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Abstract

Stochastic orders are binary relations defined on probability distributions which capture intuitive no-

tions like being larger or being more variable. This paper introduces stochastic ordering of instantaneous

SNRs of fading channels as a tool to compare the performance of communication systems over different

channels. Stochastic orders unify existing performance metrics such as ergodic capacity, and metrics

based on error rate functions for commonly used modulation schemes through their relation with convex,

and completely monotonic (c.m.) functions. Toward this goal, performance metrics such as instantaneous

error rates of M-QAM and M-PSK modulations are shown to be c.m. functions of the instantaneous SNR,

while metrics such as the instantaneous capacity are seen tohave a completely monotonic derivative

(c.m.d.). It is shown that the commonly used parametric fading distributions for modeling line of sight

(LoS), exhibit a monotonicity in the LoS parameter with respect to the stochastic Laplace transform

order. Using stochastic orders, average performance of systems involving multiple random variables

are compared over different channels, even when closed formexpressions for such averages are not

tractable. These include diversity combining schemes, relay networks, and signal detection over fading

channels with non-Gaussian additive noise, which are investigated herein. Simulations are also provided

to corroborate our results.

I. INTRODUCTION

Given the vast number of wireless systems with different purposes operating over fading

channels, it is of interest to know how to decide whether one communication channel is superior

to another. The performance of such systems are quantified byaveraging a metric (e.g. bit

or symbol error rates, or channel capacity) over the distribution of the random channel. Very
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often, when one channel is better than another in terms of a particular metric, it is also better

with respect to another metric. However, this is not always true. Traditionally, answering this

question has relied on single parameter comparisons between channels using characteristics

such as diversity order, “amount of fading”, Ricean factor and others [1]. These are parametric

approaches that quantify how much fading the channel exhibits, but do not provide a unified

framework to compare channels across many different performance metrics. In this work, we

propose to use stochastic orders to address this issue.

The theory of stochastic orders (or dominance) provides a comprehensive framework to

compare two random variables (RVs) or vectors [2]. The simplest and most widely used stochastic

order compares the cumulative distribution functions (CDF) of two RVs, which defines a partial

order between pairs of RVs. When the RVs represent instantaneous SNRs in a fading envi-

ronment, this corresponds to comparing the outage probabilities in a wireless communication

context. There are many other stochastic orders that capture comparisons of RVs in terms of

size, and variability. Different than the related majorization theory [3], [4], which defines a

partial order on deterministic vectors, stochastic ordersapply to random variables. Stochastic

ordering has become an indispensable tool in many increasingly diverse areas of probability and

applied statistics over the past sixty years. Examples of such areas include reliability theory [5],

actuarial sciences [6], risk analysis [7], economics [8], and stochastic processes [9]. However,

the applications of this set of tools in physical layer wireless communications are surprisingly

very few, although it has found numerous applications in communication networks (please see

[9], [2, Ch. 13-14] and references therein).

We now review the limited literature on the applications of stochastic orders in physical

layer communications. Bounds on the per cell sum rate under arbitrary fading in the high SNR

regime have been obtained using the aforementioned outage-based “usual stochastic order” in

[10]. Stochastic ordering has also been applied to obtain bounds on the outage probability in

Bluetooth piconets under Ricean fading in [11]. In [12], theusual stochastic order is used

to bound monotone performance metrics in Ricean fading environments with beam selection.

Reference [13] shows that stochastic ordering of the SNR between the sender and any two

receivers is sufficient for the existence of a degraded channel in a layered erasure broadcast

channel modeled using the binary expansion model.

To the best of our knowledge, there is no systematic exploitation of the general stochastic
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ordering theory which can be used to provide a means for comparing wireless systems. All the

above references use the usual stochastic order, which can be interpreted as a comparison of

the outage probabilities, and do not exploit the full gamut of stochastic orders available [2].

In this paper, we give a wide range of examples illustrating how different stochastic orders

are appropriate for comparing systems using different metrics with analytical properties such

as monotonicity, convexity, and complete monotonicity, which shed light into the connections

between performance metrics such as error rates and ergodiccapacity. Additionally, we find the

conditions for the preservation of inequalities satisfied by the averages of performance metrics

of individual systems, when multiple such systems are combined. These may be combinations

in parallel, in series, or otherwise, as may be seen in relay networks. Such a study permits the

comparison of performance of systems, even in settings where closed-form expressions are not

tractable.

II. STOCHASTIC ORDERING PRELIMINARIES

The literature on stochastic ordering, primarily in reliability theory and statistics, delineates

numerous stochastic orders, many of which fall under the subclass ofintegral stochastic orders.

We begin with a short description of the theory of integral stochastic orders, which can be found

in [2], [6].

Let G denote a class of real valued functionsg : R+ → R, andX andY be RVs with CDFs

FX (·) andFY (·) respectively. We define the integral stochastic order with respect toG as [6]:

X ≤G Y ⇐⇒ E [g(X)] ≤ E [g(Y )] , ∀g ∈ G. (1)

In this case,G is known as a generator of the order≤G. A stochastic order can have more than

one generator. For a given stochastic order, it is of interest to identify “large” generators which

are useful in identifying the equivalence of two orders. Thelargest generator set of functions for

a stochastic order contains all other generators, and is termed themaximal generator[6]. It is also

of interest to find “small” generators which specify necessary conditions for the ordering of two

RVs. We now give three examples of integral stochastic orders by specifying the corresponding

generator set of functionsG.
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A. Usual Stochastic Order

The usual stochastic order compares the magnitude of two RVs. In this case a small generator

G is the set of all non-decreasingindicator functions: G = {g(x) : g(x) = I[x > ρ], ρ ∈ R}.

