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Abstract

Stochastic orders are binary relations defined on protabitributions which capture intuitive no-
tions like being larger or being more variable. This pap#oiiuces stochastic ordering of instantaneous
SNRs of fading channels as a tool to compare the performadnm@mamunication systems over different
channels. Stochastic orders unify existing performanc&iosesuch as ergodic capacity, and metrics
based on error rate functions for commonly used modulattbemes through their relation with convex,
and completely monotonic (c.m.) functions. Toward thislgparformance metrics such as instantaneous
error rates of M-QAM and M-PSK modulations are shown to be éumctions of the instantaneous SNR,
while metrics such as the instantaneous capacity are sebkavida completely monotonic derivative
(c.m.d.). It is shown that the commonly used parametricnigdiistributions for modeling line of sight
(LoS), exhibit a monotonicity in the LoS parameter with resipto the stochastic Laplace transform
order. Using stochastic orders, average performance déregsinvolving multiple random variables
are compared over different channels, even when closed é&xpressions for such averages are not
tractable. These include diversity combining schemesyraktworks, and signal detection over fading
channels with non-Gaussian additive noise, which are tigeged herein. Simulations are also provided

to corroborate our results.

I. INTRODUCTION

Given the vast number of wireless systems with differentppses operating over fading
channels, it is of interest to know how to decide whether araraunication channel is superior
to another. The performance of such systems are quantifiedvesaging a metric (e.g. bit

or symbol error rates, or channel capacity) over the digtidin of the random channel. Very
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often, when one channel is better than another in terms ofrt&cplar metric, it is also better
with respect to another metric. However, this is not alwaye.t Traditionally, answering this
guestion has relied on single parameter comparisons betweannels using characteristics
such as diversity order, “amount of fading”, Ricean factod @athers [1]. These are parametric
approaches that quantify how much fading the channel eshibut do not provide a unified
framework to compare channels across many different pedoce metrics. In this work, we
propose to use stochastic orders to address this issue.

The theory of stochastic orders (or dominance) provides mpcehensive framework to
compare two random variables (RVs) or vectors [2]. The sasighnd most widely used stochastic
order compares the cumulative distribution functions (EbFtwo RVs, which defines a partial
order between pairs of RVs. When the RVs represent instaatenSNRs in a fading envi-
ronment, this corresponds to comparing the outage prabebiin a wireless communication
context. There are many other stochastic orders that aptmparisons of RVs in terms of
size, and variability. Different than the related majotiaa theory [3], [4], which defines a
partial order on deterministic vectors, stochastic ordmply to random variables. Stochastic
ordering has become an indispensable tool in many incrglgsiliverse areas of probability and
applied statistics over the past sixty years. Examples df sueas include reliability theory [5],
actuarial sciences [6], risk analysis [7], economics [8l¢d &tochastic processes [9]. However,
the applications of this set of tools in physical layer wesd communications are surprisingly
very few, although it has found numerous applications in wamication networks (please see
[9], [2, Ch. 13-14] and references therein).

We now review the limited literature on the applications tdchastic orders in physical
layer communications. Bounds on the per cell sum rate undétrary fading in the high SNR
regime have been obtained using the aforementioned obtaggd “usual stochastic order” in
[10]. Stochastic ordering has also been applied to obtaimth® on the outage probability in
Bluetooth piconets under Ricean fading in [11]. In [12], theual stochastic order is used
to bound monotone performance metrics in Ricean fadingremments with beam selection.
Reference [13] shows that stochastic ordering of the SNRvdert the sender and any two
receivers is sufficient for the existence of a degraded dakammna layered erasure broadcast
channel modeled using the binary expansion model.

To the best of our knowledge, there is no systematic expioiteof the general stochastic
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ordering theory which can be used to provide a means for cangpavireless systems. All the
above references use the usual stochastic order, which eantdrpreted as a comparison of
the outage probabilities, and do not exploit the full gamtistmchastic orders available [2].
In this paper, we give a wide range of examples illustratiogv fdifferent stochastic orders
are appropriate for comparing systems using different io®ewith analytical properties such
as monotonicity, convexity, and complete monotonicityialihshed light into the connections
between performance metrics such as error rates and ergaplcity. Additionally, we find the
conditions for the preservation of inequalities satisfigdtile averages of performance metrics
of individual systems, when multiple such systems are coethi These may be combinations
in parallel, in series, or otherwise, as may be seen in redywarks. Such a study permits the
comparison of performance of systems, even in settingsevtlesed-form expressions are not

tractable.

[I. STOCHASTIC ORDERING PRELIMINARIES

The literature on stochastic ordering, primarily in relidy theory and statistics, delineates
numerous stochastic orders, many of which fall under thelasb ofintegral stochastic orders
We begin with a short description of the theory of integraksastic orders, which can be found
in [2], [6].

