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Two-Way Transmission Capacity of Wireless

Ad-hoc Networks

Rahul Vaze, Kien T. Truong, Steven Weber and Robert W. Heath Jr.

Abstract

The transmission capacity of an ad-hoc network is the maximum density of active transmitters per

unit area, given an outage constraint at each receiver for a fixed rate of transmission. Most prior work

on finding the transmission capacity of ad-hoc networks has focused only on one-way communication

where a source communicates with a destination and no data is sent from the destination to the source. In

practice, however, two-way or bidirectional data transmission is required to support control functions like

packet acknowledgements and channel feedback. This paper extends the concept of transmission capacity

to two-way wireless ad-hoc networks by incorporating the concept of a two-way outage with different

rate requirements in both directions. Tight upper and lower bounds on the two-way transmission capacity

are derived for frequency division duplexing. The derived bounds are used to derive the optimal solution

for bidirectional bandwidth allocation that maximizes the two-way transmission capacity, which is shown

to perform better than allocating bandwidth proportional to the desired rate in both directions. Using

the proposed two-way transmission capacity framework, a lower bound on the two-way transmission
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capacity with transmit beamforming using limited feedback is derived as a function of bandwidth, and

bits allocated for feedback.

I. INTRODUCTION

The transmission capacity of an ad-hoc wireless network is the maximum allowable spatial

density of transmitting nodes, satisfying a per transmitter receiver rate, and outage probability

constraint [1]–[4]. Essentially, the transmission capacity characterizes the maximum number of

transmissions per unit area that can be simultaneously supported in an ad-hoc network under a

quality of service constraint. The transmission capacity framework allows the application of the

rich tool set of stochastic geometry to derive closed-form bounds for the interference distribution

in a spatial network when the locations of nodes form a Poisson point process (PPP) [5].

In prior work, the transmission capacity has been used successfully to characterize the effect

of various physical and medium access (MAC) layer techniques on the ad-hoc network capacity,

such as successive interference cancelation [6], multiple antennas [7]–[10], and guard-zone based

scheduling [11]. Most of the prior work on finding the transmission capacity has been limited

to one-way communication (no data communication from the destination to the source), and

precludes the possibility of two-way communication. In two-way (bidirectional) communication

the destination also has data to send to its source, e.g. channel state feedback [12], packet

acknowledgement [13], or route initiation and update requests [14].

In this paper we define the two-way transmission capacity, and derive tight upper and lower

bounds on it when the transmitter location are distributed as a Poisson point process (PPP)

distributed. The bounds are used to characterize the dependence of the two-way transmission

capacity on the key system parameters, e.g. bandwidth allocation in two directions given a data

rate requirement. We consider an ad-hoc network with two-way communication, where each

source destination pair has data to exchange in both directions. We consider a general system

where the data requirement in both directions can be different, and a frequency division duplex
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(FDD) communication model, where two separate frequency carriers are used for two directions,

thereby forming a full-duplex link.

In a two-way communication model, where the transmitter locations are modeled as a PPP, the

interference received in both directions is correlated, and hence the joint success probability in

two directions is not equal to the product of the success probabilities in each direction. Therefore

finding the exact expression for the joint success probability is complicated. To obtain meaningful

insights on the two-way transmission capacity, we derive tight upper and lower bounds on the

two-way transmission capacity with FDD, assuming that the channel coefficients on separate

frequencies are independent and all the channel coefficients are Rayleigh distributed. The upper

and lower bound only differ by a constant, i.e. the bounds have identical dependence on the

parameters of interest (rate requirements, and bandwidths allocated in each direction). Thus, the

derived bounds establish the two-way transmission capacity up to a constant.

The results of this paper in part have been presented in [15], [16]. The differences between

[15], [16] and the present paper are as follows. For simplification of analysis, [15] assumed

that the interference received in both directions is independent. The independence assumption

was removed in [16], and upper and lower bounds on the two-way transmission capacity that

derived which were shown to be tight. Compared to [16], the present paper extends the two-

way transmission capacity framework to quantify the loss in transmission capacity with practical

limited feedback [17] in comparison to genie-aided feedback (channel coefficients are known

exactly, and without any cost at the transmitter), when the transmitter is equipped with multiple

antenna and uses beamforming to transmit its signal to the receiver. In addition to this, the present

paper offers more clarity of exposition, complete proof of Theorem 2, and added simulation

results for more insights into the effects of two-way communication.