From (1) it follows that this order is equivalent to comparing the CDFs of the RVs. Formally,

we write

X ≤st Y ⇐⇒ FX (x) ≥ FY (x) ∀x . (2)

To see the interpretation of this in the context of wireless channels, consider two channels to be

compared, with effective channelsX := |hX |2 andY := |hY |2, wherehX andhY correspond

to the complex channel gains of two wireless systems. The usual stochastic ordering ofX and

Y is equivalent to comparing their corresponding outage probabilities for all outage thresholds.

The maximal generator for the usual stochastic order is the set of all increasing functions [6].

As a result, with the choiceg(x) = x in (1), we obtainE [X ] ≤ E [Y ] wheneverX ≤Lt Y ,

which agrees with the intuition that a larger random variable must have a larger mean value.

B. Convex Order

In this caseG is the set of all convex functions, and the order is denoted asX ≤cx Y . Since

g(x) = x andg(x) = −x are both convex, from (1), we haveE [X ] = E [Y ] wheneverX andY

are convex ordered. Therefore, convex ordering establishes that the RVs have the same mean and

X is “less variable” thanY . Clearly, in the fading context, this can be used to identifychannels

with “less fading”. Since≤cx is a measure of variability, one would expect that a degenerate

RV is less in the convex sense than any other RV with the same mean. Indeed, this is the case:

If FX(x) = I[x ≥ µ], thenX ≤cx Y for all RVs Y with E [Y ] = µ. So the degenerate RV has

an absolute minimum dispersion, as measured by the convex order, which is a consequence of

Jensen’s inequality.

Many performance metrics, such as channel capacity, error rates for different modulations [14]

and coding schemes in wireless systems are convex or concavefunctions of the instantaneous

SNR. Therefore, establishing convex ordering of two RVs canhelp us qualitatively measure

the relative average performance of the corresponding systems. Note that if instead of convex

functions, the classG is chosen as the set of all concave functions, one would get the same

order with a reversal in the inequality.
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Verifying the usual stochastic ordering of two RVs is straightforward through (2). What follows

are easily testable sufficient conditions forX ≤cx Y . Let S− (g(x)) denote the number of sign

changes ofg(x) as x increases over[0,∞), thenX ≤cx Y if E [X ] = E [Y ] and any of the

following hold [2]:

S− (fY (x)− fX (x)) = 2 and the sign sequence is+,−,+. (3)

S− (FY (x)− FX (x)) = 1 and the sign sequence is+,− , (4)

wherefX (·) andfY (·) are the probability density functions (PDFs) ofX andY respectively.

Interestingly, to the best of our knowledge, although convex ordering of RVs is widely used

in many other areas, it has never been used in physical-layerwireless communications.

C. Laplace Transform Order

Similar to ≤st and ≤cx, it is possible to order random variables based on their Laplace

transforms (LT). In this case,G = {g(x) : g(x) = − exp (−ρx) , ρ ≥ 0}, so that

X ≤Lt Y ⇐⇒ E [exp(−Y ρ)] ≤ E [exp(−Xρ)] , ∀ ρ > 0 . (5)

Interpretingexp(−ρx) as being proportional to the instantaneous error rate (as inthe case for

differential-PSK (DPSK) modulation and Chernoff bounds for other modulations), LT ordering

of the instantaneous SNRs in (5) can be interpreted as an inequality in the average error rates

satisfied at all values of SNRρ. One of the powerful consequences of LT ordering is that

X ≤Lt Y ⇐⇒ E [g(X)] ≥ E [g(Y )] , (6)

for all completely monotonic(c.m.) functionsg(·) [2, pp. 96]. A similar result with a reversal

in the inequality states that

X ≤Lt Y ⇐⇒ E [g(X)] ≤ E [g(Y )] , (7)

for all functions g(·) that have a completely monotonic derivative (c.m.d) function. Recall

that the derivatives of a c.m. function alternate in sign. Also, they can be written as a pos-

itive mixture of decaying exponentials. More formally, a c.m. function by definition satis-

fies (−1)n dng(x)/dxn ≥ 0, for x > 0 and n = 0, 1, 2, . . ., which by the celebratedBern-

stein’s theoremis equivalent to the existence of a positive functionµ(·) such thatg(x) =
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∞
∫

0

exp (−xu)µ(u) du [2, pp. 96]. It can be easily verified that c.m. (c.m.d) functions are convex

(concave) and decreasing (increasing). Further, ifg1(x) is completely monotonic, andg2(x) ≥ 0

has a completely monotonic derivative, then the composition g1 (g2(x)) is completely monotonic.

It is useful to mention that for any two RVsX andY , X ≤cx Y ⇒ Y ≤Lt X, which follows

from the fact that− exp(−ρx) is concave inx for any ρ > 0. Hence, convex ordering provides

a method to generate or verify LT ordering between two RVs. Indeed either of the conditions

(3) or (4) together with equal mean values forX andY imply thatX ≤Lt Y . Further, observe

thatX ≤st Y ⇒ X ≤Lt Y , which follows since− exp(−ρx) is increasing inx for ρ > 0.

In the rest of the paper, we illustrate the power of the stochastic ordering framework in

comparing wireless channels and systems. We will investigate the convexity and complete

monotonicity properties related to the error rate and capacity expressions in Section III, which

will facilitate comparing the average performances of systems by using (6) and (7). In Section

IV we identify commonly used channel distributions which are LT or convex ordered. Section V

investigates the conditions under which these stochastic orders are preserved in complex systems

where the performance of their constituent parts satisfy anorder. Finally, relevant simulations

to supplement the theoretical results are provided in Section VI.

III. ORDERING OFAVERAGE ERROR RATE AND ERGODIC CAPACITY METRICS

A. Symbol Error Rate

It has been established in [15] that the error rate of binary signaling in the presence of noise

with a uni-modal and differentiable PDF is a convex functionof the SNR when maximum

likelihood decoding is performed. Also, it is known that theinstantaneous error probabilities

of all one-dimensional and two-dimensional constellations with ML decoding in the presence

additive white Gaussian noise (AWGN) is a convex function ofthe SNR [14]. In this section, we

go one step further and establish the complete monotonicityof some two-dimensional modulation

schemes, which will be useful in establishing inequalitiesbetween averaged performance metrics.