Let & denote a class of real valued functionsR*™ — R, and X andY be RVs with CDFs

Fx (-) and Fy (-) respectively. We define the integral stochastic order wapect to® as [6]:
X <gV <=E[g(X)] <E[g(Y)] , Vg € 6. (1)

In this case® is known as a generator of the orde€g. A stochastic order can have more than
one generator. For a given stochastic order, it is of intedeeglentify “large” generators which
are useful in identifying the equivalence of two orders. Tdrgest generator set of functions for
a stochastic order contains all other generators, andigettthemaximal generatof6]. It is also

of interest to find “small” generators which specify necegsanditions for the ordering of two
RVs. We now give three examples of integral stochastic srdgrspecifying the corresponding

generator set of function®.
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A. Usual Stochastic Order

The usual stochastic order compares the magnitude of two IRMkis case a small generator
& is the set of all non-decreasingdicator functions & = {g(x) : g(x) = I[x > p|,p € R}.
From (1) it follows that this order is equivalent to comparithe CDFs of the RVs. Formally,
we write

X <Y = Fx(z) 2 Fy (z) Vo . 2)

To see the interpretation of this in the context of wireldsammels, consider two channels to be

compared, with effective channel§ := |h*|*> andY := |hY|?, whereh™® and h* correspond

to the complex channel gains of two wireless systems. Thalwsachastic ordering ok and
Y is equivalent to comparing their corresponding outage giodities for all outage thresholds.
The maximal generator for the usual stochastic order is ¢hefsall increasing functions [6].
As a result, with the choice(z) = z in (1), we obtainE [X]| < E [Y] wheneverX <i; Y,
which agrees with the intuition that a larger random vagatlust have a larger mean value.

B. Convex Order

In this case® is the set of all convex functions, and the order is denoted as.. Y. Since
g(x) =z andg(z) = —z are both convex, from (1), we hal&[X] = E [Y]| wheneverX andY
are convex ordered. Therefore, convex ordering estalsligiad the RVs have the same mean and
X is “less variable” thart". Clearly, in the fading context, this can be used to iderthgnnels
with “less fading”. Since<., is a measure of variability, one would expect that a dege¢aera
RV is less in the convex sense than any other RV with the sanannmedeed, this is the case:
If Fx(x)=1I[x > p|, thenX <. Y for all RVs Y with E [Y] = u. So the degenerate RV has
an absolute minimum dispersion, as measured by the condex, awhich is a consequence of
Jensen’s inequality.

Many performance metrics, such as channel capacity, eates for different modulations [14]
and coding schemes in wireless systems are convex or cofcawtons of the instantaneous
SNR. Therefore, establishing convex ordering of two RVs bafp us qualitatively measure
the relative average performance of the correspondingmstNote that if instead of convex
functions, the clas® is chosen as the set of all concave functions, one would geséime

order with a reversal in the inequality.
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Verifying the usual stochastic ordering of two RVs is sthafgrward through (2). What follows
are easily testable sufficient conditions f§r<., Y. Let S~ (¢(x)) denote the number of sign
changes ofy(z) as z increases ovef0, c0), then X <. Y if E[X] = E[Y] and any of the

following hold [2]:
S™ (fy (z) — fx (x)) = 2 and the sign sequence is —, +. 3
S (Fy (z) — Fx (x)) = 1 and the sign sequence s — , 4)
where fx (-) and fy (-) are the probability density functions (PDFs) &fandY respectively.

Interestingly, to the best of our knowledge, although canvelering of RVs is widely used

in many other areas, it has never been used in physical-l@yeless communications.

C. Laplace Transform Order

Similar to <, and <., it is possible to order random variables based on their dcpl

transforms (LT). In this case$ = {g(x) : g(x) = —exp (—pz), p > 0}, so that
X <t Y <= E[exp(=Y)p)] <E[exp(—Xp)], Vp>0. (5)

Interpretingexp(—px) as being proportional to the instantaneous error rate (deircase for
differential-PSK (DPSK) modulation and Chernoff bounds dther modulations), LT ordering
of the instantaneous SNRs in (5) can be interpreted as amaligqin the average error rates

satisfied at all values of SNR. One of the powerful consequences of LT ordering is that
X <Y = E[g(X)] = E[g(Y)] (6)

for all completely monotoni¢c.m.) functionsg(-) [2, pp. 96]. A similar result with a reversal

in the inequality states that
X <Y <«=E[gX)]<E[g(Y)], (7)

for all functions ¢g(-) that have a completely monotonic derivative (c.m.d) funeti Recall
that the derivatives of a c.m. function alternate in signscAlthey can be written as a pos-
itive mixture of decaying exponentials. More formally, anc.function by definition satis-
fies (—=1)" d"g(x)/dz™ > 0, for x > 0 andn = 0,1,2,..., which by the celebrate@ern-

stein’s theoremis equivalent to the existence of a positive functipft) such thatg(xz) =

October 27, 2018 DRAFT



6

Texp (—zu) p(u) du [2, pp. 96]. It can be easily verified that c.m. (c.m.d) fuao8 are convex
(Oconcave) and decreasing (increasing). Furthey; (if) is completely monotonic, angh(z) > 0
has a completely monotonic derivative, then the compasitidg»(z)) is completely monotonic.

It is useful to mention that for any two RVE andY, X <. Y =Y <;; X, which follows
from the fact that- exp(—pzx) is concave inc for any p > 0. Hence, convex ordering provides
a method to generate or verify LT ordering between two RVde&d either of the conditions
(3) or (4) together with equal mean values fdrandY imply that X <;; Y. Further, observe
that X <, Y = X <, Y, which follows since— exp(—pz) is increasing inz for p > 0.