Using the derived bounds on the two-way transmission capacity, we find the optimal bandwidth

allocation in two directions that maximizes the transmission capacity. The optimal bandwidth

allocation problem is shown to be a convex program in a single variable which can be solved
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easily by finding the value where the function derivative is zero. Using the optimal bandwidth

allocation solution, we show that an intuitive strategy that allocates the bandwidth in proportion

to the desired rate in each direction is optimal only for symmetric traffic (same rate requirement

in both directions) and performs poorly for asymmetric traffic in comparison to the optimal

strategy. Examples of asymmetric traffic are channel feedback, and ack/nack messages, where

there is huge disparity between the data rates required in two directions.

There is extensive related work on resource allocation in wireless ad hoc networks, but almost

all of it focused on one-way communication. For instance, prior work studied the spectrum

sharing between two one-way spatial networks in [18], between a spatial network and a cellular

uplink network in [19], and one-way spatial networks where the total bandwidth is optimally split

into sub-bands to maximize the transmission capacity [20]. Our bandwidth allocation, however,

studies the bandwidth sharing between two directions within a single two-way spatial network.

As an application of the proposed two-way transmission capacity framework, we evaluate

the performance degradation with practical limited channel feedback in comparison to genie

aided channel feedback, when the transmitter has multiple antennas and uses beamforming for

transmitting its signal to the receiver. We account for both the bandwidth used, and the bits

required for feedback, to derive a lower bound on the two-way transmission capacity with

transmit beamforming using limited feedback. We show that with practical limited channel

feedback, the two-way transmission capacity is substantially reduction compared to the genie-

aided case. The severe degradation results because with increasing the number of feedback bits,

the transmission capacity increases sub-linearly due to improvement in signal strength, however,

decreases exponentially because of the stringent requirement of feedback bits to be correctly

decoded.

Notation: The expectation of function f(x) with respect to x is denoted by E(f(x)). A

circularly symmetric complex Gaussian random variable x with zero mean and variance σ2

is denoted as x ∼ CN (0, σ2). Let S1 be a set and S2 be a subset of S1. Then S2\S1 denotes the
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set of elements of S1 that do not belong to S2. The integral
∫∞

0
xk−1e−xdx is denoted by Γ(x).

We use the symbol := to define a variable.

II. SYSTEM MODEL

Consider an ad-hoc network with two sets of nodes T := {Txn, n ∈ N}, and R = {Rxn, n ∈

N}, where Txn and Rxn want to exchange data between each other for each n. We assume

that each Txn and Rxn have a single antenna. We consider a slotted Aloha random access

protocol, where at any given time, the pair (Txn, Rxn) transmits data to each other with an

access probability Pa for each n, independently of all other nodes. We assume that the distance

between each Txn and Rxn is d. Let the location of Txn be Tn, and Rxn be Rn. The set

ΦT = {Tn} is modeled as a homogenous PPP on a two-dimensional plane with intensity λ0,

similar to [1], [2], [9]. Since Rn is at a fixed distance d in a random direction from the Tn,

the set ΦR := {Rn} is also a homogenous PPP on a two-dimensional plane with intensity

λ0, because of the random translation invariance property of PPP [21]. Because of the assumed

Aloha random access protocol, at any given time, the active transmitter receiver location processes

Φa
T := {Tn|Txn is active}, and Φa

R := {Rn|Rxn is active} are homogenous PPPs on a two-

dimensional plane with intensity λ = Paλ0. We consider a frequency division duplex system,

where the total available bandwidth is Ftotal, out of which FTR is dedicated for Txn → Rxn

communication to support a rate demand BTR bits for all n, and the rest FRT := Ftotal − FTR

for the Rxn → Txn communication to support a rate demand of BRT bits for all n.

In a time slot when the pair (Tx0, Rx0) is active, the received signal at receiver Rx0 is

y0 =
√
Ptd

−α/2h0x0 +
∑

Tn∈ΦaT \{T0}

√
Ptd

−α/2
Tn h0nxn + z0, (1)

and the received signal at receiver Tx0 is

w0 =
√
Ptd

−α/2g0u0 +
∑

Rn∈ΦaR\{R0}

√
Ptd

−α/2
Rn g0nun + v0, (2)
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where Pt is the transmit power, h0 is the channel between Tx0 and Rx0, and and g0 is the

channel from Rx0 and Tx0, h0n and g0n is the channel between Txn and Rx0, and Rxn and

Tx0, respectively, dTn and dRn are the distances between Txn and Rx0, and Rxn and Tx0,

respectively, α > 2 is the path loss exponent, xn, un ∈ CN(0, 1) are signals transmitted from

Txn and Rxn, respectively, and z0, v0 is the additive white Gaussian noise. The ad-hoc network

is assumed to be interference limited [1], thus we drop the noise contribution from the received

signal. We assume that h0, g0, h0n, and g0n are independent and identically distributed with

CN (0, 1) to model a Rayleigh fading channel.