It is well known thatQ (
√
x) is c.m. [16], from which the complete monotonicity of the

instantaneous error rate of the formPe (ρx) = aQ
(√

bρx
)

easily follows, fora, b > 0. Here

a and b are modulation dependent constants which can be chosen to get exact performance in

some cases (e.g.a = 1, b = 2 for BPSK), or approximations in others (a = 3/4, b = 4/5 for

October 27, 2018 DRAFT
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16-QAM). For the exact case, it follows from (6) thatE [Pe (ρY )] ≤ E [Pe (ρX)], for ρ > 0

wheneverX ≤Lt Y .

We now establish, for the first time, the complete monotonicity of exact symbol error rates

of squareM-QAM andM-PSK modulations which are not in the formPe (ρx) = aQ
(√

bρx
)

,

and offer sharper results than those mentioned above, sincethey do not rely on approximations.

TheM-PSK symbol error rate is given by the following [1, pp.195]:

PPSK
e (ρx) =

1

π

(M−1)π/M
∫

0

exp
(

−ρx
αPSK

sin2 θ

)

dθ , (8)

whereαPSK := sin2(π/M). After a change of variables, (8) can be expressed as the Laplace

transform of a positive function:

PPSK
e (ρx) =

√
αPSK

2π

∞
∫

0

e−ρux

I

[

u ≥ αPSK

sin2((M−1) π
M )

]

u
√
u− αPSK

du , (9)

which together with Bernstein’s Theorem suggests thatPPSK
e (ρx) is c.m..

Consider now the squareM-QAM error rate function [1, pp.195]:

PQAM
e (ρx) = aQ

(√
αQAMρx

)

− bQ2
(√

αQAMρx
)

, (10)

whereαQAM := 3/(M − 1), a := 4(
√
M − 1)/

√
M and b := a2/4. Note that0 ≤ b ≤ a. We

claim that (10) is c.m. for anya, b such thatb ≤ a. To see this, recall

Qk
(√

x
)

=
1

π

π/2k
∫

0

exp
(

− x

2 sin2 θ

)

dθ , (11)

for k = 1, 2 [1]. After a change of variables similar to (8), we obtain

PQAM
e (ρx) =

√
αQAM

2π

∞
∫

0

e−uρx

[

aI [0.5 ≤ u ≤ 1]

u
√
2u− 1

+
(a− b)I [u ≥ 1]

u
√
2u− 1

]

du , (12)

which is also c.m. by Bernstein’s theorem, sinceb ≤ a. In conclusion, wheneverX ≤Lt Y ,

E [Pe (ρY )] ≤ E [Pe (ρX)] for all average SNRρ, wherePe (·) could be given by either (8) or

(10). This follows from the definition of the LT order and the c.m. properties of instantaneous

error rates ofM-QAM or M-PSK modulations.
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B. Ergodic Capacity

We now show that stochastic ordering of instantaneous effective channel distributions implies

that their ergodic channel capacities satisfy a corresponding inequality at all average SNRs. We

begin with the case where only the receiver has channel status information (CSI).

1) Ergodic Capacity with Receive CSI only:The instantaneous capacity, conditioned on the

effective channelX = x when only the receiver has CSI is given byC(ρx) = log(1 + ρx),

whereρ is the average SNR. SincedC(ρx)/dx = ρ/(1 + ρx) is c.m. inx, from (7) X ≤Lt Y

implies that the ergodic capacities satisfyEX [C (ρX)] ≤ EY [C (ρY )] for ρ ≥ 0. Recall that by

(5), LT ordering of the channelsX and Y can be interpreted as a comparison of the average

error rates, when the instantaneous error rate is a decayingexponential. As a result, one can

loosely say thatif the average error rates of two channelsX and Y satisfy the inequality(5)

at all SNRs, then so do the ergodic capacities. Surprisingly, however, the converse is not true,

as we now illustrate. Consider a Pareto-type distribution,which is appropriate for modeling the

instantaneous SINR in the presence of interference [17] :

FX (z) =
zβ

(1 + zβ)
, z > 0, β > 0 . (13)

Using integration by parts and simplifying, we obtain

EX [C (ρX)] =

∞
∫

0

ρ

(1 + ρz)(1 + zβ)
dz . (14)

Taking the derivative with respect toβ, it is seen thatEX [C (ρX)] is a decreasing function of

β, for ρ > 0. This shows that forβX ≤ βY , EX [C (ρX)] ≥ EY [C (ρY )] for ρ > 0. On the other

hand, sinceFX (z) = zβ + o(zβ) nearz = 0, the average symbol error rate for an exponential

instantaneous error rate function satisfiesE [exp(−ρX)] = (Gc ρ)
−β + o

(

ρ−β
)

, whereGc is

the array gain andβ is the diversity order [18]. Hence, asβ increases, the high-SNR average

error rate decreases, while the capacity also decreases at all SNR ρ! Interpreting the ergodic

capacity as what is achievable by coding over an i.i.d. time-extension of the channel, we reach

the conclusion that even thoughY offers more diversity thanX for an uncoded system, the i.i.d.

extension ofX lends itself to more diversity than that ofY . To put it more simply, at high SNR,

it is possible for one channel to be superior to another in terms of error rates in the absence of

coding, while being inferior when the capacity achieving code is employed over both channels.
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2) Channel Inversion and Delay-Limited Capacity:When CSI is available at the transmitter,

it can be used for power adaptation. A simple, suboptimal approach is to “invert” the channel

at the transmitter, so that effectively the receiver sees a non-fading AWGN channel. Such an

approach is viable only whenE [X−1] < ∞, leading to a finite average transmit power. This is

the case whenever the channel offers a diversity order strictly greater than one. Channel inversion

has the advantage that a channel code designed for the AWGN channel can be used effectively,

and that the code length need not depend on the channel coherence time to average out the

fading. This “delay-limited” approach [19] gives rise to anachievable rate given by

C
X

CI(ρ) = log

(

1 +
ρ

E [X−1]

)

. (15)

Clearly, sinceg(x) = x−1 is a c.m. function ofx, E [X−1] ≥ E [Y −1], wheneverX ≤Lt Y . This

impliesC
X

CI(ρ) ≤ C
Y

CI(ρ) for all ρ, sinceC
X

CI(ρ) in (15) is a decreasing function ofE [X−1].

