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Abstract— The mutual information (MI) of multiple-input
multiple-output (MIMO) system over Rayleigh fading channel is
known to asymptotically follow a normal probability distribution.
In this paper, we first prove that the MI of distributed MIMO
(DMIMO) system is also asymptotically equivalent to a Gaussian
random variable (RV) by deriving its moment generating function
(MGF) and by showing its equivalence with the MGF of a
Gaussian RV. We then derive an accurate closed-form approx-
imation of the outage probability for DMIMO system by using
the mean and variance of the MI and show the uniqueness of
its formulation. Finally, several applications for our analysis are
presented.

Index Terms— Cooperative communication, distributed
MIMO, asymptotical analysis, outage probability.

I. INTRODUCTION

Calculation of the channel capacity for multiple-input

multiple-output (MIMO) system over the Rayleigh fading

channel has attracted considerable research interests in the past

decades [1]–[3]. Recently, it has been shown by various au-

thors using different methods that the mutual information (MI),

also known as instantaneous capacity, of the MIMO Rayleigh

fading channel is equivalent to a Gaussian random variable

(RV) [4]–[7]. This result has been theoretically obtained for a

large number of inputs and outputs of the MIMO channel and

has been confirmed by simulations for even a small number of

inputs and outputs [5], [6], [8]. Moreover, this result has been

used to obtain an approximation of the outage probability for

MIMO system in [7]. As far as distributed MIMO (DMIMO)

system is concerned, its MI has a similar formulation as the

MI of MIMO system over the semicorrelated Rayleigh fading

channel when the system model for DMIMO in [9] or [10] is

assumed. An exact computable formula of the characteristic

function has been derived for this type of channel in [11]

and the equivalence of the MI with a Gaussian RV has

been suggested for a large number of antennas but has only

been shown numerically. Then in [10], the equivalence has

been stated and closed-form approximations of the mean and

variance of the MI have been derived at high signal-to-noise

ratios (SNRs) for DMIMO systems having a large number of

nodes and antennas.

Based on the system model presented in Section II [9],

[10], we first prove in Section III that the MI of a m-nodes

DMIMO system is asymptotically equivalent to a Gaussian
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RV by using random matrix theory [12] and the multiple

saddle point integration technique [13]. We derive the moment

generating function (MGF) of the MI for a large number of

nodes and antennas, and we show that its formulation is the

same as the MGF of a Gaussian RV. We obtain the moments

of the MI by identifying them with the moments of a Gaussian

RV. Next, we derive a closed-form approximation of the outage

probability for DMIMO system, which becomes tighter as the

number of nodes and antennas of the system increases, by

using the mean and variance of the MI. Our mean and variance

expressions are given in terms of the roots of a polynomial

of degree m + 1. In Section IV, we first prove that the root

selection is unique for m = 1, we then generalize the proof for

any m values and, hence, demonstrate the uniqueness of our

closed-form approximation. Accuracy of our approximation is

discussed in Section V and is shown for even a small number

of nodes and antennas. Several applications for our analysis

are presented in Section V and, finally, conclusions are drawn

in Section VI.

In comparison with the work in [11], we prove the Gaussian

behavior of the MI and provide an accurate closed-form

approximation of the MI MGF that can be used for any

configuration of rows and columns of the channel matrix.

Whereas the case where the number of rows is greater than

the number of columns has not been tackled by the analysis

in [11]. In addition, our approximation can be used for both

DMIMO downlink and uplink scenarios and for any SNR

settings. Whereas the approximation in [10] has been designed

for high SNR values only. Some preliminary results of this

work have been presented in [14].

II. SYSTEM MODEL

We consider a DMIMO communication system composed of

several nodes, which are in different locations, where m base

stations (BSs) equipped of p antennas cooperate to transmit/

receive data to/from a mobile station (MS) equipped with q
antennas, as it is illustrated in Fig. 1. We also assume as in

[9] and [10] that all mp antennas have a separate feeder to the

central unit where all signal processing is done. The matrices

Σi and Hi represent the average path loss/shadowing and the

MIMO Rayleigh fading channel, respectively, between the i-
th BS and the MS, i ∈ {1, . . . ,m}. The equivalent channel

model of the system depicted in Fig. 1 is then defined as

H̃ = Σ ⊙ H, where H = [H†
1,H

†
2, . . . ,H

†
m]†, (.)† is the

Hermitian transpose operator, ⊙ is the entry-wise product

between any two matrices, H̃ ∈ C
Nr×Nt , H ∈ C

Nr×Nt

and Σ ∈ R
Nr×Nt

+ with R+ = {x ∈ R|x ≥ 0}. Moreover,
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Fig. 1. Distributed MIMO system model.