With the received signal model (1) and (2), the signal to interference ratio (SIR) for the

transmission from Tx0 → Rx0 and from Rx0 → Tx0 are

SIRTR :=
d−α|h0|2∑

Tn∈ΦaT \{T0} d
−α
Tn |h0n|2

, SIRRT :=
d−α|g0|2∑

Rn∈ΦaR\{R0} d
−α
Rn|g0n|2

.

Assuming interference as noise, the mutual information [22] for the Tx0 to Rx0 communica-

tion using bandwidth FTR, and for the Rx0 to Tx0 communication using bandwidth Ftotal−FTR

are

MITR := FTR log (1 + SIRTR) bits/sec, MIRT := (FRT ) log (1 + SIRRT ) bits/sec.

Recall that the rate requirement for the Tx0 → Rx0 transmission is BTR bits, and for the

Rx0 → Tx0 communication is BRT bits. Thus, to account for the two-way or bidirectional nature

of communication, we define the success probability (complement of the outage probability ε)

as the probability that communication in both directions is successful simultaneously, i.e.

Psuccess = P (MITR > BTR, MIRT > BRT ) . (3)

Let λ be maximum density of nodes per unit area that can support rate BTR from Tx0 → Rx0,

and BRT bits from Rx0 → Tx0 with success probability Psuccess = 1−ε, using bandwidth Ftotal.
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Definition 1: The two-way transmission capacity Cε is defined as

Cε := (1− ε)λ
(
BTR +BRT

FTotal

)
bits/sec/Hz/m2.

The problem to solve is to find the λ and consequently Cε for a given rate BTR, BRT , outage

probability ε and bandwidth Ftotal .

To compute the success probability we consider a typical transmitter receiver pair (Tx0, Rx0).

Using the stationarity of the homogenous PPP and Slivnyak’s Theorem [19] (Page 121), it follows

that the statistics of the signal received at the typical receiver are identical to that of any other

receiver. Hence the outage probability is invariant with the choice of the receiver. Slivnyak’s

Theorem also states that the locations of the interferers for the typical transmitter and receiver

(Tx0, Rx0), i.e. Φa
T\{T0} and Φa

R\{R0} are also homogenous PPPs, each with intensity λ.

III. COMPUTING THE TWO-WAY TRANSMISSION CAPACITY

In this section we derive an upper and lower bound on the two-way transmission capacity.

To derive a lower bound we use the Fortuin, Kastelyn, Ginibre (FKG) inequality [23], while

for deriving an upper bound we make use of the Cauchy-Schwartz inequality. Before stating the

FKG inequality, we need the following definitions.

Definition 2: A random variable X defined on a probability space (Ω,F ,P) is called increas-

ing if X(ω) ≤ X(ω′) whenever ω ≤ ω′, for some partial ordering on ω, ω′ ∈ Ω. X is called

decreasing if −X is increasing.

Example 1: SIRTR and SIRRT are decreasing random variables.

For the PPP under consideration, let ω = (a1, a2, . . . , ) where for n ∈ N,

an =

 1 if Txn is active,

0 otherwise.

Then ω′ ≥ ω, if a′n ≥ an, ∀ n, i.e. configuration ω′ contains at least those interferers which

are present in configuration ω. Recall our definition of SIRTR = d−α|h0|2∑
Tn∈Φa

T
\{T0}

d−αTn |h0n|2
. Clearly,
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if there are more interferers present, SIRTR decreases, i.e. considering SIRTR as a random

variable SIRTR(ω) ≥ SIRTR(ω′), if ω ≤ ω′. Thus SIRTR is a decreasing random variable and

so is SIRRT .

Definition 3: Let A be an event in F , and IA be the indicator function of A. Then the event

A ∈ F is called increasing if IA(ω) ≤ IA(ω′), whenever ω ≤ ω′. The event A is called

decreasing if its complement Ac is increasing.

Example 2: The success event {SIR > β} is a decreasing event, since if ω′ ∈ {SIR > β}

and ω′ ≥ ω, then ω ∈ {SIR > β}.

Lemma 1: (FKG Inequality [23])

(a) If both X and Y are increasing or decreasing random variables with E{X2} < ∞, and

E{Y 2} <∞, then E{XY } ≥ E{X}E{Y }.

(b) If both A,B ∈ F are increasing or decreasing events then P (AB) ≥ P (A)P (B).

Now we are ready to derive bounds on the two-way transmission capacity. From (3), the

success probability is

Psuccess = P

(
SIRTR > 2

BTR
FTR − 1, SIRRT > 2

BRT
FRT − 1

)
.

