
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, ACCEPTED FOR PUBLICATION 1

MIMO Gaussian Bidirectional
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Abstract�—In this work, the MIMO Gaussian bidirectional
broadcast channel (BBC) with common messages is studied. The
problem is motivated by the concept of bidirectional relaying in
a three-node network, where a half-duplex relay node establishes
a bidirectional communication between two other nodes using a
decode-and-forward protocol and thereby adds an own multicast
message to the communication. The capacity region of the
broadcast phase is derived and the corresponding transmit
covariance matrix optimization problem is analyzed in detail.
Thereby, it is shown that the transmit covariance optimization
problem is strongly connected to the corresponding one of the
MIMO Gaussian BBC without common messages. In particular,
this knowledge can be exploited to transfer results such as
optimal transmit strategies from one scenario to the other one.

Index Terms�—Bidirectional relaying, MIMO, capacity region,
optimization, wireless network.

I. INTRODUCTION

THE recent research progress reveals that the use of relays
has the potential to signicantly increase the performance

of wireless networks. Especially in cellular systems relays
provide a promising approach to improve the throughput and
coverage at the cell edges. Since a relay cannot transmit and
receive at the same time and frequency, it needs orthogonal
resources for transmission and reception which can be done
more efciently if bidirectional communication is considered
[1�–4]. In this work, we consider bidirectional relaying in a
three-node network, where a relay node establishes a bidirec-
tional communication between two other nodes and thereby
adds an own multicast message to the communication. Since
it is well-known that spatial MIMO techniques can improve
the performance signicantly [5], we assume a network where
each node is equipped with multiple antennas.

In the initial multiple access (MAC) phase of a two-phase
decode-and-forward protocol, the two nodes transmit their
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messages to the relay node. We assume the relay to decode
both messages so that we end up with the classical MIMO
Gaussian MAC in the rst phase. Since the capacity region
and optimal transmit strategies are well known, cf. for example
[5, 6], we concentrate on the succeeding broadcast phase in
this work. Here, the relay re-encodes and transmits both
messages and an additional common message in such a way
that each receiving node can decode the other�’s message and
the common message using its own message from the previous
phase as side information. Note that due to the available side
information at the receiving nodes this channel differs from
the classical broadcast channel with common messages and is
therefore called bidirectional broadcast channel (BBC) with
common messages.

Due to the decoding at the relay node, the processing of the
two phases of the decode-and-forward protocol are decoupled.
Hence, we have to distribute the available spectral resources
between both phases and the achievable rate region for the
bidirectional relay channel is given by the intersection of the
corresponding scaled capacity regions of both phases. How
to optimally distribute the resources between both phases is
beyond the scope of this work. But it can be done in a
similar way as, for example, in [7] or [8] respectively, where
the optimal time-division for MISO and MIMO bidirectional
relaying without additional common messages is discussed. In
this work, we solely concentrate on the BBC phase, since it
constitutes the indispensable basis for such a discussion.

The problem of jointly broadcasting bidirectional and multi-
cast information arises for example in cellular systems. There,
operators offer not only traditional services such as (bidi-
rectional) voice communication, but also additional multicast
services such as common signaling data or video broadcasts.
Nowadays this is realized at the base station by a policy
that allocates different services on different logical channels.
But there is a trend to merge multiple coexisting services
efciently from an information theoretic point of view such
that they work on the same wireless resources. In [9] it is
presented how bidirectional relaying can efciently be inte-
grated in a cellular system, where the base station acts as the
relay node. Accordingly, the convergence of wireless services
is intensively discussed at the moment by the Third Generation
Partnership Programs Long-Term Evolution Advanced (3GPP
LTE-Advanced) group since this enables a joint resource
allocation policy. Moreover, it is expected that this will result
in a signicantly reduced complexity and an improved energy
efciency.
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The BBC without common messages is widely studied.
Capacity achieving strategies can be found, for instance, in
[10�–13] for discrete memoryless channels and in [14] for
MIMO Gaussian channels. A deterministic approach that
characterizes the capacity of the full-duplex bidirectional relay
channel within a constant gap is given in [15]. There exist
several strategies for bidirectional relaying classied by the
processing at the relay node, e.g., refer [16] for a survey.
In more detail, beside the decode-and-forward protocol [1,
10, 11, 17, 18], there are amplify-and-forward schemes that
are analyzed, for example, in [19�–23]. Other schemes are
compress-and-forward [24, 25] or compute-and-forward [26�–
30] approaches, where the relay decodes a certain function
of both individual messages. An extension that includes an
additional common message of the relay node can be done in
a similar way as for the decode-and-forward protocol using
rate-splitting arguments.

The concept of bidirectional relaying and its extensions
are subject of further research activities, e.g., in [31�–34],
extensions to the case where the relay supports the communi-
cation of multiple pairs of users are presented. Bidirectional
relaying with an additional private message for the relay
node in the MAC phase is addressed in [35]. A four-node
network with bidirectional communication is discussed in
[36], while [37] addresses the problem of joint network and
channel coding for multi-way relaying. Some work on the
SISO Gaussian broadcast channel with common messages and
certain side information at the receivers can be found in [38]
and [13] where the latter assumes degraded message sets. The
throughput region of bidirectional multi-hop fading networks
with common messages is analyzed in [39]. A general model
for multi-user settings with correlated sources is given in
[40]. The general broadcast channel with common messages
is analyzed in [41] in terms of latent capacity, where the
author shows that the achievability of a certain rate vector
immediately implies the achievability of a whole non-trivial
rate region. However, only the case of symmetric rates for all
users is discussed.