Σ = Γ , [Γ†
1,Γ

†
2, . . . ,Γ

†
m]† and Σ = Γ† in the uplink and

downlink cases, respectively, with Γi ∈ R
p×q
+ . Furthermore,

the total number of transmit and receive antennas of the

DMIMO system is defined as Nt and Nr, respectively. In the

uplink case Nt = n = q and Nr = mp, whereas in the

downlink case Nt = mp, Nr = q and n = p, where n is the

number of transmit antenna per node. Accordingly, the receive

signal r ∈ C
Nr×1 can be expressed as

r = H̃s + n, (1)

where s ∈ C
Nt×1 is the transmit signal with average transmit

power P and n ∈ C
Nr×1 is the noise vector containing

the random noise samples from each receiver with average

noise power N . We assume that H is a random matrix having

independent and identically distributed (i.i.d.) complex circular

Gaussian entries with zero-mean and unit variance. The MI of

the composite channel H̃, C(H̃), can then be defined as

C(H̃) , λ ln
∣∣∣INr

+
γ

n
H̃H̃†

∣∣∣ , (2)

where γ , P/N , γ ∈ R+, is the average SNR, INr
is a Nr ×

Nr identity matrix and λ = 1 if the capacity is expressed in

nats/s/Hz or λ = 1
ln(2) if the capacity is expressed in bits/s/Hz.

Notice that if p = 1 and Γi =
√
γi1

1×q, γi ∈ R
+, where 11×q

is a 1× q vector with all its elements equal to one, then (2) is

the expression of the MIMO semicorrelated Rayleigh fading

MI [11].

III. CLOSED-FORM APPROXIMATION OF THE DMIMO

OUTAGE PROBABILITY

Following a similar approach as in [4] and [5], we first prove

that C(H̃) is asymptotically equivalent to a Gaussian RV and

then derive its mean and variance for large values of m, p and

q.

The MGF of the RV C(H̃) can be expressed as

MC(H̃)(−u/λ) , EH{exp[(−u/λ)C(H̃)]}

= π−NrNt

∫

CNr×Nt

e(−‖H‖2

F )φ(H̃)−udH,

= π−NrNt

∫

CNr×Nt

∫

CNr×u

∫

CNt×u

e−π tr[(X†X+Y†Y)]ψ(H)

×dHdXdY,
(3)

where EH{.} is the expectation over H, ‖.‖F denotes

the Frobenius norm, tr[.] is the trace of a matrix

and φ(H̃) =
∣∣∣INr

+ γ
nH̃H̃†

∣∣∣. In addition, ψ(H) =

exp
(
− tr

[
j
(
H̃B† + BH̃†

)
+ HH†

])
, B = π

√
γ/nXY†,

B ∈ C
Nr×Nt , X ∈ C

Nr×u, Y ∈ C
Nt×u and u is a dummy

variable used in the replica method [15]. By integrating ψ(H)
with respect to H, (3) can be rewritten as

MC(H̃)(−u/λ) =

∫

CNr×u

∫

CNt×u

e−π tr[(X†X+Y†Y)]

× e−π2 γ
n

tr[(Σ⊙XY†)(Σ⊙XY†)†]dXdY.

(4)

Let Γi =
√
γi1

p×v , then the following equalities (Γ ⊙
XY†) = (Γ⊙X)Y† and (Γ†⊙XY†) = X(Γ†⊙Y†) hold in

the uplink and downlink, respectively, with v = q in the left

hand side and v = u in the right hand side of each equality.

Thus, (4) can be re-expressed in the uplink as

MC(H̃)(−u/λ) =

∫

CNr×u

∫

CNt×u

e−π tr[(X†X+Y†Y)]

× e−π2 γ
n

tr[WY†YW†]dXdY,

(5)

where W , (Γ ⊙ X). Following some simplifications, (5) is

modified as

MC(H̃)(−u/λ) =exp

(
un

[
(mα+ β) ln(ω)+α

m∑

i=1

ln(υi)

])

×
(

n

j2π

)u2 ∫

Dj

d

∫

Dg

exp(nϕ(D,G))dDdG,

(6)

where α , p/n, β , q/n, υi , 1/γi and ω ,

1/
√
γ. In addition, Dj

d , D0 + (jRu×u), Dg , G0 +

(Ru×u), D,G,D0,G0 ∈ C
u×u and ϕ(D,G) , tr(DG) −

α
∑m

i=1 ln |ωυiIu + D| − β ln |ωIu + G|. At this stage, we

apply the multidimensional saddle point integration method

in [13] for integrating the integral part of (6). After further

derivation steps and simplifications, we obtain

MC(H̃)(−u/λ) → exp

(
un

[
β ln

(
ωd0

β

)
+α

m∑

i=1

d0

d0 + ωυi

+α
m∑

i=1

ln

(
ωυi

d0 + ωυi

)]
+
u2

2

[
− ln

(
1 − d̂0ĝ0

)])
,

(7)

where d̂0 = α
∑m

i=1(d0 + ωυi)
−2, ĝ0 = d2

0/β and d0 is one

of the m+ 1 roots of the following degree-m polynomial

Pm(d)=(dω−β)
m∏

i=1

(d+ωυi)+dα
m∑

i=1




m∏

k=1
k 6=i

(d+ ωυk)