Let β1 := dα
(

2
BTR
FTR − 1

)
, β2 := dα

(
2
BRT
FRT − 1

)
, ITR :=

∑
Tn∈ΦaT \{T0} d

−α
Tn |h0n|2, and IRT :=∑

Rn∈ΦaR\{R0} d
−α
Rn|g0n|2. Then,

Psuccess = P

(
|h0|2

ITR
> β1,

|g0|2

IRT
> β2

)
,

(a)
= E

{
e−β1ITRe−β2IRT

}
,

= E
{
e
−β1

(∑
Tn∈Φa

T
\{T0}

d−αTn |h0n|2
)
e
−β2

(∑
Rn∈Φa

R
\{R0}

d−αRn |g0n|2
)}

,

(b)
= E

 ∏
Tn∈ΦaT \{T0}

(
1

1 + β1d
−α
Tn

) ∏
Rn∈ΦaR\{R0}

(
1

1 + β2d
−α
Rn

) , (4)

where (a) follows since P (|h0|2 > x) = P (|g0|2 > x) = e−x, and h0 and g0 are independent,

and (b) follows by taking the expectation with respect to h0n, and g0n, and noting that h0n, and

g0n are independent and exponentially distributed.
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The difficulty in evaluating the expectation with respect to {dTn} and {dRn} in the success

probability (4) lies in the fact that dTn and dRn are not independent. To visualize this, consider a

network where there are only two active pairs of nodes, (Tx0, Rx0), and (Tx1, Rx1) as depicted

in Figure 1. For the receiver Rx0 receiving over bandwidth FTR, the transmission from Tx1 is

interference. As defined before, the distance between Rx0 and Tx1 be dT1. Thus, the interference

power at Rx0 is d−αT1 |h01|2. Similarly, for Tx0 receiving over bandwidth FRT , the transmission

from Rx2 is interference. The distance between Rx1 and Tx0 be dR1. Thus, the interference

power at Rx0 is d−αR1 |g01|2. For the case when d is very small d→ 0, dR1 ≈ dT1, and thus distances

dR1 and dT1 are not independent. Moreover, explicitly computing the correlation between dTn

and dRn is also a hard problem. Thus, to get a meaningful insight into the two-way transmission

capacity we derive a lower and upper bound.

Lower Bound: Similar to Example 1,
∏

Tn∈ΦaT \{T0}

(
1

1+β1d
−α
Tn

)
and

∏
Rn∈ΦaR\{R0}

(
1

1+β1d
−α
Rn

)
are decreasing random variables, since each term in the product is less than 1, and with the

increasing the number of terms (number of interferers) in the product the total value of each

expression decreases. Thus, using Lemma 1, from (4)

Psuccess ≥ E

 ∏
Tn∈ΦaT \{T0}

(
1

1 + β1d
−α
Tn

)E

 ∏
Rn∈ΦaR\{R0}

(
1

1 + β2d
−α
Rn

) , (5)

(c)
= e

(
−λ
∫
R2 1−

(
1

1+β1x
−α

)
dx
)
e

(
−λ
∫
R2 1−

(
1

1+β2x
−α

)
dx
)
,

= e

(
−2πλ

∫∞
0

(
β1x
−α+1

1+β1x
−α

)
dx

)
e

(
−2πλ

∫∞
0

(
β2x
−α+1

1+β2x
−α

)
dx

)
,

= e−λc1β
2
α
1 e−λc1β

2
α
2 ,

= e
−λc1

(
β

2
α
1 +β

2
α
2

)
, (6)

where (c) follows from the probability generating functional of the Poisson point process [24,

Example 4.2], and c1 =
2π2Csc( 2π

α
)

α
is a constant, where Csc is co-secant.
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Upper Bound: Using the Cauchy-Schwartz inequality, from (4)

Psuccess ≤

E
 ∏
Tn∈ΦaT \{T0}

(
1

1 + β1d
−α
Tn

)2

E

 ∏
Rn∈ΦaR\{R0}

(
1

1 + β2d
−α
Rn

)2


 1

2

,

(d)
=

[
e
−λ
(∫

R2 1−
(

1
1+β1x

−α

)2
dx

)
e

(
−λ
∫
R2 1−

(
1

1+β2x
−α

)2
dx

)] 1
2

,

=

[
e
−2πλ

(∫
R2

(
β2
1x
−2α+1+2β1x

−α+1

(1+β1x
−α)2

)
dx

)
e
−2πλ

(∫
R2

(
β2
2x
−2α+1+2β2x

−α+1

(1+β2x
−α)2

)
dx

)] 1
2

,

= e−λc2β
2
α
1 e−λc2β

2
α
2 ,

= e
−λc2

(
β

2
α
1 +β

2
α
2

)
, (7)

where (d) follows from the probability generating functional of the Poisson point process [24,

Example 4.2], and c2 =
π2Csc( 2π

α )(α+2)

α2 is a constant, different from the constant c1 of the lower

bound.