In the rest of the paper, we illustrate the power of the stsithaordering framework in
comparing wireless channels and systems. We will invegtiglhe convexity and complete
monotonicity properties related to the error rate and dapaxpressions in Section lll, which
will facilitate comparing the average performances of eyst by using (6) and (7). In Section
IV we identify commonly used channel distributions whicle &T or convex ordered. Section V
investigates the conditions under which these stochaslierg are preserved in complex systems
where the performance of their constituent parts satisfyraer. Finally, relevant simulations

to supplement the theoretical results are provided in Sedtil.

[Il. ORDERING OFAVERAGE ERROR RATE AND ERGODIC CAPACITY METRICS
A. Symbol Error Rate

It has been established in [15] that the error rate of binaggading in the presence of noise
with a uni-modal and differentiable PDF is a convex functminthe SNR when maximum
likelihood decoding is performed. Also, it is known that timstantaneous error probabilities
of all one-dimensional and two-dimensional constelladiovith ML decoding in the presence
additive white Gaussian noise (AWGN) is a convex functionhef SNR [14]. In this section, we
go one step further and establish the complete monotoritgpme two-dimensional modulation
schemes, which will be useful in establishing inequaliiesveen averaged performance metrics.
It is well known that Q (\/x) is c.m. [16], from which the complete monotonicity of the
instantaneous error rate of the forf (pz) = aQ (v/bpx) easily follows, fora,b > 0. Here
a and b are modulation dependent constants which can be chosert txget performance in

some cases (e.g. = 1, b = 2 for BPSK), or approximations in others & 3/4,b = 4/5 for
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16-QAM). For the exact case, it follows from (6) th& [P, (pY)] < E [P, (pX)], for p > 0
wheneverX <;. Y.

We now establish, for the first time, the complete monotyiof exact symbol error rates
of squareM/-QAM and M-PSK modulations which are not in the forf) (pz) = aQ (v/bpz),
and offer sharper results than those mentioned above, 8isgedo not rely on approximations.

The M-PSK symbol error rate is given by the following [1, pp.195]:

(M—1)r/M

PP (pr) = 71T / exp ( P PSK) do (8)

sin? 6
0

where apgk = sin?(7/M). After a change of variables, (8) can be expressed as theat@pl

transform of a positive function:

0 > OPSK
s, /OPSK /6_pux [ = Sin2((M- 1)%)} s ©)
2 u\/U — apsK '
0

which together with Bernstein’s Theorem suggests fRat< (px) is c.m..

Consider now the squark®/-QAM error rate function [1, pp.195]:

PO (pr) = aQ (y/aganpz) — bQ* (v/agamp) (10)

whereagan = 3/(M — 1), a := 4v/M —1)/v/M andb := a*/4. Note that0 < b < a. We
claim that (10) is c.m. for any, b such thath < a. To see this, recall

w/2k

Q" (vi) =+ [ b (~5ary) 0. (11)

2sin% 6
0
for k = 1,2 [1]. After a change of variables similar to (8), we obtain

V IO5<u<1] (a—b)I [u>1]
PQAM aQAM / pz {a + d 12
(p) = uv2u — uv2u —1 o (12)
which is also c.m. by Bernstein’s theorem, sirice< a. In conclusion, wheneveX <i; Y,
E [P, (pY)] < E|[P,(pX)] for all average SNR, whereP, (-) could be given by either (8) or
(20). This follows from the definition of the LT order and thanc properties of instantaneous
error rates ofM/-QAM or M-PSK modulations.
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B. Ergodic Capacity

We now show that stochastic ordering of instantaneousteféechannel distributions implies
that their ergodic channel capacities satisfy a corresipgnidequality at all average SNRs. We
begin with the case where only the receiver has channelsstatormation (CSl).

1) Ergodic Capacity with Receive CSI onlyhe instantaneous capacity, conditioned on the
effective channelX = = when only the receiver has CSI is given BYpz) = log(1 + px),
wherep is the average SNR. Sine&'(pz)/dx = p/(1 + px) is c.m. inz, from (7) X <, YV
implies that the ergodic capacities satidfy [C (pX)] < Ey [C (pY)] for p > 0. Recall that by
(5), LT ordering of the channelX andY can be interpreted as a comparison of the average
error rates, when the instantaneous error rate is a decaypgnential. As a result, one can
loosely say thaif the average error rates of two channel§ and Y satisfy the inequality5)
at all SNRs, then so do the ergodic capaciti8srprisingly, however, the converse is not true,
as we now illustrate. Consider a Pareto-type distributvamich is appropriate for modeling the
instantaneous SINR in the presence of interference [17] :

B
(1+28)
Using integration by parts and simplifying, we obtain

o0

B (03] = [ ot &= (14)

Taking the derivative with respect t, it is seen thatfx [C' (pX)] is a decreasing function of
B, for p > 0. This shows that fo* < 8, Ex [C' (pX)] > Ey [C (pY)] for p > 0. On the other

hand, sinceFx (z) = z” + o(z”) nearz = 0, the average symbol error rate for an exponential

