformation that block lower-triangularizes the pre-array Πi. Finally F = P
1/2
N .

Iterative Detection:

April 2, 2020 DRAFT
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P2) Find the minimum length row of Fm and permute it to the last row. Permute am and Hm accordingly.

P3) Block upper-triangularize Fm by

FmΣ =





Fm−1 um−1

0T
m−1 λm



 , (9)

where Σ is a unitary transformation, um−1 is an (m− 1)× 1 column vector, and λm is a scalar.

P4) Form the linear MMSE estimate of am, i.e.,

âm = λm

[

uH
m−1 (λm)∗

]

HH
mx(m). (10)

P5) Obtain am from âm via slicing.

P6) Cancel the interference of am in x(m) by (5), to obtain the reduced-order problem (6) with the corresponding

x(m−1), am−1, Hm−1 and Fm−1.

P7) If m > 1, let m = m− 1 and go back to step P2.

IV. A FAST ALGORITHM FOR INVERSE CHOLESKY FACTORIZATION

The previous square-root algorithm [5] requires extremely high computational load to compute the initial F in

step P1. So we propose a fast algorithm to compute an initial F that is upper triangular.

If Fm satisfies (7), any FmΣ also satisfies (7). Then there must be a square-root of Pm in the form of

Fm =





Fm−1 um−1

0T
m−1 λm



 , (11)

as can be seen from (9). We apply (11) to compute Fm from Fm−1, while the similar equation (9) is only employed

to compute Fm−1 from Fm in [4] and [5].

From (11), we obtain

F−1
m =





F−1
m−1 −F−1

m−1um−1/λm

0T
m−1 1/λm



 . (12)

On the other hand, it can be seen that Rm defined from Hm by (3) is the m×m leading principal submatrix of

R [7]. Then we have

Rm =





Rm−1 vm−1

vH
m−1 βm



 . (13)

Now let us substitute (13) and (12) into

F−H
m F−1

m = Rm, (14)

which is deduced from (7) and (4). Then we obtain










× −F
−H

m−1
F

−1

m−1
um−1

λm

× u
H

m−1
F

−H

m−1
F

−1

m−1
um−1+1

λmλ∗

m











=





Rm−1 vm−1

vH
m−1 βm



 , (15)
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where “×” denotes irrelevant entries. From (15), we deduce






−F−H
m−1F

−1
m−1um−1/λm = vm−1, (16a)

(uH
m−1F

−H
m−1F

−1
m−1um−1 + 1)/(λmλ∗

m) = βm. (16b)

From (16), finally we can derive






λm = 1/
√

βm − vH
m−1Fm−1F

H
m−1vm−1, (17a)

um−1 = −λmFm−1F
H
m−1vm−1. (17b)

We derive (17b) from (16a). Then (17b) is substituted into (16b) to derive

λmλ∗

m =
(

βm − vH
m−1Fm−1F

H
m−1vm−1

)

−1
, (18)

while a λm satisfying (18) can be computed by (17a).

We can use (17) and (11) to compute Fm from Fm−1 iteratively till we get FM . The iterations start from F1

satisfying (14), which can be computed by

F1 =

√

R−1
1 . (19)

Correspondingly instead of step P1, we can propose step N1 to compute an initial upper-triangular F, which includes

the following sub-steps.

The Sub-steps of Step N1

N1-a) Assume the successive detection order to be tM , tM−1, · · · , t1. Correspondingly permute H to be H = HM =

[ht1 ,ht2 , · · · ,htM ], and permute a to be a = aM = [at1 , at2 , · · · , atM ]T .

N1-b) Utilize the permuted H to compute RM , where we can obtain all Rm−1s, vm−1s and βms [7] (for m =

M,M − 1, · · · , 2), as shown in (13).

N1-c) Compute F1 by (19). Then use (17) and (11) to compute Fm from Fm−1 iteratively for m = 2, 3, · · · ,M ,

to obtain the initial F = FM .

The obtained upper triangular FM is equivalent to a Cholesky factor [14] of PM = R−1
M , since FM and PM

can be permuted to the lower triangular FM and the corresponding PM , which still satisfy (7). Notice that the FM

with columns exchanged still satisfies (7), while if two rows in FM are exchanged, the corresponding two rows

and columns in PM need to be exchanged.

Now from (13), (7) and (4), it can be seen that (9) (proposed in [4]) and (11) actually reveal the relation between

the mth and the (m−1)th order inverse Cholesky factor of the matrix R. This relation is also utilized to implement

adaptive filters in [15], [16], where the mth order inverse Cholesky factor is obtained from the mth order Cholesky

factor [15, equation (12)], [16, equation (16)]. Thus the algorithms in [15], [16] are still similar to the conventional

matrix inversion algorithm [17] using Cholesky factorization, where the inverse Cholesky factor is computed from

the Cholesky factor by the back-substitution (for triangular matrix inversion), an inherent serial process unsuitable

for the parallel implementation [18]. Contrarily, the proposed algorithm computes the inverse Cholesky factor of
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Rm from Rm directly, as shown in (17) and (11). Then it can avoid the conventional back substitution of the

Cholesky factor.