Theorem 1: The two-way transmission capacity is upper and lower bounded by

(1− ε) ln(1− ε)

c1

(
β

2
α
1 + β

2
α
2

) BTR +BRT

FTotal
≤ Cε ≤

(1− ε) ln(1− ε)

c2

(
β

2
α
1 + β

2
α
2

) BTR +BRT

FTotal
bits/sec/Hz/m2,

where c1 and c2 are constants, and c2/c1 = 1
2

+ 1
α

.

Proof: With Psuccess = 1− ε, and using the definition of Cε (1), the result follows from (6) and

(7).

Discussion: In this section we derived an upper and lower bound on the two-way transmission

capacity. The upper and lower bound only differ by a constant, and, most importantly, both have

identical dependence on the parameters of interest in the two-way communication, β1 and β2.

Thus, the derived bounds establish the two-way transmission capacity up to a constant. The

derived upper and lower bounds for the two-way transmission capacity are in a fairly simple

form and can be used to calculate the two-way transmission capacity for given rates BTR, BRT ,

success probability ε, FTR and Ftotal. Since the upper and lower bound are identical functions of

β1 and β2, an added advantage of our bounds on the two-way transmission capacity expression
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is that they can be used to find the optimal value of FTR for given rates BTR, BRT , success

probability 1 = ε, and Ftotal. The optimal bandwidth allocation that maximizes the two-way

transmission capacity is derived next in the Section IV.

IV. TWO-WAY BANDWIDTH ALLOCATION

In Section III, we derived the two-way transmission capacity of ad-hoc networks within a

constant as a function of bandwidth allocated to the Tx0 → Rx0 and Rx0 → Tx0 connections.

Since the total bandwidth Ftotal is finite, an important question to answer is: what is the optimal

bandwidth allocation between that maximizes the transmission capacity? For the special case

of equal rate requirement in both directions, i.e. BTR = BRT , equal bandwidth allocation is

optimal. For the non-symmetric case, however, the answer is not that obvious and is derived in

the following theorem.

Theorem 2: The optimum bidirectional bandwidth allocation that maximizes the transmission

capacity with two-way communication is F ?
TR = x? and F ?

RT = F ?
RT where x? is the unique

positive solution to the following equation:

1

BTR

h

(
BTR

x

)
− 1

BRT

h

(
BRT

Ftotal − x

)
= 0 (8)

where h(t) = t22t(2t − 1)(δ−1) for 0 < t < Ftotal.

Proof: Neglecting the constant, the two-way transmission capacity is

C = (1−ε)λ
(
BTR +BRT

Ftotal

)
= (1−ε) − ln(1− ε)

d2

((
2
BTR
FTR − 1

) 2
α

+

(
2
BRT
FRT − 1

) 2
α

) (BTR +BRT

Ftotal

)
.

To derive the optimal bandwidth partitioning, i.e. the optimal FTR that maximizes C, we need

to minimize

((
2
BTR
FTR − 1

) 2
α

+

(
2
BRT
FRT − 1

) 2
α

)
.

Let δ := 2
α

. Let f(x) :=

((
2
BTR
x − 1

)δ
+

(
2

BRT
Ftotal−x − 1

)δ)
. Thus, the problem we need to

solve is

min
x∈(0,Ftotal)

f(x).
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The first-order derivative of f(x) is d
dx
f(x) = δ loge 2

[
− 1
BTR

h
(
BTR
x

)
+ 1

BRT
h
(

BRT
Ftotal−x

)]
,

where h(t) := t22t(2t − 1)(δ−1) for t ≥ 0. The second-order derivative of f(x) is d2

dx2f(x) =

δ loge 2
[

1
x2h
(
BTR
x

)
+ 1

(Ftotal−x)2h
(

BRT
Ftotal−x

)]
. Since h(t) is monotonically increasing in t over

t ≥ 0, then we have h(t) > h(0) = 0 for all t > 0. Therefore, d2

dx2f(x) > 0 for all x ∈ (0, Ftotal).

This means that f(x) is a convex function of x over (0, Ftotal) and its minimum corresponds to

x? that is the unique positive solution of the following equation d
dx
f(x) = 0, or equivalently,

1
BTR

h
(
BTR
x

)
− 1

BRT
h
(

BRT
Ftotal−x

)
= 0.