Fx (2) = ,2>0,8>0. (13)

instantaneous error rate function satisfi@&@xp(—pX)] = (G. p)™” + o (p~?), where G, is
the array gain and is the diversity order [18]. Hence, asincreases, the high-SNR average
error rate decreases, while the capacity also decreasds SR p! Interpreting the ergodic
capacity as what is achievable by coding over an i.i.d. texgension of the channel, we reach
the conclusion that even thoughoffers more diversity thatX’ for an uncoded system, the i.i.d.
extension ofX lends itself to more diversity than that &f. To put it more simply, at high SNR,
it is possible for one channel to be superior to another imseof error rates in the absence of

coding, while being inferior when the capacity achievingleas employed over both channels.
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2) Channel Inversion and Delay-Limited Capacitythen CSI is available at the transmitter,
it can be used for power adaptation. A simple, suboptimataagh is to “invert” the channel
at the transmitter, so that effectively the receiver sees®rafading AWGN channel. Such an
approach is viable only whel [X '] < oo, leading to a finite average transmit power. This is
the case whenever the channel offers a diversity ordetlgtgeater than one. Channel inversion
has the advantage that a channel code designed for the AW@mehcan be used effectively,
and that the code length need not depend on the channel ocketiene to average out the

fading. This “delay-limited” approach [19] gives rise to achievable rate given by

Coa(p) = log (1 + m) . (15)

Clearly, sinceg(z) = ™! is a c.m. function ofz, E [X~!] > E [Y!], wheneverX <i; Y. This
implies@é(l(p) < Ué(p) for all p, sinceﬁé(p) in (15) is a decreasing function &f [ X ~!].

3) Optimal Power and Rate Adaptation (OAl%:is well known that CI is not optimal, since
when the channel gain becomes arbitrarily small, the tréttesmuses extremely high power. To
overcome this limitation, th@ptimal power and rate adaptatioscheme is proposed in [19],
where water-filling across time is performed subject to aerage transmit power constraint.

The capacity so obtained over a channel with instantanebif& $ is given by [19] :

Coalp) = 7 log (ﬂ) d[1 - Fx (2)] . (16)

zt(p)

where z,(p) is the signaling threshold, which is implicitly governed the power constraint as

J -ty amer-r

zt(p)

follows:

It can be shown tha <;,; Y does not guarante@ﬁA(p) < UgA(p) for all p. However, in
what follows, we will show that under the stronger assummpfio <y Y, Ué{A(p) < UgA(p) for
all p.

Using integration by parts on (17), it is observed that ¥o, Y, we havez* (p) > 2 (p).
Now, integrating (16) by parts, under the assumptions Zl_hg}(l — Fx (2))log(z/z(p)) = 0
and lim (1 — Fy ()) log(z/} (p)) = 0, it is seen that®s, (p) < Coalp) for p > 0, since
2X(p) > 2¥(p). Therefore X <, Y = Ca,(p) < Conlp), for p > 0.
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V. ORDERING OFPARAMETRIC FADING DISTRIBUTIONS

We now proceed to show that commonly used parametric fadstglditions are completely

monotonic in the line of sight parameter with respect to LT aonvex orders.

A. Nakagami Fading

Consider Nakagami fading model, where the envelgf¥ is Nakagami and the effective
channelX is Gamma distributed [20], with PDF given by

fx (x) = FTZZ) g™ exp(—mx) 2 > 0. (18)

SinceE [exp(—pX)] = (1 + p/m)~™ is a decreasing function of. for eachp, it follows that

if the m parameters of two channel distributions satisfy < m', thenX <;; Y, where X
and Y have normalized Gamma distributions with parameters and m" respectively. This
shows that for example, all the performance metrics in (8)16Y) that are c.m. have averages
over fading distributions that satisfy the inequalily [P, (pY)] < Ex [P, (pX)] for all values

of average SNR. A similar claim with a reversal in the inequality can be méadethe ergodic
capacity metric. Note that the PDFs_&fandY” in (18) are defined to satisty [ X| =E [Y] =1,
independent of the fading parameter Hence, the improvements in error rate or ergodic capacity
at all values ofp with increasedn is not due to an improvement in average SNR. A stronger
convex ordering result can also be established. SBgE] = E[Y], m* <m¥ =YV <, X
can be shown by using (3). We can summarize the results hieyeirsing the terminology that
the normalized Gamma distribution is monotonically insiag inm with respect to the orders

SLt and Scx-

B. Ricean Fading

As in the Nakagami case, the Rice distribution will also beval to be monotonic in the
LoS parameterX with respect to the orders;; and <... The instantaneous SNR distribution

is given by
fx (@) = (1+ K) exp(—K) exp [~ (K + 1)a] Io (2 KK + 1)93) , (19)

where [(+) is the modified Bessel function of the first kind of order ze@tearly, E [X] = 1
is independent of’. Taking the Laplace transform of (19), we haligexp(—Xp)|] = (1 +

October 27, 2018 DRAFT



11

K)/(1+ K + p)exp [Kp/(1 + K + p)], which decreases witik for eachp. This implies that,
similar to the Nakagami case, increasiAgwithout increasing the average SNR improves the
average symbol error rate, ergodic capacity, or any averaggc obtained from a c.m. or c.m.d.
function. Thus, ifKX < KV are the Ricean parameters of two channels, tkiefd;, Y. Similar
to the Nakagami case, equation (3) can be used to establisbrger claim that” <., X.