 . (8)
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Knowing that the MGF of any Gaussian RV Z is MZ(t) ,

EZ{exp(tZ)} = exp
(
tµz + t2

2 σ
2
z

)
, with µz and σ2

z being the

mean and variance of Z, respectively, we conclude by match-

ing (7) with MZ(t) that C(H̃) is asymptotically equivalent to

a Gaussian RV with respective mean and variance given by




µC(H̃) =−λn
[
α

{
m−

m∑

i=1

[
ln

(
d0 + ωυi

ωυi

)
+

ωυi

d0 + ωυi

]}

+β ln

(
ωd0

β

)]

σ2
C(H̃)

=−λ2 ln

(
1 − α

β

m∑

i=1

(
d0

d0 + ωυi

)2
)
.

(9)

Notice that the expressions of µC(H̃) and σ2
C(H̃)

in (9) can be

used for both uplink and downlink scenarios with n = q, α =
p/q, β = 1 and n = p, α = 1, β = q/p, respectively.

The probability that the transmission rate R exceeds the MI

of the channel C(H̃) is defined as Pout , P
(
C(H̃) < R

)

when assuming that H̃ is chosen randomly and kept constant

over a codeword transmission [7]. Hence, the outage proba-

bility of DMIMO system is well approximated by

Pout ≈ Q
(
[µC(H̃) −R]/σC(H̃)

)
(10)

for large values of p, q and m > 1, since C(H̃) is equivalent

to a Gaussian RV in this case.

IV. UNIQUENESS OF THE SELECTION OF d0

The mean and variance of C(H̃) in (9) are both expressed

in terms of d0. The root d0 can be selected amongst the

m + 1 roots of Pm(d), and hence Pout in (10) would have

a unique expression only if the selection of d0 is unique for

any given m ≥ 2. The mean µC(H̃) and variance σ2
C(H̃)

are

constrained such that µC(H̃) ∈ R and σ2
C(H̃)

∈ R
⋆
+ with

R
⋆
+ = {x ∈ R+|x 6= 0}. Applying σ2

C(H̃)
∈ R

⋆
+ in (9), we

get [16]

σ2
C(H̃)

∈ R
⋆
+ ⇔ 0 <

m∑

i=1

(
d0

d0 + ωυi

)2

<
q

p
⇒





d0 ∈ (−∞, db) ∪ (da,+∞) , if q > pm,

d0 ∈ (db, da) , if q < pm,

d0 > −ωυ̂/2 , if q = pm,

(11)

where υ̂ = maxi{υi} for i ∈ {1,m}, da =

ωυ̂
[

q
pm−q +

√
pmq

|pm−q|

]
, and db = ωυ̂

[
q

pm−q −
√

pmq

|pm−q|

]
.

Clearly, db ≤ 0 if q 6= pm, da ≥ 0 only if q < pm and

the imaginary part of d0 is null. In addition, we simply obtain

µC(H̃) ∈ R ⇔ ln (ωd0/β) ∈ R ⇔ d0 ≥ 0. (12)

by applying µC(H̃) ∈ R in (9). Finally, using the results in

(11) and (12), d0 is such that

d0 ∈ R+ if q ≥ pm, or d0 ∈ [0, da) if q < pm. (13)

Thus, d0 should be appropriately selected to fulfill the con-

straint set in (13).

A. MIMO case (m = 1) [7]

In the case of m = 1, the polynomial in (8) can be re-

expressed as P1(d) = d2ω+ d(ω2υ1 +α− β)− βωυ1. Then,

the two roots of P1(d) are directly obtained by solving the

quadratic equation P2(d) = 0 such that

d1,n =
−s+ (−1)n

√
s2 + 4βω2υ1

2ω
, (14)

where s = (ω2υ1 +α−β). Clearly, d1,0 ≥ 0 and d1,1 ≤ 0 for

any ω, υ1 ≥ 0 and α, β > 0. Therefore, the polynomial P1(d)
has a unique real nonnegative root, i.e. d1,0, which fulfils the

constraint set in (13). Furthermore, the polynomial P1(d) is

clearly such that

P1(d)