The rest of this work is organized as follows. In Section II
we introduce the MIMO Gaussian BBC with common mes-
sages and derive the corresponding capacity region by channel
coding arguments only. Section III deals with the transmit
covariance matrix optimization problem which leads to a
characterization of the capacity achieving transmit strategies
in Section IV. The exact knowledge of the optimal transmit
strategies and in particular of the weighted rate sum optimal
rate triples is of great interest, since it constitutes the basis for
further cross-layer designs such as stability-optimal transmis-
sion policies or throughput-optimal scheduling strategies. For
example, the stability region of the MIMO MAC is analyzed
in [42] and throughput-optimal policies in relay networks
are addressed in [43]. Further, in Section IV we establish a
strong connection between the BBC with and without common
messages which is used in Section V to demonstrate how
results for the BBC without common messages immediately
also provide solutions for the BBC with common messages.
This emphasizes that the results are not only relevant in itself.
Finally, we end up with a conclusion in Section VI.
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Fig. 1. Decode-and-forward bidirectional relaying with multiple antennas at
all nodes. In the initial multiple access (MAC) phase, nodes 1 and 2 transmit
their messages !1 and !2 with rates "2 and "1 to the relay node. In
the succeeding bidirectional broadcast (BBC) phase, the relay forwards the
messages !1 and !2 with rates "2 and "1 and adds its own common
message !0 with rate "0 to the communication.

Notation

In this work, we denote random variables by non-italic
capital letters and their corresponding realizations and ranges
by lower case italic letters and script letters, respectively;
scalars, vectors, and matrices are denoted by lower case letters,
bold lower case letters, and bold capital letters; !(⋅) and "(⋅; ⋅)
are the traditional entropy and mutual information; ℕ, ℝ+,
and ℂ are the sets of non-negative integers, non-negative real,
and complex numbers; (⋅)−1, (⋅)! , and (⋅)" denote inverse,
transpose, and Hermitian transpose, respectively; tr(⋅) is the
trace of a matrix; ! ર 0 means the matrix ! is positive
semidenite; ${⋅} is the expectation.

II. MIMO BIDIRECTIONAL BROADCAST CHANNEL

We assume ## antennas at the relay node and #$ antennas
at node $, $ = 1, 2, as shown in Figure 1. In the bidi-
rectional broadcast phase, the discrete-time complex-valued
input-output relation between the relay node and node $,
$ = 1, 2, is given by

"$ = # $$+ %$, (1)

where "$ ∈ ℂ%!×1 denotes the output at node $, #$ ∈
ℂ%!×%" the multiplicative channel matrix, $ ∈ ℂ%"×1 the
input of the relay node, and %$ ∈ ℂ%!×1 the independent
additive noise according to a circular symmetric complex
Gaussian distribution &' (0, &2&%!). We assume perfect chan-
nel state information at all nodes and an average transmit
power constraint tr(!) ≤ ' with ! = ${$$"}.

We consider the standard model with a block code of
arbitrary but xed length (. Let ℳ$ := {1, ...,* (&)

$ } be
the individual message set of node $, $ = 1, 2, which is also
known at the relay node. Further, ℳ0 := {1, ...,* (&)

0 } is the
common message set of the relay node.

For the bidirectional broadcast phase we assume that the
relay has successfully decoded the individual messages +1 ∈
ℳ1 from node 1 and +2 ∈ ℳ2 from node 2 that it received
in the previous MAC phase. If there is no additional common
message for the relay to transmit, it remains for the relay to
broadcast a re-encoded message based on the network coding
idea that allows both nodes to decode the other�’s message
using their own message from the previous phase as side
information. In this case, we know from [14] that it is optimal
to use Gaussian distributed input that carries all the re-encoded
information. A direct consequence is the following theorem.
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Theorem 1 ([14]): The capacity region of the MIMO Gaus-
sian BBC without common messages and with average power
constraint ' is given by

∪

!: tr(!)≤',!ર0

ℛ′(!)

with

ℛ′(!) :=
{
(,′

1, ,
′
2) ∈ ℝ2

+ :,′
1 ≤ -1(!),

,′
2 ≤ -2(!)

} (2)

and -$(!) = log det(&%! +
1
)2# $!#"

$ ), $ = 1, 2.
Thereby, ,′

1 denotes the individual rate for message +2 ∈
ℳ2 from the relay to node 1 and, similarly, ,′

2 denote the
rate for +1 ∈ ℳ1 from the relay to node 2.

Now, we turn to our broadcast scenario, where the relay
transmits the individual messages and an additional common
message +0 ∈ ℳ0. This is the bidirectional broadcast channel
(BBC) with common messages.

Denition 1: An ((,* (&)
0 ,* (&)

1 ,* (&)
2 )-code for the

MIMO Gaussian BBC with common messages and average
power constraint ' consists of one encoder at the relay node

. : ℳ0 ×ℳ1 ×ℳ2 → -&

with -& := {($1,$2, ...,$&) ∈ ℂ%"×& : 1
&

∑&
*=1 $

"
* $* ≤

'} satisfying the average power constraint and corresponding
decoders at nodes 1 and 2

/1 : ℂ%"×& ×ℳ1 → ℳ0 ×ℳ2 ∪ {0},
/2 : ℂ%"×& ×ℳ2 → ℳ0 ×ℳ1 ∪ {0}.

The element 0 in the denition of the decoder plays the role
of an erasure symbol and is included for convenience only.

When the relay has sent the message + = (+0,+1,+2),
and nodes 1 and 2 have received "&

1 and "&
2 , the decoder at

node 1 is in error if /1("&
1 ,+1) ∕= (+0,+2). Accordingly,

the decoder at node 2 is in error if /2("&
2 ,+2) ∕= (+0,+1).

Then, the average probability of error at node $ is given by

0(&)
$ :=

1

* (&)
0 * (&)

1 * (&)
2

+(#)
0∑

,0=1

+(#)
1∑

,1=1

+(#)
2∑

,2=1

1$(+0,+1,+2)

where 1$(+0,+1,+2) denotes the probability that the de-
coder at node $ decodes the sent message + = (+0,+1,+2)
incorrectly, $ = 1, 2.

