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Abstract

In underground mine and road tunnels, multipath fading is much more severe than the terrestrial
wireless channels. To overcome the multipath fading in underground tunnels, MIMO (Multiple Input
Multiple Output) and Cooperative Communication system can be utilized. Since the underground channel
characteristics are significantly different from those in terrestrial environments, the channel capacity
and the outage behavior of such systems need to be investigated based on underground tunnel channel
models, which has not been addressed by the research community yet. In this paper, the capacity
distribution and outage probability of MIMO and cooperative communication systems are investigated
in underground tunnel environments. Explicit formulas of the capacity distribution and outage probability
are developed as functions of environmental conditions and system configurations. Based on the capacity
and outage analysis in underground tunnels, the optimal MIMO antenna geometry design scheme is
proposed for MIMO systems; and the cooperative relay assignment protocol is developed for cooperative
communication systems. Simulations are conducted to validate the theoretical results.

Index Terms

Underground Mine Tunnel, Underground Road Tunnel, MIMO, Cooperative Communications, Chan-
nel Capacity, Outage Behavior, MIMO Antenna Geometry, Cooperative Relay Assignment.

I. INTRODUCTION

Wireless communication networks and wireless sensor networks are expected to improve the
safety and the productivity/efficiency in underground mine tunnels and road tunnels [1]. In these
wireless networks, high link reliability is required to guarantee the personal and property safety in
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the high-risky underground tunnel environments. However, the link error caused by the multipath
fading in underground tunnels is much more severe than the terrestrial wireless channels, since
the wireless signals are confined to the internal space of the underground mines and tunnels [2],
[3]. Moreover, the reflections and the diffractions on the mobile vehicles or machineries inside
the tunnels create even more severe multipath fading [4], [5].

To solve the unreliable link problem caused by the multipath fading in underground tunnels,
spatial diversity-based techniques including MIMO (Multiple Input Multiple Output) and Cooper-
ative Communication system can be utilized. In particular, the MIMO system employs multiple
antenna elements at both transmitter and receiver to achieve the spatial diversity [12], which
is suitable for large devices such as the base stations and the mobile terminals on vehicles. In
contrast, the cooperative communication system [13] explores the broadcast nature of the wireless
channel and utilize multiple wireless nodes with single antenna to form a virtual MIMO, which
is suitable for small and low-cost devices such as wireless sensors and handsets.

As the most important criteria in designing MIMO and cooperative communication systems,
the channel capacity and the outage behavior need to be investigated in underground tunnel
environments. Specifically, according to our previous research on wireless channels in tunnel
environments [2], [3], [4], [5], the channel characteristics in underground tunnels are significantly
different from the terrestrial channel. First, due to the reflections on the tunnel walls, the propa-
gation of electromagnetic (EM) waves form regular patterns (i.e. modes) in underground tunnels.
Each propagation mode has different field distribution and attenuation rate. The effectiveness of
excitation and reception of those modes is determined by the position of the transmitter and the
receiver [2], [3]. Second, obstructions with random sizes and positions inside the tunnel, such
as vehicles and machineries, cause additional loss and coupling of the propagation modes [4],
[5]. Since the channel characteristics have straightforward influences on the channel capacity,
it is necessary to analyze the capacity and outage behavior of the MIMO and cooperative
communication systems based on the unique channel model in the underground tunnels, which
have not been addressed by the research community so far, to the best of our knowledge.

In this paper, the capacity distribution and outage probability of MIMO and cooperative
communication systems in underground tunnels are investigated. In particular, for MIMO system
in underground tunnels, based on the underground channel model, we prove that the MIMO
capacity in underground tunnels follows either a normal distribution in high signal-to-noise
ratio (SNR) regime or a log-normal distribution in low SNR regime. The parameters of each
distribution are explicitly provided. The ergodic capacity and outage capacity of MIMO system
are calculated after the capacity distribution is derived. Then, to maximize the outage capacity, the
optimal MIMO antenna geometry is designed in both high SNR regime and low SNR regime. For
cooperative communication system in underground tunnels, the outage probability are calculated
by utilizing the tunnel channel model. Then a fully distributed optimal relay assignment protocol
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in underground tunnels is developed to minimize the outage probability. Finally, the theoretical
analysis is validated by simulations in various environmental and system conditions.