Discussion: In Theorem 2 we derived the optimal bandwidth allocation for two-way com-

munication in ad-hoc networks that maximizes the transmission capacity. The result is derived

by showing that the optimization problem is convex in one variable, hence the optimal solution

corresponds to the value for which the function derivative is zero.

Using Theorem 2, if the traffic is symmetric, i.e., BTR = BRT , the optimal strategy is naturally

allocate equal bandwidths for two directions with FTR = Ftotal/2. This result is intuitive since the

counterpart parameters in two directions are equal. For asymmetric traffic BTR 6= BRT , however,

allocating bandwidths proportional to the desired rate in each direction FTR = FtotalBTR
BTR+BRT

does

not satisfy (8). Thus the proportional bandwidth allocation policy is not optimal for asymmetric

traffic for maximizing the transmission capacity, and (8) must be satisfied to find the optimal

policy.

V. EFFECT OF LIMITED FEEDBACK ON TWO-WAY TRANSMISSION CAPACITY WITH

BEAMFORMING

In this section we consider an ad-hoc network where each transmitter Txn is equipped

with N antennas while each receiver Rxn has a single antenna. All other system parameters

and assumptions remain the same as defined in Section II. With multiple transmit antennas,

and channel state information CSI at each transmitter, transmission rate can be increased by

transmitting the signal along the strongest eigenmode of the channel (called beamforming).
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Beamforming, however, requires that the transmitter know the channel coefficients, which in

general is a challenging problem. In a FDD system, the transmitter can learn the channel

coefficients, or equivalently the optimum beamformer, through the use of a finite rate feedback

channel from the receiver. Assuming a genie aided feedback (channel coefficients are exactly

known at the transmitter, and without accounting for the feedback bandwidth, and SIR required

for the feedback), [7] derived the transmission capacity with beamforming, and showed that the

transmission capacity increases as N
2
α with increasing N . In reality, however, feedback requires

sufficient bandwidth, and the channel coefficients can be fed back only up to a certain precision.

Limited feedback techniques [25] are commonly used in practical systems to exploit finite rate

feedback channels. With limited feedback, a beamforming codebook is assumed known to both

the receiver and the transmitter. The receiver computes the best beamforming vector from the

beamforming codebook and sends the index of this vector back to the transmitter. The larger the

codebook size, the better is the quality of feedback, and consequently better is the data rate from

the transmitter to the receiver with beamforming. With a codebook size of 2B, each codeword

requires B bits of feedback. Thus, the use of a large codebook increases the required bandwidth

for the feedback channel, thereby restricting the bandwidth allocated for transmitter to receiver

communication. Thus, there is a three-fold tradeoff between the bandwidth allocated in forward

channel, the feedback channel, and the size of the codebook. In this section, we quantify this

tradeoff and evaluate its effect on the two-way transmission capacity.

The received signal at receiver R0 over bandwidth FTR is

y0 =
√
Ptd

−α/2hT0 b0x0 +
∑

Tn∈Φ\{T0}

√
Ptd

−α/2
Tn hT0nbnxn,

where Pt is the transmit power of each transmitter, bn are the beamformers used by Txn,

h0 ∈ CN×1 is the channel between Tx0 and Rx0, h0n ∈ CN×1 is the channel between Txn

and Rx0, dn is the distance between Txn and Rx0, x0 and xn are the data symbols transmitted

from Tx0 and Txn, respectively. For simplicity we assume that each receiver computes the
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beamforming vectors bn only depending on hn, independent of the interferers’ channels.

The received signal at transmitter Tx0 corresponding to the feedback by receiver Rx0 over

bandwidth FRT is

w0 =
√
Ptd

−α/2g0u0 +
∑

Tn∈Φ\{T0}

√
Ptd

−α/2
Rn g0nun, (9)

where g0 ∈ CN×1 is the channel between Rx0 and Tx0, g0n ∈ CN×1 is the channel between

Rxn and Tx0, u0 and un are the feedback signals transmitted by Rx0 and Rxn, respectively.

With genie-aided feedback, the optimal beamforming vector bn is known to be bn = h∗n. In

practice, however, only a finite number of bits are available for feedback, and hence bn can be

modeled as bn = h∗n + e, where e is the additive error term which represents the uncertainty

due to limited feedback. The quantization error e degrades the signal power compared to genie

aided feedback. With B bits of feedback bits, the signal power [26] is |hn|2
(

1− c3

(
1
B

) 1
N−1

)
(c3 < 1 is a constant), compared to |hn|2 for genie aided feedback (B =∞). Thus, the SIR for

Tx0 to Rx0 communication with B bits of feedback is

SIRTR =
d−α|hT0 |2

(
1− c3

(
1
B

) 1
N−1

)
∑

Tn∈Φ\{T0} d
−α
Tn |hT0nb0|2

, (10)

and the corresponding mutual information from Tx0 to Rx0 using bandwidth FTR is

MITR := FTR log (1 + SIRTR) bits/sec.