Denition 2: A rate triple (,0, ,1, ,2) ∈ ℝ3
+ is said to be

achievable for the MIMO Gaussian BBC with common mes-
sages and average power constraint ' if for any 2 > 0 there
is an ((2) ∈ ℕ and a sequence of ((,* (&)

0 ,* (&)
1 ,* (&)

2 )-
codes satisfying the power constraint ' such that for all

( ≥ ((2) we have log+(#)
0

& ≥ ,0 − 2, log+(#)
2

& ≥ ,1 − 2,

and log+(#)
1

& ≥ ,2 − 2 while 0(&)
1 , 0(&)

2 → 0 as ( → ∞. The
set of all achievable rate triples is the capacity region of the
MIMO Gaussian BBC with common messages and is denoted
by &MIMO

BBC .
Now, we can state the capacity region of the MIMO

Gaussian BBC with common messages. For this purpose we
dene the region

ℛ(!) :=
{
(,0, ,1, ,2) ∈ ℝ3

+ :,0 +,1 ≤ -1(!),

,0 +,2 ≤ -2(!)
}
.

(3)

Remark 1: Clearly, the sum constraints in the denition
of ℛ(!) immediately implies that the rate of the common
message has to fulll ,0 ≤ min{-1(!), -2(!)}.

Remark 2: At a rst glance, (3) suggests a rate splitting
approach between the common rate and the individual rates,
but one has to be careful since the coding strategy has to
be designed in such a way that the common message can
be decoded at both receivers. This observation reveals some
interesting connections to compound channels [44�–46] where
the coding strategy has to ensure that the message to transmit
is decodable for a whole set of possible channels.

Theorem 2: The capacity region &MIMO
BBC of the MIMO

Gaussian BBC with common messages and average power
constraint ' is given by

&MIMO
BBC =

∪

!: tr(!)≤',!ર0

ℛ(!). (4)

Since the log det function is concave in ! [47, Theorem
7.6.7], the region in (4) is already convex. Hence, an auxiliary
random variable that realizes an additional time-sharing oper-
ation is not necessary since such an operation will not enlarge
the region.

A. Proof of Achievability

In this section, we present a construction of a coding
strategy that achieves all rate triples (,0, ,1, ,2) ∈ ℛ(!),
cf. (3), for a given covariance matrix !. Then the desired
region (4) is immediately obtained by taking the union over
all covariance matrices that satisfy the input power constraint.
The construction is mainly based on the idea of [48] for the
classical broadcast channel with common messages, where
the whole information sent to each receiver is split into an
individual part and a common part. We use this idea to
extend the proof of achievability for the BBC without common
messages, cf. Theorem 1 and [14, Sec. III-A], to our scenario.

Recall the broadcast situation considered here. The relay
node wants to transmit a common message +0 ∈ ℳ0 with
rate ,0 and individual messages +1 ∈ ℳ1 and +2 ∈ ℳ2

with rates ,2 and ,1, respectively. Node 1 knows its own
message +1 that it transmitted in the previous MAC phase
and wants to recover the common message +0 and the
individual message +2. Similarly, node 2 knows +2 and
wants to recover +0 and +1. Having [48] in mind the broad-
cast situation can also be interpreted in a slightly different
way by combining the desired individual messages and the
common message. In more detail, node 1 knows its own
message +1 and is interested in the (combined) individual
message +′

2 = (+0,+2) ∈ ℳ0 × ℳ2 =: ℳ′
2 with rate

,′
1 = ,0 + ,1 and, similarly, node 2 knows +2 and is

interested in +′
1 = (+0,+1) ∈ ℳ0 × ℳ1 =: ℳ′

1 with
rate ,′

2 = ,0 +,2.
Basically, we see that due to this reinterpretation the prob-

lem of coding for the BBC with common messages reduces
to the problem of coding for the BBC without common
messages. The only difference is that while in the classical
BBC without common messages each receiving node has
complementary side information, i.e., it knows exactly the
message the other one is interested in, in our scenario each
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receiving node knows only a part of the information the other
one is interested in, i.e., it has only the other individual
message and not the common message as available side
information. We see that our scenario is not precisely included
in [14], but it is a straightforward extension. Therefore, we go
through the proof of achievability in the following and sketch
only the differences to [14, Sec. III-A], cf. also Theorem 1.

Similarly as in [14, Sec. III-A] we show by random coding
arguments that for a given covariance matrix ! there exists
a coding strategy such that all rate pairs (,′

1, ,
′
2) ∈ ℛ′(!),

i.e., satisfying ,′
$ = ,0 + ,$ ≤ -$(!), $ = 1, 2, cf. also

(2), are achievable. Therefore, we generate * (&)
0 * (&)

1 * (&)
2

codewords of length ( with * (&)
0 := 2&#0 , * (&)

1 := 2&#2 ,
and * (&)

2 := 2&#1 , where for each + = (+0,+1,+2) ∈
ℳ0×ℳ1×ℳ2 each entry of the corresponding codeword is
independently chosen according to &' (0,!). Each receiving
node uses typical set decoding in a similar way as in [14, Sec.
III-A]. Now, it is straightforward to show that the probability
of a decoding error, averaged over all codewords and all
codebooks, at receiving node 1 gets arbitrarily small if the
rate of the intended (combined) message +′

2 = (+0,+2) ∈
ℳ0 ×ℳ2 = ℳ′

2 fullls ,′
1 = ,0 + ,1 ≤ -1(!). Clearly,

the same is also true for receiving node 2 which is able to
determine +′

1 = (+0,+1) ∈ ℳ0 × ℳ1 = ℳ′
1 if ,′

2 =
,0 +,2 ≤ -2(!). With the (combined) individual messages
+′

1 ∈ ℳ′
1 and +′

2 ∈ ℳ′
2 with rates ,′

2 and ,′
1 the receiving

nodes immediately obtain the common message +0 ∈ ℳ0

with rate ,0 and the individual messages +1 ∈ ℳ1 and
+2 ∈ ℳ2 with rate ,′

2−,0 and ,′
1−,0, respectively. Thus,

similar to [41, 48], all rate triples (,0, ,′
1 −,0, ,′

2 −,0) =
(,0, ,1, ,2) ∈ ℛ(!) with ,0 ≤ min{-1(!), -2(!)}, cf.
Remark 1, are achievable for the MIMO Gaussian BBC with
common messages which already proves the achievability.