{ ≤ 0 , for d ∈ [d1,1, d1,0],

≥ 0 , for d ∈ (−∞, d1,1] ∪ [d1,0,+∞).
(15)

Since P1(−ωυ1) = −αωυ1 ≤ 0, hence, −ωυ1 ∈ [d1,1, d1,0].
Moreover we know that −ωυ1 ≤ 0, it then implies that

−∞ < d1,1 ≤ −ωυ1 ≤ 0 ≤ d1,0 < +∞. (16)

B. DMIMO case (m ≥ 2)

From the definition of Pm(d) in (8), we can express Pm(d)
as a sequence where the initial term is P1(d) and the general

term is given by

Pm(d) = (d+ ωυm)Pm−1(d) + αd
m−1∏

k=1

(d+ ωυk), (17)

for m ≥ 2. We denote Υ = [υ1, . . . , υm] and Υ =
[υ1, . . . , υm], where Υ is the ordered version of the vector

Υ such that 0 ≤ υ1 ≤ . . . ≤ υm, i.e. υ1 = mini{Υ} and

υm = maxi{Υ} for i ∈ {1,m}. The values of Pm(d = −ωυi)
can be obtained by using (17), as follows, Pm(−ωυi)

= αωmυi

m−1∏

k=1

(υi − υk)





= 0 , if υi = υk, i ∈ {1,m},
> 0 , if υi 6= υk, i ∈ S1,

< 0 , if υi 6= υk, i ∈ S2,
(18)

where the sets S1 and S2 are defined as S1 = {m − 2l| l ∈
{0, ⌊(m − 1)/2⌋}} and S2 = {m − (2l + 1)| l ∈ {0, ⌊(m −
1)/2⌋}, i 6= 0}, respectively, and ⌊.⌋ is the integral floor

operator. Moreover, we consider that the polynomial Pm(d)
has m+1 roots denoted dm,k, k ∈ {0,m}, which are ordered

as follows dm,m ≤ dm,m−1 ≤ . . . ≤ dm,0.

In the case that m = 2, ω, υ1, υ2 > 0, υ1 6= υ2 and d1,0 >
0, we obtain by evaluating P2(d) at d = −ωυ2, d = −ωυ1 in

(18), and d = 0, d = d1,0 in (17), the following inequalities

P2(−ωυ2) > 0, P2(−ωυ1) < 0, P2(0) < 0, P2(d1,0) > 0.
(19)

Knowing that lim
d→−∞

P2(d) = −∞, −ωυ2 < −ωυ1, and

−ωυ1 < 0 < d1,0 according to (16), it implies that the roots

d2,2, d2,1 and d2,0 of P2(d) belong to the following intervals

(−∞,−ωυ2), (−ωυ2,−ωυ1) and (0, d1,0), respectively. As a

result, the inequality

−∞< d2,2≤ −ωυ2≤ d2,1≤ −ωυ1≤ 0≤ d2,0≤ d1,0< +∞
(20)
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Fig. 2. Comparison of the outage probabilities PAN and PMC, which have
been obtained via (10) and MC simulation, respectively, as a function of the
rate R and for various SNR settings, numbers of nodes and transmit antennas.

holds when the conditions ω, υ1, υ2 > 0, d1,0 > 0 are

relaxed to ω, υ1, υ2 ≥ 0, d1,0 ≥ 0. Hence, (20) indicates

that, like P1(d), P2(d) has a unique nonnegative root, i.e.

d2,0. This result has also been proved by employing a more

formal approach in [14] and the expression of d2,0 is given

there. Consequently, it can be shown that Pm(d) has a unique

nonnegative root dm,0 such that dm,0 = maxk{dm,k}, k ∈
{0,m}, and 0 ≤ dm,0 ≤ dm−1,0 ≤ . . . ≤ d2,0 ≤ d1,0 by

extending the same reasoning for larger m values [16]. Finally,

d0 = dm,0 must be set in (9) for evaluating µC(H̃), σ
2
C(H̃)

and eventually Pout. For m = 3, the roots of P3(d) can be

expressed as

d3,k = − ĉ3
4

+
(−1)

2

⌊ k
2
⌋
D +

(−1)

2

k (
ĉ23
2

− 4ĉ2
3

− C

+(−1)(⌊
k
2
⌋+1) ĉ

3
3 − 4ĉ3ĉ2 + 8ĉ1

4D

) 1

2

,

(21)

where D =

√
ĉ2

3

4 − 2ĉ2

3 + C,C = 2
1

3 B

3(A+
√
−4B3+A2)

1

3

+

(A+
√
−4B3+A2

54 )
1

3 , B = ĉ22−3ĉ3ĉ1+12ĉ0, A = 2ĉ32−9ĉ3ĉ2ĉ1+
27ĉ21 + 27ĉ23ĉ0 − 72ĉ2ĉ0, ĉi = cm,i/cm,4 for i ∈ {0, 3}, and

cm,i are the coefficients of Pm(d) =
∑m+1

i=0 cm,id
i. In the

case of m = 4, the roots of P4(d) are given in [17], whereas

the function “solve” in Matlab can be used to obtain dm,k for

m ≥ 5.