In this specific Ricean context, similar results for the éigaapacity are found in [21] and
the references therein, in a more general MIMO setting. Hewean these results, either the
channel power increases with an increase in the LoS companreonly an asymptotically large

number of antennas is considered.

V. COMMUNICATION SYSTEMS INVOLVING MULTIPLE RVS

In the following discussion, we will consider systems irming multiple independent random
channel coefficients and compare their performance in tifferdnt sets of channels, where the
effective channels associated with the first system aretddnioy X := [X;,..., X)/] while
those of the second channel §y:= [Y3,...,Y),]. Toward this goal, we use the following result

[2, pp. 97], which shows that LT ordering is preserved by iattate functions that are c.m.d.:

Theorem 1. Let X4,..., X, be independent andl, ..., Y}, also be independent. IX,, <;;
Y,, form=1,...,M,theng (Xy,..., Xn) <1t g(Y1,...,Yy) for all functionsg : R™ — R*
such that form = 1,..., M, (0/0x,) g (x1,...,xp) IS €.M. inz,,, when all other variables

are fixed.

We now investigate the systems for which the combined itateeous SNR is given by a
function g(x) := g(z1, ...,z ), Which satisfies the conditions of Theorem 1. Unless othsgwi

mentioned, we will assume throughout thgf, <;; Y,, form =1,..., M.

A. Maximum Ratio Combining

Consider a SIMO diversity combining system witlh receive antennas which have complete
CSI. If maximum ratio combining (MRC) is performed, condiied on the effective channels
X,=z,form=1,..., M, the instantaneous SNR at the output of the combiner is ptiopal

to

Imre (X) = Z Tm , (20)
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which satisfies the conditions of Theorem 1 as easily seemaligg derivatives. Thus, we infer
that when MRC is performed, .. (X) <r: g, (Y). Consequently, whenever, (px) is c.m.
andC(pz) is c.m.d., the average error rates satiBy [P, (pgync (Y))] < Ex [P, (p9yne (X))]
for all p, and the ergodic capacities satify [C(pg,. (Y))] > Ex [C(pgyme (X))], for all p.

B. Equal Gain Combining

Next, assume that the SIMO diversity system adopts equal gambining (EGC) at the

receiver. In this case, conditioned on the instantanedestefe channelsX,, = z,, for m =

1,..., M, the instantaneous SNR at the combiner is proportional to
1 M 2
Yece (X) = M (mZ:1 V xm) . (21)

M

The derivative(0/0z;) gy (T1, .- x0) = M1 (E w/xm) /+/Z; is a c.m. function of;, for
m=1

1 =1,..., M. Therefore, equal gain combining of a better set of branchsslts in a better

system overall, as also expressed more rigorously aftgriZhe MRC example.

C. Selection Combining

In contrast to the previous two examples, this example shibatseven though the individual
branch instantaneous SNRs are LT ordered, the combined SthR autput of the combiner need
not be LT ordered. For selection combining (SC), conditignon the instantaneous effective

channelsX,, = z,, form=1,..., M, we have
Iy (X) = maxzy, , (22)

which is not differentiable, and hence is not c.m.. In fakt, <i; Y,,, m = 1,..., M does
not imply max,, X,, <;; max,, Y,,. We provide a simple counterexample in Section VI. This
shows that even though channélg provide better average error rates at althan X,,, for

m=1,..., M for a SISO system, the composite SC channel does not.

D. Multi-hop Amplify and Forward (AF)

Consider a multi-hop system with/ links subject to AWGN, whereX,, is the effective

channel gain over thex™™ link. It is assumed that the:'” node has channel information of
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the (m — 1) hop, form = 2,..., M, and the amplification factor for each node is the same.
Conditioned on the instantaneous effective chanig)s= z,, for m = 1,..., M, the SNR at

the destination in this case is proportional to [22]:

Gyt _ar (X) = [ﬁ (1 + i) — 1] ) : (23)

m=1
Taking the partial derivatives of,, ,. (x) with respect to each,, form =1,..., M, itis seen
that g,,,, ., (x) satisfies the conditions of Theorem 1. Thys, .. (X) <tt gun_r (Y). As
a result, the average error rates for the multi-hop AF systatisfy Ey [P. (pg,, . (Y))] <
Ex [P, (pguu_r (X))], for p > 0. Importantly, a closed-form expression for the average per
formance of this system is not tractable for most practitalnmel distributions. Despite this, it
is still possible to compare the error rates of two othenidgatical systems systems with two

sets of LT ordered effective channels at all average SNRs.

E. Multi-hop Channels with Decode and Forward

Consider anM-hop channel, where each terminal decodes a received syimtboh binary
alphabet and forwards it over to the next terminal. Let th&antaneous error rate over the
i* link be given by P, (pzr;), i = 1,..., M, where we assumé < P, () < 1/2is c.m..
For convenience, we definX,., = [Xi,...,X,,] and let Pclzm (pXi.,) be the combined

instantaneous error rate of the fils m < M hops. We have the following:

Theorem 2. Let X4, ..., X, be independent, and likewise for, . .., Y. SupposeX,, <i; Y,
form=1,...,M. ThenEx, |P (lezm)} > Ey,. . [P (lezm)} cm=1,..., M.

€. €.