Similarly, the SIR for the feedback link is SIRRT = d−α|g0(1)|2∑
Tn∈Φ\{T0}

d−αRn |g0n(1)|2 , and thus with

bandwidth FRT , the mutual information of the feedback link is

MIRT := (FRT ) log (1 + SIRRT ) .

Similar to (3), we define the success probability as the probability that communication in both

directions is successful simultaneously, i.e.

Psuccess = P (MITR > BTR,MIRT ≥ B) .
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Consequently, with Psuccess = (1− ε) the two-way transmission capacity is defined as

Cε =
λ(1− ε)BTR

Ftotal
bits/sec/Hz/m2.

As stated before, in a two-way communication model, where the transmitter locations are

modeled as a PPP, the interference received in both directions is correlated. Therefore, computing

the success probability in closed form is a hard problem. To derive a meaningful insight into

the dependence of bandwidth allocation, and feedback bits on two-way transmission capacity,

we derive a lower bound on the success probability using the FKG inequality as follows.

Theorem 3: Accounting for feedback bandwidth, the two-way transmission capacity with

beamforming is lower bounded by

Cε ≥
(1− ε)εN 2

α

c4[(β1/γ)
1
α + (β3)

1
α ]

BTR

Ftotal
bits/sec/Hz/m2,

where γ :=
(

1− c3

(
1
B

) 1
N−1

)
, and

c4 =

((
1 +

N−2∑
k=0

1

(k + 1)!

k∏
`=0

(
`− 2

α

))(
2π

α

N−1∑
k=0

(
N

k

)
B

(
2

α
+ k;N − 2

α
+ k

)))−1

with B(a, b) = Γ(a)Γ(b)
Γ(a+b)

.

Proof:

Psuccess = P (MITR > BTR,MIRT ≥ B) .

Similar to Example 3, the success events in two directions {MITR > BTR}, and {MIRT > B},

respectively, are decreasing events. Thus, invoking Lemma 1,

Psuccess ≥ P (MITR > BTR)P (MIRT ≥ B) .
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By definition,

P (MITR > BTR) = P (FTR log (1 + SIRTR) > BTR) ,

(a)
= P (SIRTR > β1) ,

(b)
= P

d−α0 |hT0 |2
(

1− |hn|2
(

1
B

) 1
N−1

)
∑

Tn∈Φ\{T0} d
−α
n |hT0nb0|2

> β1

 ,

(c)

≥ P

(
d−α0 |hT0 |2∑

Tn∈Φ\{T0} d
−α
n |hT0nb0|2

> β1/γ

)
,

(d)
= 1− c4λ(β1/γ)

2
αN

−2
α ,

where (a) follows from the definition of β1, (b) follows by substituting for SIRTR (10), (c)

follows by defining γ :=
(

1− c3

(
1
B

) 1
N−1

)
, and (d) follows from Theorem 3 [7].

Directly applying Theorem 3 [7], P (MIRT ≥ B) = 1−cλ(β3)
2
αN

−2
α , where β3 = dα

(
2

B
FRT

)
Thus, Psuccess ≥ 1− c4λN

−2
α

[
(β1/γ)

2
α + (β3)

2
α

]
. Then,

Cε ≥
(1− ε)εN 2

α

c4[(β1/γ)
1
α + (β3)

1
α ]

BTR

Ftotal
bits/sec/Hz/m2.

Discussion: In this section we derived a lower bound on the two-way transmission capacity when

the transmitter uses beamforming with limited feedback, as a function of the bandwidth allocated

in two directions, and the number of feedback bits. Note that as B (the number of feedback

bits) increases, the two-way transmission capacity increases as B
1

(N−1)α due to the improvement

in signal strength, however, decreases as 2
−B
α because of the stringent requirement of SIR on

the feedback link to be more than β3. Our result quantifies the degradation due to practical

limited feedback in two-way transmission capacity with beamforming, compared to assuming a

genie aided feedback [7]. The feedback requirement not only decreases the available bandwidth

for transmitter to receiver communication, but also degrades the overall performance due to the

successful reception requirement of the feedback bits.
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Similar to Section IV, for a fixed value of B and BTR, the optimal bandwidth allocation

FTR that maximizes the two-way transmission capacity upper bound can be computed using

Theorem 2, since here again the optimization problem is convex. For a fixed value of FTR

and BTR, finding the optimal B is slightly complicated since the upper bound is not a convex

function of B, however, the problem is a single variable problem and can be solved easily by

using techniques like bisection.