The remainder of this paper is organized as follows. In Section II, the related work is
introduced. In Section III, the channel model in underground tunnels is overviewed. Next, in
Section IV, the capacity distribution and the outage capacity of MIMO system in underground
tunnels are analyzed. The optimal MIMO antenna geometry is then designed based on the
capacity and outage analysis. After that, in Section V, the outage probability of the cooperative
communication system in underground tunnels are calculated, based on which the optimal relay
assignment assignment protocol is developed. In Section VI, simulation evaluations are provided.
Finally, the paper is concluded in Section VII.

II. RELATED WORKS

In the literature, there are mainly three types of models to characterize the wireless channel
in empty tunnels [6]: the Geometrical Optical model (GO model) [7], [8], the Waveguide model
[9], [10], and the Full Wave model [11]. The GO model and the Full Wave model can only
provide numerical results and the computational complexity is high. Although the waveguide
model can provide analytical results, it is only applicable for the far region of the transmitter
in tunnels. In [3], [2], we have developed the Multimode model that gives analytical results for
both the near region and the far region in an empty tunnel. Moreover, in [4], [5], we extended
the Multimode model so that the signal propagation in tunnels with vehicular traffic flow can
be analytically modeled.

The MIMO capacity has been widely analyzed in terrestrial wireless communication systems.
In [12] and [14], the MIMO capacity over the additive Gaussian channel with and without
multipath fading is analyzed. In [15], the effect of MIMO antenna geometry on capacity is
analyzed to mitigate the impact of the correlated MIMO channel. In [16], it is proved that the
distribution of the MIMO capacity in terrestrial channel follows a normal distribution under the
condition that the number of antenna elements is large. All the above works are based on the
terrestrial wireless channel model that is simpler and fuzzier than the tunnel channel model in
two aspects: 1) The channel gain of the terrestrial channel is assumed to be a Rayleigh random
variable multiplied by a power function of the transmission distance. However, the parameters of
the Rayleigh fading cannot be accurately calculated. In contrast, the channel gain in underground
tunnels is a weighted sum of multiple propagation modes. The intensity and the field distribution
of each mode can be accurately characterized. 2) In terrestrial channel, each pair of TX and
RX antenna elements in the MIMO system is assumed to have the same mean channel gain.
However, in underground tunnels, the positions of the transceivers have significant influences
on the channel gain. Hence the MIMO antenna geometry significantly affects MIMO channel
capacity in tunnels.
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In [17], current terrestrial MIMO techniques are evaluated in tunnel environments by sim-
ulations. It shows that the MIMO technique can also effectively mitigate multipath fading
in underground tunnels. In [18], [19], the MIMO channel capacity in empty waveguide and
cavity channels are calculated using the modal expansion technique. Those existing works
on MIMO capacity in tunnels are based on the empty tunnel channel model. However, in
real underground tunnels, there are a large number of random obstructions, such as vehicles
and mining machines. Hence the randomness of the MIMO capacity caused by the random
obstructions has significant influence on the performance of the MIMO systems in underground
tunnels. To the best knowledge of the authors, the capacity distribution as well as the outage
behavior of the MIMO systems in tunnels have not been investigated yet.

The cooperative communication technique has also been intensively investigated in terrestrial
environments recently. In [20], several efficient cooperative schemes are proposed, and the
corresponding outage behavior in terms of outage probability are investigated in high SNR
regime. In [21], the outage capacity of cooperative communication system is calculated in low
SNR regime. In [22], a centralized cooperative relay assignment protocol is proposed to maximize
the minimum cooperative capacity in the whole network. In [23], a distributed relay assignment
protocols are proposed. However, it still requires the information exchanges among the source
node, relay nodes and destination node, which is difficult to achieve in networks with high
dynamic topology, such as the vehicular networks in road tunnels. In [24], a nearest neighbor
relay assignment protocol is proposed based on the analysis on the outage probability, which is
fully distributed and only requires the local position information. Similar to the existing works on
MIMO system, the above works on cooperative communications are also based on the terrestrial
wireless channel. Currently, there is no existing paper on either the outage analysis or the relay
assignment for cooperative communications in underground tunnels.