Proof: See Appendix. [ |
Note that Theorem 2 and its proof carry over when each hoptaddpary modulation as
well, provided thatp is large enough to ensufe< Ex, [P . (pX1;m)] <1/2.

e

F. Post Detection Combining

Consider anM-antenna post-detection combining (PDC) scheme, wherangtantaneous

symbol error rate on the:'” branch isP, (pzn,) and is c.m. as in the previous example. The
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instantaneous probability of error of the PDC system is mjilbg' [23] :

P (pXpar) = ZZ(HP pxl> IT (1=~ (z) | - (24)

k=MAL S \i€S JESE
whereS;, is a set running over all subsets ff, ..., M} with k& elements. Taking expectation

with respect taX;.,,, which is assumed to have independent components, we have,

Exyo [P (0X100)] = 5 Z(HEX[ ]) I (1-Ex, [B, X))

k=241 S \i€Sy jese

(25)
Clearly, the average error rate is an increasing functioangfof theE [Pem (pX,n)], since it
is not possible to get improved performance by increasiegtlerage error rate on any particular
link. This shows that wherX,, <1 Y,,, form =1,..., M, and P, (px) is c.m., so that the
average error rates of PDC satidy [P, (pX,.)] > Ey [P, (pYm)] for p > 0, it follows that
Ex [POW (pXI:M)] > Ey [PCLM (pYI:M)] for p > 0.

G. Generalized Multi-branch Multi-hop AF Cooperative Reldetworks

We now consider the generalized relay structure illustkefey. 1, which consists of\/
independent branches, each involving, relays, form = 1,..., M, which assist the direct
link between the source and the destinatiol by performing amplify and forward (AF). It is
assumed that all the links are impaired by AWGN with fixed aace. This model requires the
branches to communicate through mutually orthogonal cblanso that)\/ independent copies
are available at the destination which performs MRC (usiomlaining coefficients given in
[24]). Although approximate expressions for the error tad®e been obtained for the case of
Ricean fading in [24], closed-form expressions are in&ialet

Note that the two-hop fixed AF relay, which finds frequent &gtlon in cooperative diversity
literature [24] and illustrated in Fig. 2 is a special casehi$ general relay, with\/ = 1 and
N,, = 1. Thus, the forthcoming results obtained for the generad egply for the two-hop relay
as well.

We now show that the exact average symbol error rate can b@arech over a number of

fading distributions where the pairs of effective chanreels LT ordered. To this end, we show

We assumeV/ is odd. Extensions to evel/ are straight-forward by adding a tie breaker term to (24).
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that the output SNR of the MRC combiner at the destinatioisféad the conditions of Theorem
1. Let X, denote the effective channel on the direct link, ang,, the effective channel at the
n' hop on linkm. Since the destination performs MRC, the instantaneousub8NR is the

sum of individual end-to-end branch SNRs, each of which arengby (23). Thus, conditioned

on X, = Ty, for m = 0,...,M andn = 0,...,N,,, and definingg,,, \u_.r (X) =

ImB-Mu-AF (‘To,ov Lygreee sy nyseee 71'1\4,N1w)’ we have
M N, 1 -
Gy rmar (X) = Z [H (1 + T ) —1 + Zo,o - (26)
m=1 |n=1 mn

As shown in the arguments following (23), the summand in thESRf (26) has a c.m. deriva-

tive in each variable. Combining this with Theorem 1, we h&e[P, (09, vu_ar (Y))] <
Ex [Pc (ngBfMHfAF (X))} for p > 0.

H. Combined Multipath Fading and Shadowing

It is well known that the effect of shadow fading on the inséa@ous SNR distribution can be
modeled as a product of a shadowing random variable with aipath fading random variable
[1]. Let X; <p; Y; be the two multipath fading SNR distributions, aid <;; Y; be the
two shadowing distributions. Then, from Theorem 1, it falothat the composite RV satisfies
X1 Xy < V1Yo, sinceg(z, x2) = 129 has a c.m. derivative in each variable. We conclude that
Ex, x, [P, (pX1X2)] > Ey, v, [P, (pY1Y2)], Vp, wheneverP, (-) is c.m.. Such conclusions can
be drawn even in cases where the composite distributiaki;0f; or ;Y5 cannot be written in

closed-form.

l. Systems with non-Gaussian Channel Noise

In this discussion, we assume the following system model:

Z=\/pXS+W, 27)

where for simplicity,S € {—1,1}, pX is the instantaneous SNR,the average SNR, and’ is

non-Gaussian noise.
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1) Gaussian Mixture:In this model, W represents compound Gaussian noise (also called
Gaussian mixture), which can be written1ds= /AG, whereA is a positive valued RV, which
represents the scale 6f, andG ~ N(0, 1). Such a formulation is possible for symmetric alpha-
stable noise, Middleton class-A noise, as well as other @am@ Gaussian noise distributions.

The error rate conditioned on the effective chaniek z is given by

%)

which is a c.m. function ofr as can be verified by differentiating inside the expectatiatm

Pe (pl’) =Ea ’ (28)

respect tox. Using (6), this shows that wheX <;; Y then the average error rates satisfy
Ex [P, (pX)] > Ey [P, (pY)], even for mixed (compound) Gaussian noise. Similar rexats
also be shown to hold for noise distributions such as thedapHistribution which cannot be
expressed as a compound Gaussian.