In a word, although the relation between the mth and the (m − 1)th order inverse Cholesky factor (i.e. (9)

and (11)) has been mentioned [4], [15], [16], our contributions in this letter include substituting this relation into

(14) to find (18) and (17). Specifically, to compute the mth order inverse Cholesky factor, the conventional matrix

inversion algorithm using Cholesky factorization [17] usually requires 2m divisions (i.e. m divisions for Cholesky

factorization and the other m divisions for the back-substitution), while the proposed algorithm only requires m

divisions to compute (19) and (17a).

V. THE PROPOSED SQUARE-ROOT V-BLAST ALGORITHM

Now RM has been computed in sub-step N1-b. Thus as the recursive V-BLAST algorithm in [11], we can also

cancel the interference of the detected signal am in

zm = HH
mx(m) (20)

by

zm−1 = z[−1]
m − am · vm−1, (21)

where z
[−1]
m is the permuted zm with the last entry removed, and vm−1 is in the permuted Rm [9], [11], as shown

in (13). Then to avoid computing HH
mx(m) in (10), we form the estimate of am by

âm = λm ·
[

(um−1)
H (λm)∗

]

· zm. (22)

It is required to compute the initial zM . So step N1 should include the following sub-step N1-d.

N1-d) Compute zM = HH
Mx(M) = HH

Mx.

The proposed square-root V-BLAST algorithm is summarized as follows.

The Proposed Square-root V-BLAST Algorithm

Initialization:

N1) Set m = M . Compute RM , zM and the initial upper triangular F = FM . This step includes the above-

described sub-steps N1-a, N1-b, N1-c and N1-d.

Iterative Detection:

N2) Find the minimum length row in Fm and permute it to be the last mth row. Correspondingly permute am,

zm, and rows and columns in Rm [9].

N3) Block upper-triangularize Fm by (9).

N4) Form the least-mean-square estimate âm by (22).

N5) Obtain am from âm via slicing.

N6) Cancel the effect of am in zm by (21), to obtain the reduced-order problem (6) with the corresponding zm−1,

am−1, Rm−1 and Fm−1.

April 2, 2020 DRAFT
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N7) If m > 1, let m = m− 1 and go back to step N2.

Since FM obtained in step N1 is upper triangular, step N3 requires less computational load than the corresponding

step P3 (described in Section III), which is analyzed as follows.

Suppose that the minimum length row of FM found in step N2 is the ith row, which must be

[

0 · · · 0 fii · · · fiM

]

with the first i − 1 entries to be zeros. Thus in step N3 the transformation Σ can be performed by only (M − i)

Givens rotations [14], i.e.,

Σ
g
M = Ωi

i,i+1Ω
i
i+1,i+2 · · ·Ωi

M−1,M =
M−1
∏

j=i

Ωi
j,j+1, (23)

where the Givens rotation Ωi
k,n rotates the kth and nth entries in each row of FM , and zeroes the kth entry in the

ith row.

In step N2, we can delete the ith row in FM firstly to get F̄M , and then add the deleted ith row to F̄M as the

last row to obtain the permuted FM . Now it is easy to verify that the FM−1 obtained from FMΣ
g
M by (9) is still

upper triangular. For the subsequent m = M − 1,M − 2, · · · , 2, we also obtain Fm−1 from FmΣg
m by (9), where

Σg
m is defined by (23) with M = m. Correspondingly we can deduce that Fm−1 is also triangular. Thus Fm is

always triangular, for m = M,M − 1, · · · , 1.

To sum up, our contributions in this letter include steps N1, N3, N4 and N6 that improve steps P1, P3, P4 and P6

(of the previous square-root V-BLAST algorithm [5]), respectively. Steps N4 and N6 come from the extension of

the improvement in [11] (for the recursive V-BLAST algorithm) to the square-root V-BLAST algorithm. However,

it is infeasible to extend the improvement in [11] to the existing square-root V-BLAST algorithms in [4], [5], since

they do not provide RM that is required to get vm−1 for (21).

VI. COMPLEXITY EVALUATION

In this section, (j, k) denotes the computational complexity of j complex multiplications and k complex additions,

which is simplified to (j) if j = k. Similarly, 〈χ1, χ2, χ3〉 denotes that the speedups in the number of multiplications,

additions and floating-point operations (flops) are χ1, χ2 and χ3, respectively, which is simplified to 〈χ1〉 if

χ1 = χ2 = χ3. Table I compares the expected complexity of the proposed square-root V-BLAST algorithm and

that of the previous one in [5]. The detailed complexity derivation is as follows.