In this paper, we analyze the capacity distribution and outage behavior of the MIMO and
cooperative communication system in underground tunnel environments. The parameters of the
capacity distribution and the outage probability are explicitly expressed as functions of the tunnel
environmental conditions, the antenna geometry (for MIMO), and the relay assignment strategy
(for cooperative communications). Then, based on the capacity and outage analysis, the optimal
MIMO antenna geometry and the optimal cooperative relay assignment protocol are developed
for wireless communications in underground tunnels.

III. CHANNEL MODEL IN UNDERGROUND TUNNELS

A. Channel Model for Empty Tunnels

Multiple modes propagate simultaneously in empty tunnels. The tunnel cross section is treated
as an equivalent rectangular with a width of 2a m and a height of 2b m. A Cartesian coordinate
system is set with its origin located at the center of the rectangle tunnel, as shown in Fig. 1.
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By solving Maxwell’s equations using the boundary conditions, multiple solutions of the EM
field distribution in the tunnel can be derived. Each solution refers to a propagation mode and
has different EM field distribution and attenuation rate [25]. The EM field distribution of each
mode in the tunnel cross section is characterized by its eigenfunction [3]:

Eeign
mn,(x,y)'sin

(mπ
2a

x+ϕx

)
·cos

(nπ
2b
y+ϕy

)
, (1)

where x and y are the position coordinates in the tunnel cross section; ϕx = 0 if m is even;
ϕx = π

2
if m is odd; ϕy = 0 if n is odd; ϕy = π

2
if n is even; m and n indicate the mode

order, where lower order modes have lower attenuation rates. The intensity of each mode can
be derived by a mode matching technique given in [3].

Let Nmode be the set of modes that have significant energy, Nmode = {(m,n)}, |Nmode| = N .
The complex channel gain hij between receiver i and transmitter j inside the tunnel can be
obtained by summing up the gains of all significant modes at receiver’s position [3]:

hij =
√
GtGr ·

∑
(m,n)∈Nmode

Eeign
mn,(xi,yi)

· CTX

mn,j · e−Γmn·zr , (2)

where zr is the distance between the transmitter and the receiver; (xi, yi) is the coordinates on the
tunnel cross section of the receiver i; Gt and Gr are the TX and RX antenna gain, respectively;
Γmn is the attenuation coefficient of the EHmn mode (the detailed expression of Γmn can be
found in [2], [3]); Eeign

mn,(x,y) is the value of the eigenfunction given in (1); CTX

mn,j is the intensity
of the EHmn mode near the transmitter j. CTX

mn,j is derived in [3], which is:

C
TX

mn,j =
π

ab
√

1−(mπ
2ak

)2−( nπ
2bk

)2
·Eeign

mn,(xj ,yj)
, (3)

where k is the wave number; (xj, yj) are the coordinates of the transmitter j.

B. Channel Model for Tunnels with Obstructions

Actual tunnels are filled with obstructions with different sizes and positions. Since small ob-
structions do not have significant influence on the signal propagation in tunnels, the obstructions
considered here are refereed to traffic flow of vehicles or machineries inside the tunnels. In [4],
[5], we have theoretically modeled the influence of the traffic flow on the signal propagation
in tunnels. Consider that a traffic flow with M vehicles exists between the transceivers in the
tunnel, as shown in Fig. 1. The position and size of the kth vehicle are (xkv , z

k
v ) and (wk, hk, lk),

respectively. According to US Federal Regulations, the width wk, height hk and length lk of
most vehicles (including cars, vans, buses and trucks) fall into the following intervals (unit is
meter): wk ∈ [1.5, 2.5], hk ∈ [1.3, 4.2], and lk ∈ [3.5, 16.2].

The transmitter is located at z0 = 0 m and the receiver is located ate zr. Then according to



6

[4], [5], the channel gain hij between the transmitter j and the receiver i can be expressed as

hij =
√
GtGr · Eeign

(xi,yi)
·A(zr−zM) ·

M∏
k=1

[
Bk ·A(zk−zk−1)

]
·CTX

(xj ,yj)
, (4)

where Eeign
(xiyi)

is the eigenfunction vector of the receiver i at (xi, yi, zr); and C
TX

(xjyj)
is the mode

intensity vector of the transmitter j at (xj, yj, z0):

Eeign
(xiyi)

=
[
Eeign

1,(xi,yi)
, Eeign

2,(xi,yi)
, · · ·Eeign

N,(xi,yi)

]
, CTX

(xjyj)
=
[
CTX

1,(xj ,yj)
, CTX

2,(xj ,yj)
, · · ·CTX

N,(xj ,yj)

]
; (5)

A(z) is the N ×N attenuation matrix of transmitting all the N modes for z meters in an empty
tunnel; and Bk is the N ×N influence matrix caused by the kth vehicle in the traffic flow:

A(z) =


e−Γ1·z 0 · · · 0

0 e−Γ2·z · · · 0
... . . . ...
0 0 · · · e−ΓN ·z

 , Bk=


1− Lk1 Bkl

2→1 · · · Bk
N→1

Bk
1→2 1− Lk2 · · · Bk

N→2
...