2) Bounded NoiseRecall the system model from (27). [f//| < C for some constant’,
almost surely therFyy (z) = 1 for > C and1 — Fy, (v2z) = 0 for 22/2 > C. It is clear
from Bernstein’s theorem that a function, suchlas Fy, (\/%) with bounded support cannot
be c.m.. From this, we can conclude that if the noise is bodndds possible for two SNR
distributions to be LT ordered, althoudty [P, (pY')] need not be less thadky [P, (pX)] for all
p > 0. This negative result emphasizes the effect of the noidelalison in claims of ordering

and concludes our discussion of systems with non-Gaussige.n

VI. SIMULATIONS

We now corroborate our theoretical results using MontdeCsimulations. For ease of no-
tation, we define?? (p) := Ex [P, (pX)] to denote the average error rates of SISO systems
operated in the effective chann&l. Also, we useﬁf (p) == Ex [P, (pg (X))] to represent the
average error rates of systems involving multiple effectthannel coefficients.

One of the central results of Section IlI-B is that it is pb$sifor one channel to be superior
to another (in terms of error rates) at high SNR in the absefa®ding, while being inferior
when the capacity achieving code is used over both chanReis.is illustrated in Fig. 3, which
shows the comparative error rate performance of DPSK emgloyer an interference dominated
fading channel with Pareto type distributed instantane&i¥R (having parameter$X = 2 and

BY = 5. Clearly, sinceP. (p) < P, (p) for p < —0.5 dB and vice-versa fop > —0.5 dB,
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the system with effective channé&l is not better than that with effective channiélat every
average SNR. On the other hand, Fig. 4, shows that the ergagbacity of the system with
instantaneous channgl is consistently larger than that when operated in the cHarneith
parameters? = b.

Figures 5, 6 and 7 show the performance of diversity compischemes such as MRC, EGC
and SC withLL = 3 branches over two sets of i.i.d Ricean fading channels wétampeters
K* =2 and KY = 5. Note that from Subsection IV-BY,, <, Y,, for m = 1,2,3. The trend
observed in the performance analysis curves obtainedrheesi be equivalently obtained for
any other sets of LT ordered effective channel random veesalusing any modulation scheme
whose error rate is a c.m. function of the effective channel.

In Fig. 5, we demonstrate that LT ordering of the instantaseSNR distributions for the
individual branches can be used to compare average eres vaten MRC is performed at
the receiver. Foil. = 3 receive diversity branches, it is observed that the errtg oh BPSK
in the channel with instantaneous SNR is consistently less than that in the channel with
instantaneous SNRX, which agrees with the fact that since the effective chafmeRicean
fading is c.m. inK, X,, <1 Y, for m = 1,2,3, and hence. (p) < P. (p) for p > 0.

Figure 6 illustrates that wheX,, <i; Y, for m = 1,2,3, we getP. (p) < P. (p) for
p > 0 for the case of EGC employing BPSK. The error rate curves fletponstrate that fading
channels with larger Ricean parameters offer smaller eat@s than those with smaller Ricean
parameters at all values of average SMRhen EGC is used, as predicted in Subsection V-B.
Such a conclusion is not present in the literature due to thevailability of a closed-form
expression for the average error rate of coherent EGC inaRiohannels, which is applicable
in all SNR regimes [1].

The comparative performance of SC using DPSK symbols is sBhowrig. 7. It is evident
that although the individual branch SNRs are LT orderﬁﬁ,(p) > Fz( (p), for p < —0.4 dB,
while ?2( (p) < ?z( (p), for p > —0.4 dB. This cross-over point is clearly depicted in Fig. 7
using a linear scale for the error rate axis, since it is masle discernible compared to the
conventional log scale. Hence, selection combining of &éebekt of channels (in terms of error
rates) need not yield a better system overall, at low SNR.

The performance of a multi-hop amplify and forward relay tisdéed in Fig. 8. We assume

the model described in Section V-D with/ = 3 relays under two different Ricean fading
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scenarios, one with paramet&f* = 2 and the other withK¥ = 5. It is observed that the
average symbol error rate &f is consistently less than that &f at all SNRs. This, due to the
fact thatX,, <p; Y., m=1,2,3 = P. (p) < P. (p), ¥p.

Fig. 9 illustrates the comparative performance of an undd8leSK system over an additive
compound Gaussian noise channel subject to two differergeRi fading effects modeled using
parameterss® = 2 and K = 5. We show thatP. (p) < P. (p) for all p > 0, when the noise
follows a symmetric alpha-stable distribution with a cluaeaistic exponent ot.6. This shows
that LT ordering results apply to systems with compound Giansnoise, since an alpha-stable
RV can be written as/AG, whereG ~ CN(0,1) and A is a positively skewed alpha-stable RV
[23]. Such results are not found in literature, since a de®em expression for the average error
rate of BPSK under Ricean fading with symmetric alpha-stafgise is analytically intractable.
In fact, even for the special case Af= 1 i.e. Rayleigh fading, a closed-form expression valid
in the asymptotic high SNR regime is known [23].