V. NUMERICAL RESULTS AND APPLICATIONS

Our closed-form approximation in (10) can be used to

accurately evaluate and compare the outage probability of

DMIMO system faster than Monte-Carlo (MC) simulations,

e.g. 10,000 times faster when 106 channel realizations are used

in MC. Its accuracy is discussed in the next section.
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Fig. 4. Accuracy of our closed-form approximation in (10) against the
number of antennas p and SNR offset ∆γ for a 2-BSs DMIMO system and
R = 4.

A. Accuracy of our closed-form approximation in (10)

The accuracy of our closed-form approximation is first

displayed in Fig. 2, where the outage probability which has

been computed by using (10), i.e. PAN, is compared against the

outage probability that has been obtained via MC simulation

by considering 106 channel realizations, i.e. PMC, as a function

of the rate R and for various SNR values, numbers of nodes

and transmit antennas. The graph shows a tight fitness between

PAN and PMC for the various considered settings and, hence, it

indicates graphically the accuracy of our proposed closed-form

approximation in (10).

In order to quantify the accuracy of (10) and to assess its

dependency to the values of γ, γi, m, p, q, R, we use the

metric εγ(dB) , |γAN(dB)−γMC(dB)|. It provides the absolute
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Fig. 5. Accuracy of our closed-form approximation in (10) against the
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difference in dB between the analytical SNR γAN and the SNR

obtained via MC simulation γMC that are required to achieve a

certain rate R for a given outage probability Pout. The lower is

εγ(dB), the more accurate is (10). In Fig. 3 the metric εγ(dB)

is plotted as a function of p and R with ∆γ = 5 dB for Pout =
0.01, γ = 0 dB, m = 2, β = 1, i.e. p = q, and considering the

downlink case. Notice that ∆γ(dB) , γ2(dB)−γ1(dB) is the

SNR offset between the two BSs. This graph clearly points out

that the accuracy of (10) increases as the number of antennas

p increases, for any rate R. In Fig. 4, εγ(dB) is plotted as a

function of p and ∆γ with R = 4 and the same other settings

as in Fig. 3. The results show that (10) is more accurate for

lower ∆γ values and confirm the increase of accuracy for

larger numbers of antennas p. Finally in Fig. 5, εγ(dB) is

plotted as a function of p and m with R = 4 for Pout = 0.01,

γ = 0 dB, γi = 5(i − 1 − ⌊m−1
2 ⌋), β = 1, i.e. p = q, and

considering the downlink case. The graph indicates that the

accuracy of (10) also increases with the number of nodes m
but at a lower rate than with the number of antennas p. Overall,

we can notice that a sufficient accuracy, i.e. εγ < 0.1 dB, is

reached for p ≥ 2 regardless of m, R and ∆γ . Notice that

similar results have been obtained for the uplink case.

B. Other Applications

The theoretical throughput of communication system can

be expressed as T = (1−Pout)R when an unlimited backhaul

between each BS and the central unit is assumed. An upper

bound on the achievable throughput for DMIMO system can

then be easily obtained by using (10) in the previous equation.

For instance, we plot in Fig. 6 the difference ∆T between the

theoretical throughput of MIMO and 2-BSs DMIMO systems

as a function of the rate R and SNR γ2(dB) for the downlink

case when p = q = 4 and γ = 1. Moreover, we fixed γ1 = 1
for the DMIMO system and we considered an aggregate SNR

γ2 +1 for the MIMO system, as it is indicated in the top right
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Fig. 6. Theoretical throughput comparison between MIMO and 2-BSs
DMIMO systems against the rate R and SNR γ2 (dB).

corner of Fig. 6, in order to fairly compare the two systems

for the same total amount of power. Results in Fig. 6 show

that a throughput gain can be achieved by using a DMIMO

system instead of a MIMO system. However, this gain is quite

localized; if the SNR is low, high rate cannot be supported

and, hence, both systems are in outage, i.e. Pout = 1 and

T = 0 for both systems (null plan on the right side of curve).

For low rate and high SNR, both systems are saturated and

achieved the same throughput (null plan on the left side of

curve). Since, the DMIMO system saturates faster than the

MIMO system by taking advantage of the spatial diversity, a

gain is obtained in-between the two null regions. However, it

should be mentioned that DMIMO system will induce extra

costs in terms of backhaul load and signal processing as m
increases.