In sub-step N1-c, the dominant computations come from (17). It needs a complexity of
(

(m−1)m
2

)

to compute

ym−1 = FH
m−1vm−1 firstly, where Fm−1 is triangular. Then to obtain the mth column of F, we compute (17) by







λm =
√

1/
(

βm − yH
m−1ym−1

)

, (24a)

um−1 = −λmFm−1ym−1. (24b)

In (24), the complexity to compute Fm−1ym−1 is
(

(m−1)m
2

)

, and that to compute the other parts is (O(m)). So

sub-step N1-c totally requires a complexity of

(

M
∑

m=2

(m−1)m
2 × 2 +O(m)

)

=
(

M3

3 +O(M2)
)

to compute (17)
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for M − 1 iterations, while sub-step N1-b requires a complexity of (M
2N
2 ) [7] to compute the Hermitian RM . As

a comparison, in each of the N(> M − 1) iterations, step P1 computes hH
i P

1/2
i−1 to form the (M + 1)× (M + 1)

pre-array Πi, and then block lower-triangularizes Πi by the (M + 1)× (M + 1) Householder transformation [5].

Thus it can be seen that step P1 requires much more complexity than the proposed step N1.

In steps N3 and P3, we can apply the efficient complex Givens rotation [19] Φ = 1
q





c s

−s∗ c



 to rotate

[

d e
]

into
[

0 (e/ |e|) q
]

, where c = |e| and q =

√

|e|2 + |d|2 are real, and s = (e/ |e|) d∗ is complex. The

efficient Givens rotation equivalently requires [7] 3 complex multiplications and 1 complex additions to rotate a

row. Correspondingly the complexity of step P3 is (M3, 13M
3). Moreover, step P3 can also adopt a Householder

reflection, and then requires a complexity of (23M
3) [5]. On the other hand, the Givens rotation Ωi

j,j+1 in (23)

only rotates non-zero entries in the first j+1 rows of the upper-triangular FM . Then (23) requires a complexity of
(

m−1
∑

j=i

3(j + 1) ≈ 3(m2
−i2)
2 , (m2

−i2)
2

)

. When the detection order assumed in sub-step N1-a is statistically indepen-

dent of the optimal detection order, the probabilities for i = 1, 2, · · · ,m are equal. Correspondingly the expected

(or average) complexity of step N3 is

(

M
∑

m=1

1
m

m
∑

i=1

3(m2
−i2)
2 ≈ M3

3 , M3

9

)

. Moreover, when the probability for i = 1

is 100%, step N3 needs the worst-case complexity, which is

(

M
∑

m=1

3(m2
−12)
2 ≈ M3

2 , M3

6

)

. Correspondingly we can

deduce that the worst-case complexity of the proposed V-BLAST algorithm is (23M
3 + M2N

2 , M3

3 + 7
2M

2N) −
(M

3

3 , M3

9 ) + (M
3

2 , M3

6 ) = (56M
3 + 1

2M
2N, 1

2M
3 + 1

2M
2N). The ratio between the worst-case and expected flops

of the proposed square-root algorithm is only 1.125, while recently there is a trend to study the expected, rather

than worst-case, complexity of various algorithms [20]. Thus only the expected complexity is considered in Table

I and in what follows.

In MIMO OFDM systems, the complexity of step N3 can be further reduced, and can even be zero. In sub-step

N1-a, we assume the detection order to be the optimal order of the adjacent subcarrier, which is quite similar or

even identical to the actual optimal detection order [13]. Correspondingly the required Givens rotations are less or

even zero. So the expected complexity of step N3 ranges from (13M
3, 1

9M
3) to zero, while the exact mean value

depends on the statistical correlation between the assumed detection order and the actual optimal detection order.

The complexities of the ZF-OSIC V-BLAST algorithm in [6] and the MMSE-OSIC V-BLAST algorithms in [4],

[7]–[9] are (12M
3 + 2M2N), (23M

3 + 4M2N +MN2) [5], (23M
3 + 3M2N, 1

2M
3 + 5

2M
2N), (23M

3 + 5
2M

2N)

and (23M
3 + 1

2M
2N), respectively. Let M = N . Also assume the transformation Σ in [5] to be a sequence of

efficient Givens rotations [19] that are hardware-friendly [4]. Then the expected speedups of the proposed square-root

algorithm over the previous one [5] range from
〈

9
2/

7
6 = 3.86, 236 / 17

18 = 4.06, 3.9
〉

to
〈

9
2/

5
6 = 5.4, 236 / 5

6 = 4.6, 5.2
〉

,

while the expected speedups of the proposed algorithm over the fastest known recursive algorithm [9] range from
〈

7
6/

7
6 = 1, 7

6/
17
18 = 1.24, 1.05

〉

to
〈

7
6/

5
6 = 1.4

〉

.