3) Optimal Power and Rate Adaptation (OA):It is well known that CI is not optimal, since

when the channel gain becomes arbitrarily small, the transmitter uses extremely high power. To

overcome this limitation, theoptimal power and rate adaptationscheme is proposed in [19],

where water-filling across time is performed subject to an average transmit power constraint.

The capacity so obtained over a channel with instantaneous SNR X is given by [19] :

C
X

OA(ρ) =

∞
∫

zt(ρ)

log

(

zt(ρ)

z

)

d [1− FX (z)] , (16)

wherezt(ρ) is the signaling threshold, which is implicitly governed bythe power constraint as

follows:
∞
∫

zt(ρ)

(

1

zt(ρ)
− 1

z

)

dFX (z) = ρ . (17)

It can be shown thatX ≤Lt Y does not guaranteeC
X

OA(ρ) ≤ C
Y

OA(ρ) for all ρ. However, in

what follows, we will show that under the stronger assumption X ≤st Y , C
X

OA(ρ) ≤ C
Y

OA(ρ) for

all ρ.

Using integration by parts on (17), it is observed that forX ≤st Y , we havezXt (ρ) ≥ zYt (ρ).

Now, integrating (16) by parts, under the assumptions thatlim
z→∞

(1 − FX (z)) log(z/zXt (ρ)) = 0

and lim
z→∞

(1 − FY (z)) log(z/zYt (ρ)) = 0, it is seen thatC
X

OA(ρ) ≤ C
Y

OA(ρ) for ρ ≥ 0, since

zXt (ρ) ≥ zYt (ρ). Therefore,X ≤st Y ⇒ C
X

OA(ρ) ≤ C
Y

OA(ρ), for ρ > 0.
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IV. ORDERING OFPARAMETRIC FADING DISTRIBUTIONS

We now proceed to show that commonly used parametric fading distributions are completely

monotonic in the line of sight parameter with respect to LT and convex orders.

A. Nakagami Fading

Consider Nakagami fading model, where the envelope
√
X is Nakagami and the effective

channelX is Gamma distributed [20], with PDF given by

fX (x) =
mm

Γ(m)
xm−1 exp(−mx) , x ≥ 0 . (18)

SinceE [exp(−ρX)] = (1 + ρ/m)−m is a decreasing function ofm for eachρ, it follows that

if the m parameters of two channel distributions satisfymX ≤ mY , thenX ≤Lt Y , whereX

and Y have normalized Gamma distributions with parametersmX and mY respectively. This

shows that for example, all the performance metrics in (8) or(10) that are c.m. have averages

over fading distributions that satisfy the inequalityEY [Pe (ρY )] ≤ EX [Pe (ρX)] for all values

of average SNRρ. A similar claim with a reversal in the inequality can be madefor the ergodic

capacity metric. Note that the PDFs ofX andY in (18) are defined to satisfyE [X ] = E [Y ] = 1,

independent of the fading parameterm. Hence, the improvements in error rate or ergodic capacity

at all values ofρ with increasedm is not due to an improvement in average SNR. A stronger

convex ordering result can also be established. SinceE [X ] = E [Y ], mX ≤ mY ⇒ Y ≤cx X

can be shown by using (3). We can summarize the results hereinby using the terminology that

the normalized Gamma distribution is monotonically increasing inm with respect to the orders

≤Lt and≤cx.

B. Ricean Fading

As in the Nakagami case, the Rice distribution will also be shown to be monotonic in the

LoS parameterK with respect to the orders≤Lt and≤cx. The instantaneous SNR distribution

is given by

fX (x) = (1 +K) exp(−K) exp [−(K + 1)x] I0

(

2
√

K(K + 1)x
)

, (19)

whereI0(·) is the modified Bessel function of the first kind of order zero.Clearly,E [X ] = 1

is independent ofK. Taking the Laplace transform of (19), we haveE [exp(−Xρ)] = (1 +

October 27, 2018 DRAFT
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K)/(1 +K + ρ) exp [Kρ/(1 +K + ρ)], which decreases withK for eachρ. This implies that,

similar to the Nakagami case, increasingK without increasing the average SNR improves the

average symbol error rate, ergodic capacity, or any averagemetric obtained from a c.m. or c.m.d.

function. Thus, ifKX ≤ KY are the Ricean parameters of two channels, thenX ≤Lt Y . Similar

to the Nakagami case, equation (3) can be used to establish a stronger claim thatY ≤cx X.

In this specific Ricean context, similar results for the ergodic capacity are found in [21] and

the references therein, in a more general MIMO setting. However, in these results, either the

channel power increases with an increase in the LoS component, or only an asymptotically large

number of antennas is considered.