The expression µC(H̃) in (9) can be used to evaluate

EH {C(H)} for any MIMO communication systems where

the MI can be expressed as C(H) = λ ln
∣∣I + H∆H†∣∣ with

∆ = diag([δ1, δ2, . . . , δNt
]) being a Nt ×Nt diagonal matrix,

i.e. the MI of a MIMO system over a semicorrelated Rayleigh

fading channel. Especially, in the case where Nr > Nt, which

cannot be evaluated with the computable formula in [11] and

is likely to happen in the DMIMO uplink. In the context of

cooperative communication [18], we designed a novel amplify-

and-forward scheme in [19], which outperforms any other

existing schemes when only receive knowledge is available at

the relay node, by using our result in (9). In addition, (10) can

be used for evaluating the outage probability of the cooperative

relay channel, i.e. when both source and relay nodes transmit

to the destination node.

Following a similar approach as in [10], the mean and

variance of the MI in (9) can be used to analyze the spectral

efficiency of DMIMO cellular system with a similar accuracy

compared to [10] but over a wider range of SNRs, since our

approximations in (9) has been derived without considering

any SNR restrictions.
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VI. CONCLUSION

In this paper, the MI of DMIMO system has been proved

to be asymptotically equivalent to a Gaussian RV and its cor-

responding mean and variance have been derived. Both these

terms are expressed as a function of a root of a polynomial

with degree m + 1. Consequently, a proof of the uniqueness

of the selection of the root for any m values has been given.

Then, a closed-form approximation of the outage probability

for DMIMO system has been derived for both downlink and

uplink scenarios by employing the mean and variance of

the MI. Numerical results have shown the accuracy of our

approximation for even low values of m, p and q, and have

indicated that the accuracy increases mainly with the number

of nodes and antennas of the system. In addition, several appli-

cations for our analysis have been suggested: computation of

theoretical throughput, design of cooperative communication

scheme, evaluation of the cooperative relay channel outage

probability and analysis of the spectral efficiency of DMIMO

system.

APPENDIX

DERIVATION INSIGHTS:

A. From equation (2) to (3)

Let us re-express

∣∣∣INr
+ γ

nH̃H̃†
∣∣∣ in (2), as follows

φ(H̃) =
∣∣∣INr

+
γ

n
H̃H̃†

∣∣∣ =
∣∣∣∣∣

INr
j
√
γ/n H̃

j
√
γ/n H̃† INt

∣∣∣∣∣ . (22)

Knowing that if the real part of all the eigenvalues of a

complex matrix A ∈ C
Nr×Nr is positive then |A|−1 =∫

CNr
e−πx†Axdx [20], (22) can be modified as

φ(H̃)−1 =

∫

CNr

∫

CNt

e


−π


 x

y



†
 INr

j
√
γ/n H̃

j
√
γ/n H̃† INt




 x

y







×dxdy,
(23)

where x ∈ C
Nr×1 and y ∈ C

Nt×1. At this stage, we obtain

by applying the replica method [15] and expanding (23) the

following equation

φ(H̃)−u =

u∏

a=1

∫

CNr

∫

CNt

e−π(x†
axa+y†

aya)

× e−jπ
√

γ/n(x†
aH̃ya+y†

aH̃†xa)dxadya

=

∫

CNr×u

∫

CNt×u

e−π tr[X†X+Y†Y]

× e−jπ
√

γ/n tr[H̃YX†+XY†H̃†]dXdY,

(24)

where u is a dummy variable used in the replica method, X =
[x1,x2, . . . ,xu] and Y = [y1,y2, . . . ,yu]. Equation (3) is

then obtained by averaging (24) with respect to H.

B. From equation (3) to (4)

The integrand in (3) being bounded and continuous in all

its variables, we can start by integrating (3) with respect to

H, as follows

A =

∫

CNr×Nt

π−NrNtψ(H)dH

=

Nr∏

r=1

Nt∏

t=1

π−1

∫

C

exp{−[j(ℜHr,t+jℑHr,t)(ℜΣr,t+jℑΣr,t)

×(ℜBr,t − jℑBr,t) + j(ℜBr,t + jℑBr,t)(ℜΣr,t − jℑΣr,t)

×(ℜHr,t − jℑHr,t) + (ℜ(Hr,t)
2 + (ℑHr,t)

2)]}dHr,t,

=

Nr∏

r=1

Nt∏

t=1

π−1

∫

C

exp{−[{ℜHr,t + j(ℜΣr,tℜBr,t + ℑΣr,t

×ℑBr,t)}2 + (ℜΣr,tℜBr,t + ℑΣr,tℑBr,t)
2 + {ℑHr,t

+j(ℜΣr,tℑBr,t+ℑΣr,tℜBr,t)}2 + (ℜΣr,tℑBr,t+ℑΣr,t

×ℜBr,t)
2]}dHr,t.