B. Proof of Weak Converse

We have to show that for any given sequence of
((,* (&)

0 ,* (&)
1 ,* (&)

2 )-codes with 0(&)
1 , 0(&)

2 → 0 there exists
a covariance matrix ! satisfying the average power constraint
tr(!) ≤ ' such that

,0 +,1 :=
1

(

(
log* (&)

0 + log* (&)
2

)
≤ -1(!) + 4((0)

,0 +,2 :=
1

(

(
log* (&)

0 + log* (&)
1

)
≤ -2(!) + 4((0)

are satised. For this purpose we need a version of Fano�’s
lemma suitable for the MIMO Gaussian BBC with common
messages.

Lemma 1: For the BBC with common messages we have
the following versions of Fano�’s inequality

!(M0,M2∣Y&
1 ,M1)≤ 0(&)

1 log(* (&)
0 * (&)

2 )+1=(5(&)1 (5a)

!(M0,M1∣Y&
2 ,M2)≤ 0(&)

2 log(* (&)
0 * (&)

1 )+1=(5(&)2 (5b)

with 5(&)1 = log(+(#)
0 +(#)

2 )
& 0(&)

1 + 1
& → 0 and 5(&)2 =

log(+(#)
0 +(#)

1 )
& 0(&)

2 + 1
& → 0 for ( → ∞ as 0(&)

1 , 0(&)
2 → 0.

Proof: The main difference to the classical version of
Fano�’s inequality is that the entropy terms given in (5) are
conditioned on the messages known at the corresponding

0
1

2
0

1

0

0.5

1

R
1R

2

R
0

#1=

[
0.2− 0.5$ 0.5$

−1 1.3 + 0.3$

]

#2=

[
0.7− 0.2$ 0.7

0 −0.8$

]

' = &2 = 1

Fig. 2. Capacity region of the MIMO Gaussian BBC with common messages
(black) and a comparable TDMA approach (gray) with #! = #1 = #2 = 2.

receivers. This is due to the fact that the receiving nodes
can use their own message from the previous phase as side
information for decoding. For completeness, the proof can be
found in Appendix A.

With this, we can bound !(M0) +!(M2) as follows

!(M0) +!(M2) = !(M0∣M1,M2) +!(M2∣M1)

= !(M0,M2∣M1)

≤ "(M0,M2;Y
&
1 ∣M1) + (5(&)1

≤ "(M0,M1,M2;Y
&
1 ) + (5(&)1

≤ "(X&;Y&
1 ) + (5(&)1 (6)

where the equalities and inequalities follow from the inde-
pendence of M0, M1, and M2, the chain rule for entropy,
Lemma 1, the chain rule for mutual information, the positivity
of mutual information, and the data processing inequality.
Accordingly, using the same arguments we also obtain

!(M0) +!(M1) ≤ "(X&;Y&
2 ) + (5(&)2 . (7)

Note that (6) and (7) immediately imply that !(M0) ≤
min{"(X&;Y&

1 ) + (5(&)1 , "(X&;Y&
2 ) + (5(&)2 }, cf. also Re-

mark 1.
The rest of the proof is almost identical to [14, Sec. III-B]

and follows from standard arguments. It only remains to bound
the term "(X&;Y&

$ ), $ = 1, 2, in such a way that we end up
with the well known and expected log det expression. Exactly
as in [14, Lemma 3] it can be shown that 1

&"(X
&;Y&

$ ) ≤
log det

(
&%! +

1
)2# $

(
1
&

∑&
*=1 !*

)
#"

$

)
. Following [14, Sec.

III-B] this immediately leads to

,0 +,$ ≤ log det(&%! +
1
)2#$!#"

$ ), $ = 1, 2

which proves the weak converse.

C. Example

As an example Figure 2 depicts the capacity region of a
MIMO Gaussian BBC with common messages and illustrates
how the optimal strategy outperforms a simple TDMA ap-
proach that realizes the same routing task with three orthog-
onal time slots.
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III. COVARIANCE OPTIMIZATION PROBLEM

Since the capacity region &MIMO
BBC is convex, the rate triples

on the dominant surface characterize the capacity region
completely. Therefore, one is interested in nding the optimal
transmit covariance matrices that achieve the rate triples
on the dominant surface since they constitute the basis for
further cross-layer designs such as stability-optimal scheduling
policies.

A rate triple on the dominant surface of the capacity region
is a solution of a weighted rate sum problem so that we
consider the corresponding convex optimization problem

,Σ(') = max
#0,#1,#2

2∑

$=0

6$,$ (8a)

s.t. ,0 +,$ ≤ -$(!), $ = 1, 2 (8b)

,$ ≥ 0, $ = 0, 1, 2 (8c)

tr(!) ≤ ', ! ર 0 (8d)

with ' = (60, 61, 62) ∈ ℝ3
+ the weight vector and -$(!) =

log det(&%! +
1
)2#$!#"

$ ), $ = 1, 2, in the following.
For the optimal rate triples the constraints (8b) will be

satised with equality for positive weights. Since otherwise,
if ,0 + ,$ < -$(!), we can increase the rate ,$ up to
the point where we have equality, i.e., ,0 + ,$ = -$(!),
without affecting the other rates and therewith increasing the
weighted rate sum ,Σ('). On the other hand if some weights
are zero, there exists also an optimal solution where (8b)
will be satised with equality. Therefore, we concentrate on
those rate triples that satisfy (8b) with equality and rewrite the
optimization problem as follows

max
!,#0

(60 − 61 − 62),0 + 61-1(!) + 62-2(!) (9)

s.t. 0 ≤ ,0 ≤ -$(!), $ = 1, 2

tr(!) ≤ ', ! ર 0.

Then the Lagrangian for the corresponding minimization prob-
lem is given by

8(!, ,0,(, 9, 0,Ψ) = −(60 − 61 − 62),0 −
2∑

$=1

6$-$(!)

+ :1
(
,0 − -1(!)

)
+ :2

(
,0 − -2(!)