... . . . ...
Bk

1→N Bk
2→N · · · 1− LkN

 , (6)

where Lkmn on the diagonal of the matrix is the additional loss of the EHmn mode caused by
the kth vehicle in the traffic flow:

Lkmn =
1

4ab

[
wk −

2a

mπ
(−1)m cos(

mπ

a
xkv) sin(

mπ

a
wk)
]
·
[
hk −

b

nπ
sin(

nπ

b
hk)
]

; (7)

Except the elements on the diagonal of the matrix Bk, the other elements, i.e. Bk
mn→st, are the

mode coupling coefficients. According to [4], [5], the influence matrix Bk can be approximately
viewed as a diagonal matrix since the mode coupling coefficients are much smaller than the
elements on the matrix diagonal. Consequently, the channel gain hij in (4) can be simplified as

hij =
√
GtGr · Eeign

(xi,yi)
·DM

zr ·C
TX

(xj ,yj)
, (8)

where D
M

zr is the propagation matrix given by

D
M

zr =


e−Γ1·zr·

∏M

k=1
(1−Lk1) · · · 0

... . . . ...
0 · · · e−ΓN·zr·

∏M

k=1
(1−LkN)

 . (9)

IV. CAPACITY AND OUTAGE BEHAVIOR OF MIMO SYSTEMS IN UNDERGROUND TUNNELS

In this section, the capacity and the outage behavior of the MIMO systems are investigated
based on the underground tunnel channel model provided in Section III. Explicit formulas of
capacity probability density function (PDF), ergodic capacity, and outage capacity are developed.
Based on the analysis of MIMO capacity and outage behavior, an outage-optimal MIMO antenna
geometry design scheme is developed to maximize the MIMO outage capacity.
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A. MIMO Capacity in Underground Tunnels

We consider a narrowband channel with p transmitting (TX) and q receiving antenna elements.
The complex channel gain matrix H is a q × p matrix [hij]q×p. The matrix element hij is the
channel gain between RX antenna i and TX antenna j, which is given in (8). We assume that the
transmitter does not have the channel state information (CSI). Hence, equal power is allocated
to each TX antenna. The MIMO capacity with equal power allocation is given by [12]

C
MIMO

=E
[

log det
(
Iq×q + ρ/p ·H ·H∗

)]
, (10)

where ρ is the signal to noise ratio (SNR) at the transmitter, which is defined as ρ = Ptot
N0

, where
Ptot is the total transmission power of all TX antenna elements; N0 is the noise power. The
channel gain matrix H can be derived from (8):

H =
√
GtGr · ERX ·DM

zr ·C
TX , (11)

where DM(zr) is the propagation matrix defined in (9); ERX is the mode eigenfunction matrix
at RX side; and CTX is the mode intensity matrix at TX side:

ERX=


Eeign

1,(x1,y1) Eeign
2,(x1,y1) · · · Eeign

N,(x1,y1)

Eeign
1,(x2,y2) Eeign

2,(x2,y2) · · · Eeign
N,(x2,y2)

...
... . . . ...

Eeign
1,(xq ,yq)

Eeign
2,(xq ,yq)

· · · Eeign
N,(xq ,yq)

; CTX=


CTX

1,(x1,y1) CTX
1,(x2,y2) · · · CTX

1,(xp,yp)

CTX
2,(x1,y1) CTX

2,(x2,y2) · · · CTX
2,(xp,yp)

...
... . . . ...