In direct contrast to the results for the compound-Gaussiése case, LT ordering of effective
channels does not imply that the average error rate perfarentor noise with bounded support
will satisfy the corresponding inequality at all SNR. In tfaas depicted in Fig. 10, where the
unit-variance noise is assumed to be uniformly distributed—+/3, /3], it is observed that for
p < 2.6dB, P, (p) < P. (p), while the opposite holds fop > 2.6 dB. This corroborates the
claim of Subsection V-12, which states that LT ordering déefive channels does not imply that

the average error rates satisﬁz (p) < ?z( (p) for all p > 0, under noise with finite support.

VIlI. CONCLUSIONS

In this paper, we illustrate the power of stochastic ordehsas the convex order and the LT
order, which have never been used in physical layer comratiaiginformation theory, to relate
and unify existing performance metrics such as ergodicagpand error rate functions through
their relationship with completely monotonic functionseWrst identify that the instantaneous
symbol error rate functions for various signaling const#bns such as\/-PSK andM-QAM
are completely monotonic functions of the instantaneou .SRecognizing the importance of
LT ordering of instantaneous SNR distributions, we idgnpidrametric fading distributions such
as Nakagami and Ricean, which are monotonic in the LoS pdeasi@ the ordersS;; and<.,.

We also lay the groundwork to find the conditions for the presigon of inequalities satisfied
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by the averages of performance metrics of individual systamhen multiple such systems are
combined, even when closed form expressions for such aa®@g not tractable. These include
diversity combining schemes such as MRC, EGC and a varietglay networks.

In summary, this framework provides a novel approach to @mpghe performance of a
vast range of systems on the basis of the analytical prgsedf the performance metric
such as monotonicity, convexity, or complete monotonj@en in settings where closed-form

expressions are not tractable.

APPENDIX

PROOF OFTHEOREM 2

For anym, viewing them-hop channel as a series cascade of the first 1 hops and the

m*™ hop, we have the following:

P, (lem) =P, (leim—l) (1 _Pc, (pl’m)) + (1 - P, (pxlzm—l))Po (pxm) ) (29)

Cl:rn Olz'anl m Cl:rnfl m
form =2,..., M. To prove the theorem, we will use induction. Clearly, Tleor2 holds for

m = 1. Taking expectation of both sides of (29), we have

€lim—1

(1= By [P, X )] ) By (R, (0X)] - (30)

Clim—1

Ex,.,. |:Peltm (pX1:M)} =Ex,.s [P (pxlzm—l)} (1-Ex, [P, (0Xn)])

€lim—1 1I:m—1

esis, andEx, . [P (lezm)} > Evy,.,, [Pol (lezm)] follows because”, (-) is c.m. and

Clim m

X <1t Yo The theorem then follows because the RHS of (30) is of tha #Br(1— P,)+ P (1—
Py), which is an increasing function of both and P,, since0 < P, <1/2,0< P, <1/2.

We haveEx, [P (lezm_l)] > Ey,.. _, [Pe (lezm_l)] by the induction hypoth-
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Fig. 1. Multi-branch multi-hop cooperative relay netwoik,, 1 ...R..,~, represent the relays on the'" link from the

sources to the destinatiorD. The corresponding instantaneous effective channel gamslenoted a0 ... Xm,n,, -

Fig. 2. Two hop AF cooperative relay network.
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Fig. 3. Error probability comparison of DPSK modulationden two different fading scenarios with LT ordered Parguet

SNR distributions, using parametes’ = 2 and 8¥ = 5.
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Fig. 4. Ergodic capacity comparison of two different fadisxgnarios with LT ordered Pareto-type SNR distributiorssngi
parameters$3® = 2 and ¥ = 5. o (p) (6Y (p)) represents the ergodic capacity in the effective chanhgl”).
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Fig. 5. Error rate comparison of maximum ratio combiningngsl = 3 antennas with BPSKF? (p) corresponds to the
average symbol error rate under Ricean fading with paraniété = 2 and ?:( (p) to the average symbol error rate under

Ricean fading with parametet™ = 5.
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Fig. 6. Error rate comparison of equal gain combining using 3 antennas with BPSK?Z( (p) corresponds to the average

error rate under Ricean fading with parameféf = 2 andﬁz{ (p) to the average symbol error rate under Ricean fading with

parameterkY = 5.
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Fig. 7. Error rate comparison of selection combining uslhng- 3 antennas with DPSK?? (p) corresponds to the average
symbol error rate under Ricean fading with parameiet = 2 and ?:( (p) to the average symbol error rate under Ricean

fading with parameteis™ = 5.
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Fig. 8. Error rate comparison g¥/ = 3 hop amplify-forward relay with BPSK under Ricean fadin’_gf (p) corresponds to
the average symbol error rate under Ricean fading with peiemi * = 2 andﬁz (p) to the average error rate under Ricean

fading with paramete” = 5.
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Fig. 9. Performance comparison of BPSK in compound Gaussigse (normalized symmetric alpha-stable distributiothwi
characteristic exponerit6). ff (p) corresponds to the average symbol error rate under Riceémgfavith parametefy * = 2

andf;[ (p) corresponds to the average symbol error rate under Ricelmgfavith parametefy = 5.
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Fig. 10. Performance comparison of BPSK in noise with finit@mort (symmetric uniformly distributed noise with unit
variance).?ff (p) corresponds to the average symbol error rate under Ricetingfavith parametetk™ = 2 and f: (p)

corresponds to the average error rate under Ricean fadithgparameteds? = 5.
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