)

− 9,0 + 0
(
tr(!)− '

)
− tr(!Ψ)

with Lagrange multipliers 9, 0 ∈ ℝ, ( = (:1, :2) ∈ ℝ2,
and Ψ ∈ ℂ%"×%" , from which we get the Karush-Kuhn-
Tucker (KKT) conditions with - ′

$(!) = #"
$ (&2&%! +

#$!#"
$ )−1#$, $ = 1, 2, as

0&%" −Ψ = (61 + :1)-
′
1(!) + (62 + :2)-

′
2(!) (10a)

60 = 61 + 62 + :1 + :2 − 9 (10b)

0 ≤ ,0 ≤ -$(!), $ = 1, 2 (10c)

! ર 0, tr(!) ≤ ' (10d)

Ψ ર 0, :1, :2, 9, 0 ≥ 0 (10e)

tr(!Ψ) = 0, 0
(
tr(!)− '

)
= 0 (10f)

9,0 = 0, :$
(
,0 − -$(!)

)
= 0, $ = 1, 2 (10g)

with primal, dual, and complementary slackness conditions
(10c)-(10d), (10e), and (10f)-(10g) respectively. Since the
constraint functions satisfy a generalized version of Slater�’s
condition [49, Sec. 5.9], the KKT conditions (10a)-(10g)
are necessary and sufcient and therefore characterize the
optimal transmit covariance matrix for a certain weight vector
' = (60, 61, 62).

Although the optimization problem (8) is a convex opti-
mization problem and can therefore be efciently solved using
interior point method, further insights can be obtained by
studying its structure in more detail as done in the following
section.

IV. CAPACITY ACHIEVING TRANSMIT STRATEGIES

Already the proof of achievability, cf. Section II-A, indicates
that the BBC with common messages is closely related to the
BBC without common messages. Motivated by this observa-
tion, we analyze the optimization problem from Section III
in detail and establish a strong connection between these two
cases in the following so that results such as transmit strategies
obtained for one case will also be applicable for the other one.

It is reasonable to distinguish three different kinds of weight
vectors based on the relation between the weight of the com-
mon message and the weights of the individual messages. For
notational convenience we collect the corresponding weight
vectors in three sets

4(<) := {(60, 61, 62) ∈ ℝ3
+ : 60 < 61 + 62},

4(>) := {(60, 61, 62) ∈ ℝ3
+ : 60 > 61 + 62},

4(=) := {(60, 61, 62) ∈ ℝ3
+ : 60 = 61 + 62}.

In the following three subsections we analyze the optimiza-
tion problem for each set of weight vectors separately. This
will be a reasonable division since they characterize the cases
with no common message rate, full common message rate,
and the case with a trade-off between the common rate and
the individual rates.

A. Zero Common Message Rate

If 60 < 61 + 62, the formulation (9) of the optimization
problem already shows that the weighted rate sum is max-
imized by setting ,0 = 0. Since otherwise, an increasing
common rate ,0 would result in a decreasing weighted rate
sum. Our intuition is conrmed by the following results.

Proposition 1: Let ' ∈ 4(<) be a weight vector for the
BBC with common messages. Then for the weighted rate sum
optimal rate triple we have ,0 = 0.

Proof: Since :1, :2 ≥ 0, cf. (10e), condition (10b) shows
that for 60 < 61 + 62 we must have 9 > 0 which indeed
implies ,0 = 0 by (10g).

Clearly, if the rate of the common message is zero, the BBC
with common messages reduces to the BBC without common
messages. Therefore, for weight vector '′ = (0, 6′

1, 6
′
2) ∈

ℝ3
+ let !′

opt('
′) be the optimal transmit covariance matrix for

the BBC without common messages. Thereby, we know from
[50, 51] that it sufces to consider normalized weight vectors
only, i.e., 6′

1 +6′
2 = 1, since the optimal transmit covariance

matrix depends only the relation between the two individual
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Fig. 3. MISO Gaussian BBC with common messages with #! = 2, #1 =
#2 = 1 for !1 = [1.3 1.3%]" , !2 = [1 − %&#

$
3 ]" , ' = 1, and (2 = 1.

For xed individual weights )1 and )2, in Fig. 3(a) the point ⊲ characterizes
"opt(#) for all # ∈ $(<) with the xed individual weights. The solid
dashed line between ⊲ and ⊳ corresponds to all "opt(#) for # ∈ $(=).
For all # ∈ $(>) the optimal rate triples moves along the curved section
and tends to the XOR solution in point ∘.

weights and not on the exact values. Then the optimum for
the BBC with common messages is achieved by the same
transmit covariance matrix, i.e., !opt(') = !′

opt('
′), for all

weight vectors ' ∈ 4(<) with 6$ = 6′
$, $ = 1, 2, as long as

60 < 6′
1+6′

2 is satised. This means the BBC without com-
mon messages immediately determines the capacity achieving
transmit strategies for the BBC with common messages.

Another important issue is to characterize the optimal rate
triples )opt(') = (,0('), ,1('), ,2(')) for given weight
vector ' = (60, 61, 62).

Proposition 2: For weight vector ' ∈ 4(<) let !opt(')
be the optimal transmit covariance matrix for the BBC with
common messages. Then the weighted rate sum optimal rate
triple )opt(') is

,0(') = 0, (11a)

,$(') = -$

(
!opt(')

)
, $ = 1, 2. (11b)

Proof: The weighted rate sum optimal rate triple )opt(')
follows immediately from Proposition 1.

Remark 3: It shows that the weights for the common and
individual messages have a strong impact on further cross-
layer designs. We see that for all weight vectors ' ∈ 4(<) it
is optimal to allocate no resources to the common message
and solely transmit the individual messages which indeed
inuences the scheduling policy at the relay node.

Figure 3(a) depicts the capacity region of a MISO Gaussian
BBC with common messages, where the relay node has
multiple antennas, while each receiving node is equipped with
a single antenna only. For all weight vectors ' ∈ 4(<) we see
from (11) that ,0(') = 0 and the weighted rate sum optimal
rate triples )opt(') describe the boundary of the capacity
region on the ,1/,2-plane as further studied in [50, 51].