V. COMMUNICATION SYSTEMS INVOLVING MULTIPLE RVS

In the following discussion, we will consider systems involving multiple independent random

channel coefficients and compare their performance in two different sets of channels, where the

effective channels associated with the first system are denoted by X := [X1, . . . , XM ] while

those of the second channel byY := [Y1, . . . , YM ]. Toward this goal, we use the following result

[2, pp. 97], which shows that LT ordering is preserved by multivariate functions that are c.m.d.:

Theorem 1. Let X1, . . . , XM be independent andY1, . . . , YM also be independent. IfXm ≤Lt

Ym for m = 1, . . . ,M , theng (X1, . . . , XM) ≤Lt g (Y1, . . . , YM) for all functionsg : Rm → R
+

such that form = 1, . . . ,M , (∂/∂xm) g (x1, . . . , xM) is c.m. inxm, when all other variables

are fixed.

We now investigate the systems for which the combined instantaneous SNR is given by a

function g(x) := g(x1, . . . , xM), which satisfies the conditions of Theorem 1. Unless otherwise

mentioned, we will assume throughout thatXm ≤Lt Ym for m = 1, . . . ,M .

A. Maximum Ratio Combining

Consider a SIMO diversity combining system withM receive antennas which have complete

CSI. If maximum ratio combining (MRC) is performed, conditioned on the effective channels

Xm = xm for m = 1, . . . ,M , the instantaneous SNR at the output of the combiner is proportional

to

g
MRC

(x) =

M
∑

m=1

xm , (20)

October 27, 2018 DRAFT
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which satisfies the conditions of Theorem 1 as easily seen by taking derivatives. Thus, we infer

that when MRC is performed,g
MRC

(X) ≤Lt gMRC
(Y). Consequently, wheneverPe (ρx) is c.m.

andC(ρx) is c.m.d., the average error rates satisfyEY [Pe (ρgMRC
(Y))] ≤ EX [Pe (ρgMRC

(X))]

for all ρ, and the ergodic capacities satisfyEY [C(ρg
MRC

(Y))] ≥ EX [C(ρg
MRC

(X))], for all ρ.

B. Equal Gain Combining

Next, assume that the SIMO diversity system adopts equal gain combining (EGC) at the

receiver. In this case, conditioned on the instantaneous effective channelsXm = xm for m =

1, . . . ,M , the instantaneous SNR at the combiner is proportional to

g
EGC

(x) =
1

M

(

M
∑

m=1

√
xm

)2

. (21)

The derivative(∂/∂xi) gEGC
(x1, . . . , xM) = M−1

(

M
∑

m=1

√
xm

)

/
√
xi is a c.m. function ofxi, for

i = 1, . . . ,M . Therefore, equal gain combining of a better set of branchesresults in a better

system overall, as also expressed more rigorously after (20) in the MRC example.

C. Selection Combining

In contrast to the previous two examples, this example showsthat even though the individual

branch instantaneous SNRs are LT ordered, the combined SNR at the output of the combiner need

not be LT ordered. For selection combining (SC), conditioning on the instantaneous effective

channelsXm = xm for m = 1, . . . ,M , we have

g
SC

(x) = max
m

xm , (22)

which is not differentiable, and hence is not c.m.. In fact,Xm ≤Lt Ym, m = 1, . . . ,M does

not imply maxmXm ≤Lt maxm Ym. We provide a simple counterexample in Section VI. This

shows that even though channelsYm provide better average error rates at allρ thanXm, for

m = 1, . . . ,M for a SISO system, the composite SC channel does not.

D. Multi-hop Amplify and Forward (AF)

Consider a multi-hop system withM links subject to AWGN, whereXm is the effective

channel gain over themth link. It is assumed that themth node has channel information of
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the (m − 1)th hop, form = 2, . . . ,M , and the amplification factor for each node is the same.

Conditioned on the instantaneous effective channelsXm = xm for m = 1, . . . ,M , the SNR at

the destination in this case is proportional to [22]:

g
MH−AF

(x) =

[

M
∏

m=1

(

1 +
1

xm

)

− 1

]−1

. (23)

Taking the partial derivatives ofg
MH−AF

(x) with respect to eachxm for m = 1, . . . ,M , it is seen

that g
MH−AF

(x) satisfies the conditions of Theorem 1. Thus,g
MH−AF

(X) ≤Lt g
MH−AF

(Y). As

a result, the average error rates for the multi-hop AF systemsatisfyEY

[

Pe

(

ρg
MH−AF

(Y)
)]

≤
EX

[

Pe

(

ρg
MH−AF

(X)
)]

, for ρ > 0. Importantly, a closed-form expression for the average per-

formance of this system is not tractable for most practical channel distributions. Despite this, it

is still possible to compare the error rates of two otherwiseidentical systems systems with two

sets of LT ordered effective channels at all average SNRs.

E. Multi-hop Channels with Decode and Forward

Consider anM-hop channel, where each terminal decodes a received symbolinto a binary

alphabet and forwards it over to the next terminal. Let the instantaneous error rate over the

ith link be given byPe
i
(ρxi) , i = 1, . . . ,M , where we assume0 ≤ Pe

i
(x) ≤ 1/2 is c.m..

For convenience, we defineX1:m := [X1, . . . , Xm] and let Pe
1:m

(ρX1:m) be the combined

instantaneous error rate of the first1 ≤ m ≤ M hops. We have the following:

Theorem 2. Let X1, . . . , XM be independent, and likewise forY1, . . . , YM . SupposeXm ≤Lt Ym

for m = 1, . . . ,M . ThenEX1:m

[

Pe
1:m

(ρX1:m)
]

≥ EY1:m

[

Pe
1:m

(ρY1:m)
]

, m = 1, . . . ,M .

Proof: See Appendix.

Note that Theorem 2 and its proof carry over when each hop adopts M-ary modulation as

well, provided thatρ is large enough to ensure0 ≤ EX1:m

[

Pe
1:m

(ρX1:m)
]

≤ 1/2.