VI. NUMERICAL RESULTS

In this section we present some numerical results on the two-way transmission capacity. We

adopt the simulation methodology for one-way networks presented in [27] and consider d = 5m,

and α = 4.

A. General Two-way Communication

Tightness of the proposed bounds: In this experiment, we consider BTR = 1.028 kbits,

BRT = 0.03 kbits, FTR = 0.99 MHz, and FRT = Ftotal − FTR = 0.01 MHz. Fig. 2 shows the

curves for the simulated result and the bounds derived in Theorem 1 on the two-way transmission

capacity as functions of the outage probability requirement. Moreover, note that the transmission

capacity decreases at very high outage probability (ε), since the transmission capacity expressions

are proportional to −(1−ε) log(1−ε). Intuitively, as the outage probability ε approaches towards

1, a high density of links is allowed in a unit area, however, most of the links fail; therefore,

the amount of successfully received information actually decreases.

One-way versus two-way transmission capacity: Requiring that transmissions be successful

in both directions, the two-way transmission capacity is less than the one-way transmission

capacity. To quantify the loss we plot the two-way transmission capacity in comparison with the

one-way transmission capacity for the same total bandwidth Ftotal and total data rates Btotal =

BTR+BRT. In particular, for the results shown in Fig. 3, we set BTR = 1.024 kbits, BRT = 0.256
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kbits, FTR = 0.8 MHz, and FRT = 0.2 MHz. The simulation results show that at the outage

requirement of 10%, the two-way transmission capacity is half the one-way transmission capacity.

Effect of bandwidth allocation: To highlight the effect of bandwidth allocation on the two-

way transmission capacity we plot the transmission capacity as a function of FTR in Fig. 4

assuming the total bandwidth is Ftotal = 1 MHz. For the scenario of symmetric traffic, we set

the data requirements in two directions equal to 1 kbits, i.e., BTR = BRT = 1.024 kbits. In

this case, we notice that the proportional allocation method is optimal. For asymmetric traffic,

we consider BTR = 1.024 Mbits and BRT = 0.056 kbits. From Fig. 4, note that the optimal

bandwidth allocation (Theorem 2) provides a gain of 36% over the proportional allocation.

B. Feedback-Based Communication

To quantify the effect of feedback on the transmission capacity we compare the transmission

capacity of a feedback-based network with the corresponding one-way network with the genie-

aided beamforming [7] with N = 3 in Fig. 5. We use BTR = 1.024 kbits, BRT = 0.056 kbits,

feedback bits B = 2, FTR = 0.94 MHz, and FRT = Ftotal − FTR = 0.06 MHz and assume

that the transmitters employ Grassmannian limited feedback beamforming for transmission [25].

Moreover, of the BRT = 0.056 kbits (or 56 bits) in the reverse direction, B bits are used for

carrying the codeword index while the other bits are used for MAC header.

Tightness of the proposed lower bound: In this experiment, we set N = 3 antennas and

B = 2 bits. Fig. 6 presents the simulated results for a genie-aided beamforming network and

the limited-feedback beamforming network as well as the computed lower bound.

VII. CONCLUSIONS

In this paper we generalized the concept of transmission capacity to incorporate two-way

communication in wireless ad-hoc networks. The two-way transmission capacity is able to capture

the requirement of successful transmissions in both directions and the impact of duplexing

techniques. The two-way success requirement is shown to reduce the transmission capacity
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significantly compared to the corresponding one-way transmission capacity. This observation

raised the question of finding the network with the maximum two-way transmission capacity

among the two-way networks with the same total bandwidth given fixed desired rates in two

directions. We addressed the question by providing the optimal solution for bidirectional spectrum

allocation to maximize the two-way transmission capacity. The optimal solutions were determined

in terms of the path-loss exponent, desired rates, and total bandwidth available.

As an application of the two-way transmission capacity framework, we also quantified the

effect of practical limited channel feedback on the two-way transmission capacity with transmit

beamforming. We showed that accounting for the bandwidth required for feedback, and the

successful reception of the feedback bits, the transmission capacity is significantly reduced

compared to the genie aided feedback.
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Fig. 1. Schematic of two-way communication with two pairs of nodes.
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Fig. 2. Tightness of the proposed bounds on the transmission capacity of general two-way networks.
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Fig. 3. Comparison of the one-way transmission capacity and the general two-way transmission capacity.
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Fig. 5. Comparison of the transmission capacity of a feedback-based network with that of the corresponding one-way network.
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