B. Full Common Message Rate

Next, we turn to the more interesting case where the weight
of the common message exceeds the weights of the individual
messages, i.e., 60 > 61 + 62.

Proposition 3: Let ' ∈ 4(>) be a weight vector for the
BBC with common messages. Then for the weighted rate sum
optimal rate triple we have ,0 > 0.

Proof: We prove the proposition by contradiction. Let us
assume ,0 = 0 so that :1 = 0 and :2 = 0 by (10g). Since
60 > 61 +62, condition (10b) can only be satised if 9 < 0
which is a contradiction to (10e). Therefore, if 60 > 61+62,
we must have ,0 > 0 which proves the proposition.

Intuitively one would expect that it is optimal to allocate all
available resources to the common message. But the rate of the
common message is limited by a min operation, cf. Remark
1, so that this might not maximize the weighted rate sum in
general. Therefore, similar to the previous case we want to
know when a given transmit covariance matrix that is optimal
for the BBC without common messages is also optimal for
the BBC with common messages.

Theorem 3: For weight vector '′ = (0, 6′
1, 6

′
2) ∈ ℝ3

+ let
!′

opt('
′) be the optimal transmit covariance matrix for the

BBC without common messages. For all weight vectors ' ∈
4(>) that further satisfy, if -1(!

′
opt('

′)) < -2(!
′
opt('

′)),
the condition

60 = 6′
1 + 6′

2, 61 < 6′
1, 62 = 6′

2, (12a)

or, if -1(!
′
opt('

′)) > -2(!
′
opt('

′)), the condition

60 = 6′
1 + 6′

2, 61 = 6′
1, 62 < 6′

2, (12b)

or, if -1(!
′
opt('

′)) = -2(!
′
opt('

′)), the condition

60 = 6′
1 + 6′

2, 61 ≤ 6′
1, 62 ≤ 6′

2, (12c)

the optimum for the BBC with common messages is achieved
by the same transmit covariance matrix, i.e., !opt(') =
!′

opt('
′).

Proof: We start with case (12a) and note that we have
9 = 0 by (10g) since ,0 > 0 which follows from Proposition
3. If -1(!

′
opt('

′)) < -2(!
′
opt('

′)), then from (10c) follows
that ,0 < -2(!

′
opt('

′)) which immediately implies together
with (10g) that :2 = 0. With this, (10a) reads as

0&%" −Ψ = (61 + :1)-
′
1

(
!′

opt('
′)
)
+ 62-

′
2

(
!opt('

′)
)

which is exactly the same structure as the MIMO Gaussian
BBC without common messages has, cf. for example [51,
Eq. (2a)]. Consequently, the optimization problem of the BBC
with common messages reduces to the BBC without common
messages but with modied individual weights 6′

2 = 62 and
6′

1 = 61 + :1 = 60 − 62 where the last equality follows
from (10b). Hence, the optimal transmit covariance matrix
!′

opt('
′) for the BBC without common messages and weight

vector '′ = (0, 6′
1, 6

′
2) is also a solution of the corresponding

problem of the BBC with common messages for all weight
vectors ' ∈ 4(>) that further satisfy 60 = 6′

1 + 6′
2,

61 < 6′
1, and 62 = 6′

2 which proves the rst assertion (12a).
Now, the case (12b) follows accordingly using the same

arguments. Furthermore, the third assertion (12c) follows
immediately from (10a) and (10b) and :$ ≥ 0, $ = 1, 2.

Remark 4: A given weight vector '′ uniquely character-
izes the optimal transmit covariance matrix !′

opt('
′) for the

BBC without common messages, cf. [50, 51] and immediately
determines the maximal unidirectional rates -1(!

′
opt('

′)) and
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-2(!
′
opt('

′)) for given !′
opt('

′). But more important, it
directly affects the common rate, since it is restricted by the
minimum of the two maximal unidirectional rates, cf. also
Remark 1. This substantiates the result that an optimal transmit
covariance matrix !′

opt('
′) for the BBC without common

messages is also optimal for the BBC with common messages
for three different sets of weight vectors based on the relation
between the maximal unidirectional rates -1(!

′
opt('

′)) and
-2(!

′
opt('

′)), respectively.
Furthermore, the results so far allow to characterize the

weighted rate sum optimal rate triples )opt(') for weight
vectors ' ∈ 4(>) in detail. Similarly as in Theorem 3 we
have to distinguish between three cases.

Proposition 4: For weight vector ' ∈ 4(>) let !opt(')
be the optimal transmit covariance matrix for the BBC with
common messages. If -1(!opt(')) < -2(!opt(')), then the
weighted rate sum optimal rate triple )opt(') is

,0(') = -1

(
!opt(')

)
, (13a)

,1(') = 0, (13b)

,2(') = -2

(
!opt(')

)
− -1

(
!opt(')

)
. (13c)

If -1(!opt(')) > -2(!opt(')), then the
weighted rate sum optimal rate triple is )opt(') =
(-2(!opt(')), -1(!opt('))− -2(!opt(')), 0).

If -1(!opt(')) = -2(!opt(')), then )opt(') is

,0(') = -1

(
!opt(')

)
, (14a)

,$(') = 0, $ = 1, 2. (14b)

Proof: We start with the proof of the rst case, then the
second one follows accordingly using the same arguments. If
-1(!opt(')) < -2(!opt(')), then ,0(') < -2(!opt('))
so that :2 = 0 by (10g). Further, from Proposition 3 we know
that in the optimal rate triple we have ,0(') > 0 so that
9 = 0 by (10g). With this, (10b) reads as 60 = 61 +62 + :1
which implies that :1 > 0 since 60 > 61+62 by assumption.
From this follows ,0(') = -1(!opt(')) by (10g) so that the
weighted rate sum optimal rate triple )opt(') is given by (13).