F. Post Detection Combining

Consider anM-antenna post-detection combining (PDC) scheme, where theinstantaneous

symbol error rate on themth branch isPem
(ρxm) and is c.m. as in the previous example. The
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instantaneous probability of error of the PDC system is given by1 [23] :

Pe
1:M

(ρX1:M) =

M
∑

k=M+1

2

∑

Sk

(

∏

i∈Sk

Pe
i
(ρxi)

)





∏

j∈Sc
k

(

1− Pe
j
(ρxj)

)



 , (24)

whereSk is a set running over all subsets of{1, . . . ,M} with k elements. Taking expectation

with respect toX1:M , which is assumed to have independent components, we have,

EX1:m

[

Pe
1:m

(ρX1:m)
]

=
M
∑

k=M+1

2

∑

Sk

(

∏

i∈Sk

EXi

[

Pe
i
(ρXi)

]

)





∏

j∈Sc
k

(

1− EXj

[

Pe
j
(ρXj)

])



 .

(25)

Clearly, the average error rate is an increasing function ofany of theEXm

[

Pem
(ρXm)

]

, since it

is not possible to get improved performance by increasing the average error rate on any particular

link. This shows that whenXm ≤Lt Ym, for m = 1, . . . ,M , andPem
(ρx) is c.m., so that the

average error rates of PDC satisfyEX

[

Pem
(ρXm)

]

≥ EY

[

Pem
(ρYm)

]

for ρ > 0, it follows that

EX

[

Pe
1:M

(ρX1:M)
]

≥ EY

[

Pe
1:M

(ρY1:M)
]

for ρ > 0.

G. Generalized Multi-branch Multi-hop AF Cooperative Relay Networks

We now consider the generalized relay structure illustrated Fig. 1, which consists ofM

independent branches, each involvingNm relays, form = 1, . . . ,M , which assist the direct

link between the sourceS and the destinationD by performing amplify and forward (AF). It is

assumed that all the links are impaired by AWGN with fixed variance. This model requires the

branches to communicate through mutually orthogonal channels, so thatM independent copies

are available at the destination which performs MRC (using combining coefficients given in

[24]). Although approximate expressions for the error ratehave been obtained for the case of

Ricean fading in [24], closed-form expressions are intractable.

Note that the two-hop fixed AF relay, which finds frequent application in cooperative diversity

literature [24] and illustrated in Fig. 2 is a special case ofthis general relay, withM = 1 and

Nm = 1. Thus, the forthcoming results obtained for the general case apply for the two-hop relay

as well.

We now show that the exact average symbol error rate can be compared over a number of

fading distributions where the pairs of effective channelsare LT ordered. To this end, we show

1We assumeM is odd. Extensions to evenM are straight-forward by adding a tie breaker term to (24).
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that the output SNR of the MRC combiner at the destination satisfies the conditions of Theorem

1. LetX0,0 denote the effective channel on the direct link, andXm,n the effective channel at the

nth hop on linkm. Since the destination performs MRC, the instantaneous output SNR is the

sum of individual end-to-end branch SNRs, each of which are given by (23). Thus, conditioned

on Xm,n = xm,n for m = 0, . . . ,M and n = 0, . . . , Nm, and definingg
MB−MH−AF

(X) :=

g
MB−MH−AF

(

x
0,0
, x

1,0
, . . . , x

1,N1
, . . . , x

M,NM

)

, we have

g
MB−MH−AF

(X) =

M
∑

m=1

[

Nm
∏

n=1

(

1 +
1

xm,n

)

− 1

]−1

+ x0,0 . (26)

As shown in the arguments following (23), the summand in the RHS of (26) has a c.m. deriva-

tive in each variable. Combining this with Theorem 1, we haveEY

[

Pe

(

ρg
MB−MH−AF

(Y)
)]

≤
EX

[

Pe

(

ρg
MB−MH−AF

(X)
)]

for ρ > 0.

H. Combined Multipath Fading and Shadowing

It is well known that the effect of shadow fading on the instantaneous SNR distribution can be

modeled as a product of a shadowing random variable with a multipath fading random variable

[1]. Let X1 ≤Lt Y1 be the two multipath fading SNR distributions, andX2 ≤Lt Y2 be the

two shadowing distributions. Then, from Theorem 1, it follows that the composite RV satisfies

X1X2 ≤Lt Y1Y2, sinceg(x1, x2) = x1x2 has a c.m. derivative in each variable. We conclude that

EX1,X2
[Pe (ρX1X2)] ≥ EY1,Y2

[Pe (ρY1Y2)] , ∀ρ, wheneverPe (·) is c.m.. Such conclusions can

be drawn even in cases where the composite distribution ofX1X2 or Y1Y2 cannot be written in

closed-form.

I. Systems with non-Gaussian Channel Noise

In this discussion, we assume the following system model:

Z =
√

ρXS +W , (27)

where for simplicity,S ∈ {−1, 1}, ρX is the instantaneous SNR,ρ the average SNR, andW is

non-Gaussian noise.
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1) Gaussian Mixture:In this model,W represents compound Gaussian noise (also called

Gaussian mixture), which can be written asW =
√
AG, whereA is a positive valued RV, which

represents the scale ofG, andG ∼ N (0, 1). Such a formulation is possible for symmetric alpha-

stable noise, Middleton class-A noise, as well as other compound Gaussian noise distributions.

The error rate conditioned on the effective channelX = x is given by

Pe (ρx) = EA

[

Q
(

√

2ρx

A

)]

, (28)

which is a c.m. function ofx as can be verified by differentiating inside the expectationwith

respect tox. Using (6), this shows that whenX ≤Lt Y then the average error rates satisfy

EX [Pe (ρX)] ≥ EY [Pe (ρY )], even for mixed (compound) Gaussian noise. Similar resultscan

also be shown to hold for noise distributions such as the Laplace distribution which cannot be

expressed as a compound Gaussian.