=

Nr∏

r=1

Nt∏

t=1

exp−
[
(ℜΣ2

r,t + ℑΣ2
r,t)(ℜB2

r,t + ℑB2
r,t)
]

=

Nr∏

r=1

Nt∏

t=1

exp
[
−|Σr,t|2|Br,t|2

]

= exp
(
−π2 γ

n
tr
[
(Σ ⊙ XY†)(Σ ⊙ XY†)†

])
.

C. From equation (5) to (6)

Knowing that 1
j2π

∫
Dj

f0

∫
Dg0

exp{f(−κg+x)+gy}dfdg =

exp(xy/κ)/κ holds for any x, y, κ, f, g ∈ C [7], we can re-

express exp
(
− tr

[
π2 γ

nW†WY†Y
])

in (5), as follows

A = etr[−π2 γ
n
W†WY†Y] =

u∏

a=1

u∏

b=1

e−π2 γ
n

(W†W)a,b(Y
†Y)b,a

=

u∏

a=1

u∏

b=1

n

j2π

∫

Dj

Db,a

∫

DGa,b

eDb,a(nGa,b−π
√

γ(W†W)a,b)

×e−π
√

γGa,b(Y
†Y)b,adDb,adGa,b

=

(
n

j2π

)u2∫

Dj

d

∫

Dg

etr[nDG−π
√

γ(DW†W+GY†Y)]dDdG.

(25)

Inserting (25) into (5) and followed by straightforward sim-

plifications, we obtain

MC(H̃)(−u/λ) =

(
n

j2π

)u2∫

Dj

d

∫

Dg

en tr[DG]

×
∫

CNr×u

e−π tr[X†X+
√

γDW†W]dX

×
∫

CNt×u

e−π tr[Y†Y(Iu+
√

γG)]dYdDdG.

(26)

Notice that tr[Y†Y(Iu +
√
γG)] =

∑Nt

i=1 Yi(Iu +
√
γG)Y†

i

and tr[X†X+
√
γDW†W] =

∑Nr

i=1 Xi(Iu +
√
γγ⌊i/p⌋D)X†

i

in (26), where Xi and Yi are the i-th row vectors of X and

Y, respectively, and ⌊.⌋ is the integer floor operator. Then,

MC(H̃)(−u/λ) can be formulated as in (6) by using |A|−1 =∫
CNr

e−πx†Axdx for integrating the integrand with respect to

X and Y in (26).
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D. From equation (6) to (7)

In order to asymptotically compute the integral in (6), i.e.

for mp, q → ∞, we apply the multidimensional saddle point

integration method [13]. First, we expand the Taylor series of

ϕ(D,G) for D = D0 + δD and G = G0 + δG to its second

order, and we obtain

ϕ(D,G)≈ϕ(D0,G0)+tr[(G0−αΣm
i=1(ωυiIu + D0)−1)δD

+(D0 − β(ωIu + G0)−1)δG +
1

2
{αΣm

i=1(ωυiIu + D0)−2

×(δD)2 + 2δDδG + β(ωIu + G0)−2(δG)2}].
(27)

According to (27), we obtain two critical points as follows

G0 =α
m∑

i=1

(ωυiIu +D0)
−1 and D0 =β(ωIu +G0)

−1. (28)

The matrix D0 is invariant in replica space and is thus

proportional to the identity matrix Iu [5]. Consequently, we

set D0 = dIu and assume that the absolute maximum of

ℜϕ(D,G) occurs for ℜϕ(D0,G0). Inserting the first equation

into the second equation of (28) and considering that D0 =
dIu, we obtain the polynomial equation in (8). We select one

root amongst the m + 1 roots of Pm(d) in (8) and denote it

d0. We then set D0 = d0Iu and get G0 by using the first

equation of (28). Next, we obtain

ϕ(D,G)≈ϕ(D0,G0)+
1

2
tr
[
d̂0(δD)2+2δDδG+ĝ0(δG)2

]

(29)

by applying D0 and G0 in (27). Inserting (29) into (6) and in-

tegrating
∫
Dj

d

∫
Dg

exp
(

n
2 tr

[
d̂0(δD)2+2δDδG+ĝ0(δG)2

])

×d(δD)d(δG) along the steepest descent paths for δD and

δG, we finally obtain the expression in (7).