It remains to prove the third case -1(!opt(')) =
-2(!opt(')). Since ,0(') > 0, we have 9 = 0 so that (10b)
becomes 60 = 61 + 62 + :1 + :2. Since 60 > 61 + 62 by
assumption, this immediately implies that :1 > 0 or :2 > 0.
If :1 > 0 then ,0(') = -1(!opt(')) = -2(!opt(')) by
(10g). Similarly, :2 > 0 leads to ,0(') = -2(!opt(')) =
-1(!opt(')) so that the weighted rate sum optimal rate triple
)opt(') is given by (14).

Going back to our example in Figure 3(a) we see that for all
weight vectors ' ∈ 4(>) the weighted rate sum optimal rate
triples )opt(') describe the boundaries of the capacity region
on the ,0/,1- and ,0/,2-plane respectively. In more detail,
all rate triples )opt(') with -1(!opt(')) < -2(!opt(')) lie
on the ,0/,2-plane and with -1(!opt(')) > -2(!opt('))
on the ,0/,1-plane. For equality, i.e., -1(!opt(')) =
-2(!opt(')), the rate triple )opt(') characterizes the XOR
solution on the ,0-axis (denoted by point ∘ in Figure 3(a)).

This substantiates the fact that an optimal transmit strategy
for the BBC without common messages for one specic
weight vector is optimal for the BBC with common messages
for a whole set of weight vectors as specied in (12). For

example consider the following. For all ' ∈ 4(>) it is
optimal to allocate as much as rate to the common message as
possible. If -1(!opt(')) < -2(!opt(')), then ,1(') = 0
which implies that )opt(') is the same for weight vectors
' ∈ 4(>) with xed 60 and 62 as long as 61 < 60 − 62.
Moreover, it follows that the boundary of the capacity region
on the ,0/,2-plane is solely characterized by the relation
between the weights 60 and 62.

C. Dominant Surface

Already in (9) we see that if 60 = 61 + 62, the weighted
rate sum is independent of the common rate. This indicates
that we can interchange the rate of the common message and
the rates of the individual messages.

Theorem 4: For weight vector '′ = (0, 6′
1, 6

′
2) ∈ ℝ3

+

let !′
opt('

′) be the optimal transmit covariance matrix for
the BBC without common messages. Then for all weight
vectors ' ∈ 4(=) with 60 = 6′

1 + 6′
2 and 6$ = 6′

$,
$ = 1, 2, the optimum for the BBC with common messages
is achieved by the same transmit covariance matrix, i.e.,
!opt(') = !′

opt('
′).

Proof: If ,0 = 0, then :1 = :2 = 0 by (10g) which im-
plies that (10a) becomes 0&%" −Ψ = 61-′

1(!)+62-′
2(!).

Again, this is the BBC without common messages and indi-
vidual weights 6′

$ = 6$, $ = 1, 2, so that the optimal transmit
covariance matrix for the BBC without common messages
immediately determines the one for the BBC with common
messages.

If ,0 > 0, then 9 = 0 by (10g) so that (10b) reads as
60 = 61+62+:1+:2. Since :$ ≥ 0, $ = 1, 2, by (10e), (10b)
is only valid if :1 = :2 = 0. Consequently, (10a) becomes
0&%" −Ψ = 61-′

1(!) +62-′
2(!). The same arguments as

in the rst case nish the proof.
Proposition 5: For weight vector ' ∈ 4(=) let !opt(')

be the optimal transmit covariance matrix for the BBC with
common messages. Then the weighted rate sum optimal rate
triples )opt(') are

,0(') ≤ min
{
-1

(
!opt(')

)
, -2

(
!opt(')

)}
,

,$(') = -$

(
!opt(')

)
−,0('), $ = 1, 2.

Proof: )opt(') follows immediately from Theorem 4.
We see that for the weighted rate sum optimal rate triples

there is a trade-off between the common rate and the individual
rates as illustrated in Figure 3(a). For a given weight vector
' ∈ 4(=) the optimal rate triples )opt(') correspond to
a line that begins on the boundary on the ,1/,2-plane and
ends on the ,0/,1- or ,0/,2-plane (denoted by gray dashed-
dotted lines). Consequently, the weight vectors ' ∈ 4(=)

characterizes the dominant surface of the capacity region
completely.

D. Interpretation

There is another interpretation. If one xes some individual
weights 61 and 62, the optimal rate triple is always on the
,1/,2-plane (for example given by the point ⊲ in Figure 3(a)),
as long as the common weight fullls 60 < 61 + 62. This
immediately implies that the sum rate performance is the same
as for the corresponding BBC without common messages.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.



8 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, ACCEPTED FOR PUBLICATION

In the case of equality, i.e., 60 = 61+62, all rate triples on
the connecting line between the points ⊲ and ⊳ are optimal.
If 60 > 61 + 62 the optimal rate triple is on the ,0/,1-
or ,0/,2-plane and with increasing common weight 60 the
optimal rate triple moves along the corresponding boundary
and tends to the XOR solution in point ∘ as 60 → ∞. Figure
3(b) depicts the achievable rate region that is characterized by
the XOR solution. Since the common message is transmitted
to both receiving nodes, a positive common rate reduces the
maximal achievable rates for both individual messages, cf. also
(3). Moreover, for the XOR solution in point ∘ the common
rate uses all available resources so that both individual rates
are zero.

V. DISCUSSION

In the previous section we established a strong connection
between the transmit covariance matrix optimization problems
for the BBC with and without common messages. This was
done by showing that an optimal transmit covariance matrix
for the BBC without common messages is also a solution
for certain optimization problems for the BBC with common
messages.

Here we indicate that this connection can be exploited to
easily transfer results from one case to the other one which
shows that the results obtained in the previous section are
not only relevant in itself. In the following we briey review
results from [50, 51] where we assume that the reader is
familiar with these references. But we want to stress that these
are only examples and that there are much more results which
can be transfered in a similar way. The aim of this section is
to demonstrate the usefulness of the established connection
between the BBC with and without common messages.