2) Bounded Noise:Recall the system model from (27). If|W | ≤ C for some constantC,

almost surely thenFW (x) = 1 for x ≥ C and 1 − FW

(√
2x
)

= 0 for x2/2 ≥ C. It is clear

from Bernstein’s theorem that a function, such as1− FW

(√
2x
)

with bounded support cannot

be c.m.. From this, we can conclude that if the noise is bounded, it is possible for two SNR

distributions to be LT ordered, althoughEY [Pe (ρY )] need not be less thanEX [Pe (ρX)] for all

ρ > 0. This negative result emphasizes the effect of the noise distribution in claims of ordering

and concludes our discussion of systems with non-Gaussian noise.

VI. SIMULATIONS

We now corroborate our theoretical results using Monte-Carlo simulations. For ease of no-

tation, we defineP
X

e (ρ) := EX [Pe (ρX)] to denote the average error rates of SISO systems

operated in the effective channelX. Also, we useP
X

e (ρ) := EX [Pe (ρg (X))] to represent the

average error rates of systems involving multiple effective channel coefficients.

One of the central results of Section III-B is that it is possible for one channel to be superior

to another (in terms of error rates) at high SNR in the absenceof coding, while being inferior

when the capacity achieving code is used over both channels.This is illustrated in Fig. 3, which

shows the comparative error rate performance of DPSK employed over an interference dominated

fading channel with Pareto type distributed instantaneousSINR (having parametersβX = 2 and

βY = 5. Clearly, sinceP
X

e (ρ) < P
Y

e (ρ) for ρ < −0.5 dB and vice-versa forρ > −0.5 dB,
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the system with effective channelX is not better than that with effective channelY at every

average SNR. On the other hand, Fig. 4, shows that the ergodiccapacity of the system with

instantaneous channelX is consistently larger than that when operated in the channel Y with

parameterβY = 5.

Figures 5, 6 and 7 show the performance of diversity combining schemes such as MRC, EGC

and SC withL = 3 branches over two sets of i.i.d Ricean fading channels with parameters

KX = 2 andKY = 5. Note that from Subsection IV-B,Xm ≤Lt Ym for m = 1, 2, 3. The trend

observed in the performance analysis curves obtained herein can be equivalently obtained for

any other sets of LT ordered effective channel random variables, using any modulation scheme

whose error rate is a c.m. function of the effective channel.

In Fig. 5, we demonstrate that LT ordering of the instantaneous SNR distributions for the

individual branches can be used to compare average error rates when MRC is performed at

the receiver. ForL = 3 receive diversity branches, it is observed that the error rate of BPSK

in the channel with instantaneous SNRρY is consistently less than that in the channel with

instantaneous SNRρX, which agrees with the fact that since the effective channelfor Ricean

fading is c.m. inK, Xm ≤Lt Ym, for m = 1, 2, 3, and henceP
Y

e (ρ) ≤ P
X

e (ρ) for ρ > 0.

Figure 6 illustrates that whenXm ≤Lt Ym, for m = 1, 2, 3, we getP
Y

e (ρ) ≤ P
X

e (ρ) for

ρ > 0 for the case of EGC employing BPSK. The error rate curves helpdemonstrate that fading

channels with larger Ricean parameters offer smaller errorrates than those with smaller Ricean

parameters at all values of average SNRρ when EGC is used, as predicted in Subsection V-B.

Such a conclusion is not present in the literature due to the unavailability of a closed-form

expression for the average error rate of coherent EGC in Ricean channels, which is applicable

in all SNR regimes [1].

The comparative performance of SC using DPSK symbols is shown in Fig. 7. It is evident

that although the individual branch SNRs are LT ordered,P
Y

e (ρ) ≥ P
X

e (ρ), for ρ < −0.4 dB,

while P
Y

e (ρ) ≤ P
X

e (ρ), for ρ ≥ −0.4 dB. This cross-over point is clearly depicted in Fig. 7

using a linear scale for the error rate axis, since it is more easily discernible compared to the

conventional log scale. Hence, selection combining of a better set of channels (in terms of error

rates) need not yield a better system overall, at low SNR.

The performance of a multi-hop amplify and forward relay is studied in Fig. 8. We assume

the model described in Section V-D withM = 3 relays under two different Ricean fading
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scenarios, one with parameterKX = 2 and the other withKY = 5. It is observed that the

average symbol error rate ofY is consistently less than that ofX at all SNRs. This, due to the

fact thatXm ≤Lt Ym, m = 1, 2, 3 ⇒ P
Y

e (ρ) ≤ P
X

e (ρ) , ∀ρ.

Fig. 9 illustrates the comparative performance of an uncoded BPSK system over an additive

compound Gaussian noise channel subject to two different Ricean fading effects modeled using

parametersKX = 2 andKY = 5. We show thatP
Y

e (ρ) ≤ P
X

e (ρ) for all ρ > 0, when the noise

follows a symmetric alpha-stable distribution with a characteristic exponent of1.6. This shows

that LT ordering results apply to systems with compound Gaussian noise, since an alpha-stable

RV can be written as
√
AG, whereG ∼ CN (0, 1) andA is a positively skewed alpha-stable RV

[23]. Such results are not found in literature, since a closed-form expression for the average error

rate of BPSK under Ricean fading with symmetric alpha-stable noise is analytically intractable.

In fact, even for the special case ofK = 1 i.e. Rayleigh fading, a closed-form expression valid

in the asymptotic high SNR regime is known [23].

In direct contrast to the results for the compound-Gaussiannoise case, LT ordering of effective

channels does not imply that the average error rate performance for noise with bounded support

will satisfy the corresponding inequality at all SNR. In fact, as depicted in Fig. 10, where the

unit-variance noise is assumed to be uniformly distributedon [−
√
3,
√
3], it is observed that for

ρ < 2.6 dB, P
X

e (ρ) ≤ P
Y

e (ρ), while the opposite holds forρ > 2.6 dB. This corroborates the

claim of Subsection V-I2, which states that LT ordering of effective channels does not imply that

the average error rates satisfyP
Y

e (ρ) ≤ P
X

e (ρ) for all ρ > 0, under noise with finite support.