For more fair comparison, we modify the fastest known recursive algorithm [9] to further reduce the complexity.

We spend extra memories to store each intermediate Pm (m = 1, 2, · · · ,M − 1) computed in the initialization

phase, which may be equal to the Pm required in the recursion phase [9]. Assume the successive detection order

and permute H accordingly, as in sub-step N1-a. When the assumed order is identical to the actual optimal detection

April 2, 2020 DRAFT
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order, each Pm required in the recursion phase is equal to the stored Pm. Thus we can achieve the maximum

complexity savings, i.e. the complexity of
(

1
6M

3 +O(M2)
)

[9, equations (23) and (24)] to deflate Pms. On the

other hand, when the assumed order is statistically independent of the actual optimal detection order, there is an equal

probability for the m undetected antennas to be any of the CM
m possible antenna combinations. Correspondingly

1/CM
m = (M−m)!m!

M ! is the probability for the stored Pm to be equal to the Pm required in the recursion phase.

Thus we can obtain the minimum expected complexity savings, i.e. [9, equations (23) and (24)],
(

M
∑

m=2

1

CM
m

(m− 1)(m+ 2)

2
,

M
∑

m=2

1

CM
m

(m− 1)m

2

)

. (25)

The ratio of the minimum expected complexity savings to the maximum complexity savings is 22% when M = 4,

and is only 1.2% when M = 16. It can be seen that the minimum expected complexity savings are negligible

when M is large. The minimum complexity of the recursive V-BLAST algorithm [9] with the above-described

modification, which is (23M
3 + 1

2M
2N − 1

6M
3) = (12M

3 + 1
2M

2N), is still more than that of the proposed

square-root V-BLAST algorithm. When M = N , the ratio of the former to the latter is 1/ 5
6 = 1.2.

Assume M = N . For different number of transmit/receive antennas, we carried out some numerical experiments to

count the average flops of the OSIC V-BLAST algorithms in [4]–[9], the proposed square-root V-BLAST algorithm,

and the recursive V-BLAST algorithm [9] with the above-described modification. The results are shown in Fig. 1.

It can be seen that they are consistent with the theoretical flops calculation.

VII. CONCLUSION

We propose a fast algorithm for inverse Cholesky factorization, to compute a triangular square-root of the

estimation error covariance matrix for V-BLAST. Then it is employed to propose an improved square-root algorithm

for V-BLAST, which speedups several steps in the previous one [5], and can offer further computational savings in

MIMO OFDM systems. Compared to the conventional inverse Cholesky factorization, the proposed one avoids the

back substitution (of the Cholesky factor), an inherent serial process unsuitable for the parallel implementation [18],

and then requires only half divisions. The proposed V-BLAST algorithm is faster than the existing efficient V-BLAST

algorithms in [4]–[11]. Assume M transmitters and the equal number of receivers. In MIMO OFDM systems, the

expected speedups (in the number of flops) of the proposed square-root V-BLAST algorithm over the previous

one [5] and the fastest known recursive V-BLAST algorithm [9] are 3.9 ∼ 5.2 and 1.05 ∼ 1.4, respectively. The

recursive algorithm [9] can be modified to further reduce the complexity at the price of extra memory consumption,

while the minimum expected complexity savings are negligible when M is large. The speedups of the proposed

square-root algorithm over the fastest known recursive algorithm [9] with the above-mentioned modification are

1.2, when both algorithms are assumed to achieve the maximum complexity savings. Furthermore, as shown in

[21], the proposed square-root algorithm can also be applied in the extended V-BLAST with selective per-antenna

rate control (S-PARC), to reduce the complexity even by a factor of M .
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TABLE I

COMPLEXITY COMPARISON BETWEEN THE PROPOSED SQUARE-ROOT V-BLAST ALGORITHM AND THE PREVIOUS SQUARE-ROOT

V-BLAST ALGORITHM IN [5]
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sqrt Alg in [4] with Householder
sqrt Alg in [5] with Givens
sqrt Alg in [5] with Householder
recursive Alg in [7]
recursive Alg in [8]
ZF−OSIC Alg in [6]
recursive Alg in [9]
modified recur Alg (maximum mean value)
proposed sqrt Alg (maximum mean value)
modified recur Alg (minimum mean value)
proposed sqrt Alg (minimum mean value)

Fig. 1. Comparison of computational complexities among the MMSE-OSIC algorithms in [4], [5], [7]–[9] and this letter, and the ZF-OSIC

algorithm in [6]. “sqrt” and “Alg” means square-root and algorithm, respectively. “· · · with Householder” and “· · · with Givens” adopt a

Householder reflection and a sequence of Givens rotations, respectively. Moreover, “modified recur Alg” is the recursive algorithm [9] with the

modification described in this letter.
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