First, we consider a MISO scenario, where the relay node
is equipped with multiple antennas, while the two other nodes
each have a single antenna. Then we know from [50] that
beamforming into the subspace spanned by the channels is
always optimal for the BBC without common messages. This
means that for all weight vectors '′ the optimal transmit
covariance matrix !′

opt('
′) is of rank one. From the previous

section we know that for certain weights the transmit strategy
!′

opt('
′) is also optimal for the BBC with common messages.

More precisely, this means that for weight vectors ' as
specied by the results from the previous section, the optimal
transmit covariance matrix !opt(') for the BBC with common
messages is immediately determined by !opt(') = !′

opt('
′).

Consequently, !opt(') is also of rank one and beamforming
into the subspace spanned by the channels is optimal for the
BBC with common messages.

Furthermore, it shows that the normalized capacity achiev-
ing beamforming vector for the BBC without common mes-
sages can be expressed as a linear combination of the two
channel directions with a xed phase difference between the
coefcients. This transfers to the BBC with common messages
in a similar fashion. Interestingly, it shows that correlation
between the channels is advantageous.

Moreover, this allows to characterize the transmit strategy
that realizes equal sum rates. Again, the previous section
determines when the corresponding transmit strategy for the

BBC without common messages transfers to one with common
messages. In particular, this is an interesting transmit strategy
since it characterizes the rate region that is achievable using
suboptimal network coding strategies such as the XOR coding
approach [2, 52] as depicted in Figure 3(b).

For the MIMO scenario, the situation is much more compli-
cated since in general there exist different equivalent transmit
strategies with different ranks. But for the special case where
the rank of the channels is equal to the number of antennas
at the relay node and a full-rank transmission is optimal,
the optimal transmit covariance matrix for the BBC without
common messages can be obtained in closed-form from [51].
Accordingly, once we obtained the optimal covariance matrix,
it immediately transfers to the BBC with common messages
under certain weight conditions. The same is true for the case
of parallel channels. In particular this is a relevant scenario
since it immediately provides also solutions for the power
allocation problem of a single-antenna OFDM system.

VI. CONCLUSION

In this work we studied the MIMO Gaussian bidirectional
broadcast channel where the relay added an own common
message to the communication. We derived the capacity region
and characterized the optimal transmit strategies in detail.
Interestingly, we showed that there are strong connections
between the MIMO Gaussian BBC with and without common
messages. Therefore, an additional multicast communication
can easily be enabled. This is based on the fact that existing
optimization policies or algorithms must only be slightly ex-
tended by including an additional discussion for the weight of
the common message. Consequently, this underlines the ability
of the decode-and-forward bidirectional relaying concept to be
a promising candidate for the efcient integration of different
services on the same resources.

The strong connection begins with the optimal coding
strategy for the BBC with common messages, since basically,
it reduces to coding without common messages. The common
message is treated as a part of both individual messages and
as a result, the coding idea of the case without common
messages is applicable. All messages are combined into a
single data stream which allows the receiving nodes to decode
the intended individual and common message using their own
message as side information.

In retrospect it is not surprising that the connection carries
over to the transmit covariance optimization problem. In
contrast to suboptimal strategies such as superposition coding
approaches [53], where the messages are associated with
several transmit covariance matrices, in the optimal strategy
there is only one transmit covariance matrix that has to
be optimized. This is similar to the BBC without common
messages, and as expected, the optimal transmit strategies
transfer as well.

APPENDIX

A. Proof of Lemma 1

Here, we present the analysis for receiving node 1. Then,
the other case follows accordingly using exactly the same
arguments. From the received sequence Y&

1 and its own
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message M1 node 1 estimates the indices M0 and M2 from
the sent codeword X&(M0,M1,M2). We dene the event of
an error at node 1 as

E1 :=

{
1, if /1(Y

&
1 ,M1) ∕= (M0,M2)

0, if /1(Y
&
1 ,M1) = (M0,M2)

so that we have for the average probability of error 0(&)
1 =

ℙ{E1 = 1}. From the chain rule for entropies [54, Lemma
8.3.2] we have

!(E1,M0,M2∣Y&
1 ,M1)

= !(M0,M2∣Y&
1 ,M1) +!(E1∣Y&

1 ,M0,M1,M2)

= !(E1∣Y&
1 ,M1) +!(M0,M2∣Y&

1 ,M1,E1).

Since E1 is a function of M0, M1, M2, and Y&
1 , we have

!(E1∣Y&
1 ,M0,M1,M2) = 0. Further, since E1 is a binary-

valued random variable, we get !(E1∣Y&
1 ,M1) ≤ !(E1) ≤

1. So that nally with the next inequality

!(M0,M2∣Y&
1 ,M1,E1)

= ℙ{E1 = 0}!(M0,M2∣Y&
1 ,M1,E1 = 0)+

ℙ{E1 = 1}!(M0,M2∣Y&
1 ,M1,E1 = 1)

≤ (1− 0(&)
1 )0 + 0(&)

1 log((* (&)
0 − 1)(* (&)

2 − 1))

≤ 0(&)
1 log(* (&)

0 * (&)
2 )

we get the desired version of Fano�’s inequality for the MIMO
Gaussian BBC with common messages.
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capacity region of two-phase bidirectional relaying," IEEE Trans. Inf.
Theory, vol. 54, no. 1, pp. 454-458, Jan. 2008.

[11] S. J. Kim, P. Mitran, and V. Tarokh, �“Performance bounds for bidirec-
tional coded cooperation protocols," IEEE Trans. Inf. Theory, vol. 54,
no. 11, pp. 5235-5241, Nov. 2008.

[12] L.-L. Xie, �“Network coding and random binning for multi-user chan-
nels," in Proc. Canadian Workshop Inf. Theory, June 2007, pp. 85-88.

[13] G. Kramer and S. Shamai (Shitz), �“Capacity for classes of broadcast
channels with receiver side information," in Proc. IEEE Inf. Theory
Workshop, Sep. 2007, pp. 313-318.

[14] R. F. Wyrembelski, T. J. Oechtering, I. Bjelaković, C. Schnurr, and
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