VII. CONCLUSIONS

In this paper, we illustrate the power of stochastic orders such as the convex order and the LT

order, which have never been used in physical layer communication/information theory, to relate

and unify existing performance metrics such as ergodic capacity and error rate functions through

their relationship with completely monotonic functions. We first identify that the instantaneous

symbol error rate functions for various signaling constellations such asM-PSK andM-QAM

are completely monotonic functions of the instantaneous SNR. Recognizing the importance of

LT ordering of instantaneous SNR distributions, we identify parametric fading distributions such

as Nakagami and Ricean, which are monotonic in the LoS parameters in the orders≤Lt and≤cx.

We also lay the groundwork to find the conditions for the preservation of inequalities satisfied
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by the averages of performance metrics of individual systems, when multiple such systems are

combined, even when closed form expressions for such averages are not tractable. These include

diversity combining schemes such as MRC, EGC and a variety ofrelay networks.

In summary, this framework provides a novel approach to compare the performance of a

vast range of systems on the basis of the analytical properties of the performance metric

such as monotonicity, convexity, or complete monotonicity, even in settings where closed-form

expressions are not tractable.

APPENDIX

PROOF OFTHEOREM 2

For anym, viewing them-hop channel as a series cascade of the firstm − 1 hops and the

mth hop, we have the following:

Pe
1:m

(ρX1:m) = Pe
1:m−1

(ρX1:m−1) (1−Pem
(ρxm))+(1−Pe

1:m−1
(ρX1:m−1))Pem

(ρxm) , (29)

for m = 2, . . . ,M . To prove the theorem, we will use induction. Clearly, Theorem 2 holds for

m = 1. Taking expectation of both sides of (29), we have

EX1:m

[

Pe
1:m

(ρX1:m)
]

= EX1:m−1

[

Pe
1:m−1

(ρX1:m−1)
]

(

1− EXm

[

Pem
(ρXm)

])

+
(

1− EX1:m−1

[

Pe
1:m−1

(ρX1:m−1)
])

EXm

[

Pem
(ρXm)

]

. (30)

We haveEX1:m−1

[

Pe
1:m−1

(ρX1:m−1)
]

≥ EY1:m−1

[

Pe
1:m−1

(ρY1:m−1)
]

by the induction hypoth-

esis, andEX1:m

[

Pe
1:m

(ρX1:m)
]

≥ EY1:m

[

Pe
1:m

(ρY1:m)
]

follows becausePem
(·) is c.m. and

Xm ≤Lt Ym. The theorem then follows because the RHS of (30) is of the form P1(1−P2)+P2(1−
P1), which is an increasing function of bothP1 andP2, since0 ≤ P1 ≤ 1/2, 0 ≤ P2 ≤ 1/2.
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Fig. 1. Multi-branch multi-hop cooperative relay network.Rm,1 . . .Rm,N
m

represent the relays on themth link from the

sourceS to the destinationD. The corresponding instantaneous effective channel gainsare denoted asXm,0 . . . Xm,N
m

.

Fig. 2. Two hop AF cooperative relay network.
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Fig. 3. Error probability comparison of DPSK modulation, under two different fading scenarios with LT ordered Pareto-type

SNR distributions, using parametersβX = 2 andβY = 5.

October 27, 2018 DRAFT



22

−10 −8 −6 −4 −2 0 2 4 6 8

10
0

ρ (dB)

E
rg

o
d
ic

C
a
p
a
ci

ty
C

(ρ
)

(b
/
s/

H
z)

 

 

C
X

(ρ)

C
Y

(ρ)

Fig. 4. Ergodic capacity comparison of two different fadingscenarios with LT ordered Pareto-type SNR distributions, using

parametersβX = 2 andβY = 5. C
X
(ρ) (C

Y
(ρ)) represents the ergodic capacity in the effective channelX (Y ).

2 4 6 8 10 12 14

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

ρ (dB)

S
y
m

b
o
l
E

rr
o
r

P
ro

b
a
b
il
it
y

P
e
(ρ

)

 

 

P
X

e
(ρ)

P
Y

e
(ρ)

Fig. 5. Error rate comparison of maximum ratio combining using L = 3 antennas with BPSK.P
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average symbol error rate under Ricean fading with parameter KX = 2 andP
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e (ρ) to the average symbol error rate under

Ricean fading with parameterKY = 5.
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Fig. 6. Error rate comparison of equal gain combining usingL = 3 antennas with BPSK.P
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error rate under Ricean fading with parameterKX = 2 andP
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e (ρ) to the average symbol error rate under Ricean fading with

parameterKY = 5.
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Fig. 7. Error rate comparison of selection combining usingL = 3 antennas with DPSK.P
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e (ρ) corresponds to the average

symbol error rate under Ricean fading with parameterKX = 2 and P
Y

e (ρ) to the average symbol error rate under Ricean

fading with parameterKY = 5.
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Fig. 8. Error rate comparison ofM = 3 hop amplify-forward relay with BPSK under Ricean fading.P
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Fig. 9. Performance comparison of BPSK in compound Gaussiannoise (normalized symmetric alpha-stable distribution with

characteristic exponent1.6). P
X

e (ρ) corresponds to the average symbol error rate under Ricean fading with parameterKX = 2

andP
Y

e (ρ) corresponds to the average symbol error rate under Ricean fading with parameterKY = 5.
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Fig. 10. Performance comparison of BPSK in noise with finite support (symmetric uniformly distributed noise with unit

variance).P
X

e (ρ) corresponds to the average symbol error rate under Ricean fading with parameterKX = 2 and P
Y

e (ρ)

corresponds to the average error rate under Ricean fading with parameterKY = 5.
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