E. Equation (11)

Let σ2
Z ∈ R

⋆
+, i.e. 0 < −λ2 ln

(
1 − α

β

∑m
i=1

(
d0

d0+ωυi

)2
)

< +∞ with (7), it implies that

σ2
Z ∈ R

⋆
+ ⇔ 1 > 1 − α

β

m∑

i=1

(
d0

d0 + ωυi

)2

> 0,

⇔ 0 <

m∑

i=1

(
d0

d0 + ωυi

)2

<
q

p
,

(30)

knowing that β/α = q/p. Moreover, the inequality(
d0

d0+ωυ̂

)2

≤
(

d0

d0+ωυi

)2

holds for any i ∈ {1,m}, with

υ̂ = maxi{υi}. Thus, we can write

m

(
d0

d0 + ωυ̂

)2

≤
m∑

i=1

(
d0

d0 + ωυi

)2

<
q

p

⇔ m

(
1 − ωυ̂(2d0 + ωυ̂)

(d0 + ωυ̂)2

)
<
q

p

⇔ Q(d0)=d2
0+2

(
q

q − pm

)
ωυ̂d0+

(
q

q − pm

)
ω2υ̂2 > 0.

(31)

The two roots of the polynomial Q(d0) are then given by

da = ωυ̂

[
q

pm− q
+

√
pmq

|pm− q|

]
and

db = ωυ̂

[
q

pm− q
−

√
pmq

|pm− q|

]
, (32)

respectively, where db ≤ da. In the case that q = pm, then

ωυ̂(2d0 + ωυ̂) > 0 in the third line of (31) and, hence, d0 >

−ωυ̂/2. In the case that q > pm then
(

q
pm − 1

)
> 0 and,

hence, Q(d0) is positive outside the interval [db, da]. In the

case that q < pm then
(

q
pm − 1

)
< 0 and, hence, Q(d0) is

positive inside the interval [db, da].

ACKNOWLEDGMENT

The first author wish to thank his beloved wife for her

support and helpful comments in preparing this paper.

REFERENCES

[1] G. J. Foschini and M. J. Gans, “On Limits of Wireless Communications
in a Fading Environment when using Multiple Antennas,” Wireless

Personal Commun., vol. 6, pp. 311–335, 1998.
[2] I. E. Telatar, “Capacity of Multi-Antenna Gaussian Channels,” Europ.

Trans. Telecommun. and Related Technol., vol. 10, no. 6, pp. 585–596,
Nov. 1999.

[3] M. K. Simon and M.-S. Alouini, Digital Communication over Fading

Channels: A Unified Approach to Performance Analysis. ed. Wiley,
Feb. 2000.

[4] A. M. Sengupta and P. P. Mitra, “Capacity of Multivariate Channels
with Multiplicative Noise: I.Random Matrix Techniques and Large-N
Expansions for Full Transfer Matrices,” LANL arXiv:physics, Oct. 2000.

[5] A. L. Moustakas, S. H. Simon, and A. M. Sengupta, “MIMO Capacity
through Correlated Channels in the Presence of Correlated Interferers
and Noise: A (not so) Large N Analysis,” IEEE Trans. Inform. Theory,
vol. 49, no. 10, pp. 2545–2561, Oct. 2003.

[6] B. H. Hochwald, T. L. Marzetta, and V. Tarokh, “Multi-Antenna Channel
Hardening and its Implications for Rate Feedback and Schedulling,”
IEEE Trans. Inform. Theory, vol. 50, no. 9, pp. 1893–1909, Sept. 2004.

[7] E. Biglieri and G. Taricco, Transmission and Reception with Multiple

Antennas: Theoretical Foundations. Now Publishers Inc., 2004.
[8] P. J. Smith and M. Shafi, “On a Gaussian Approximation to the Capacity

of Wireless MIMO Systems,” in Proc. IEEE ICC ’02, New-York, USA,
Apr. 2002, pp. 406–410.

[9] W. Roh and A. Paulraj, “Outage Performance of the Distributed Antenna
Systems in a Composite Fading Channel,” in Proc. IEEE VTC 2002-Fall,
vol. 3, Sept. 2002, pp. 1520– 1524.

[10] D. Wang, X. You, J. Wang, Y. Wang, and X. Hou, “Spectral Efficiency of
Distributed MIMO Cellular Systems in a Composite Fading Channel,”
in Proc. IEEE ICC ’08, May 2008, pp. 1259– 1264.

[11] P. J. Smith, S. Roy, and M. Shafi, “Capacity of MIMO Systems with
Semicorrelated Flat Fading,” IEEE Trans. Inform. Theory, vol. 49,
no. 10, pp. 2781–2787, Oct. 2003.

[12] M. L. Mehta, Random Matrices. Academic Press, New York, 1991.
[13] N. Bleistein and R. A. Handelsman, Asymptotic Expensions of Integrals.

Dover, 1986.
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