CTX
N,(x1,y1) CTX

N,(x2,y2) · · · CTX
N,(xp,yp)

.
Substitute (11) into (10) and let Gt = Gr = 1 for brevity, the MIMO capacity C

MIMO
becomes:

C
MIMO

=log det
(
Iq×q +

ρ

p
·ERX·DM

zr·C
TX ·CTX∗ ·DM∗

zr ·E
RX∗
)
. (12)

Since det(I+AB)=det(I+BA) [28], the MIMO capacity becomes:

C
MIMO

=log det
[
IN×N+

ρ

p
(ERX∗ERX)·DM

zr·(C
TXCTX∗)·DM∗

zr

]
. (13)

It is difficult to derive the exactly PDF of the MIMO capacity in (13). However, approximate
results can be derived if we assume the SNR at the receiver is either high enough or low enough.

1) High SNR Regime Analysis:
Theorem 1: In the high SNR regime, the MIMO capacity in underground tunnels follows a

normal distribution.
Proof: As discussed in Section III, only modes that have significant energy need to be

considered. Consequently, all the elements on the diagonal of the mode propagation matrix D
M

zr

is not trivial. Moreocer, in high SNR regime analysis, we assume that the number of TX antenna
elements p and RX antenna elements q are larger than the number of significant modes N (i.e.
p ≥ N and q ≥ N ). Then D

M

zr , CTX and ERX are all N ×N full-rank matrix. If the SNR at the
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RX side is high enough, then the MIMO capacity in (13) can be approximated as

Chigh

MIMO
'

N∑
l=1

log
(
ρ·
∣∣e−Γl·zr ·

M∏
k=1

(1−Lkl )
∣∣2)+ log det

(
ERX∗ERX

)
+ log det

(1

p
CTXCTX∗

)
. (14)

The last two terms in (14) are determined by the geometry of the RX and TX antenna elements,
respectively. The first term in (14) is the sum of the capacities of N sub-channels. Each sub-
channel refers to a propagation mode. The capacity of each sub-channel is governed by the
tunnel size and the vehicular traffic flow. Since the number, positions, and sizes of the vehicles
between the transceivers are random, the capacities of each sub channels are also random. The
first term in (14) can be further developed as

N∑
l=1

log
(
ρ·
∣∣∣e−Γl·zr ·

M∏
k=1

(1−Lkl )
∣∣∣2) =

N∑
l=1

(
log ρ+ 2 log

∣∣e−Γl·zr
∣∣)+

N∑
l=1

M∑
k=1

2 log(1−Lkl ). (15)

The first sum in (15) is determined by the SNR and the mode attenuation coefficients, which are
constants after the communication starts. The second sum in (15) is determined by the traffic
flow of random vehicles. The additional loss parameters {Lkl , k = 1, 2, ...M ; l = 1, 2, ...N} are
independent random variables. Since the tunnel is considered to be long, we assume that the
number of vehicles M is correspondingly large. Therefore, the second sum in (15) can be viewed
as the sum of a sufficiently large number of independent random variables, each with finite mean
and variance. According to the central limit theorem and Lindeberg’s condition [29], the second
sum in (15) are approximately normally distributed. Then the MIMO capacity in (14) is actually
the sum of a normal distributed random variable and several constants. Therefore, the MIMO
capacity in high SNR regime follows a normal distribution, which completes the proof.

Since the normal distribution can be completely characterized by its first two moments, we
calculate mean and variance of the MIMO capacity in the rest part of this subsection.

Substitute (15) into (14) and calculate the mean value, we derive

E[Chigh

MIMO
]=

N∑
l=1

(
log ρ+2 log

∣∣e−Γl·zr
∣∣)+logdet

(
ERX∗ERX

)
+logdet

(1
p
CTXCTX∗

)
+E
[ N∑
l=1

M∑
k=1

2log(1−Lkl )
]
.

(16)

In underground tunnels, vehicular traffic flow can be modeled as a Poisson flow [30]. If the
distance between the transceivers is zr, the probability that the number of vehicles M = m is:

P (M = m) =
(
λ
zr
v

)m
· 1

m!
· e−λ

zr
v , (17)

where λ is the average rate of vehicle arrival (vehicles/sec) in the tunnel; and v is the average
velocity of the vehicles. Then the last term in (16) can be further developed as

E
[ N∑
l=1

M∑
k=1

2 log(1−Lkl )
]

=
∞∑
m=0

{
P (M=m)·

m∑
k=1

E
[ N∑
l=1

2 log(1−Lkl )
]}
. (18)

Every vehicle runs in one of the L lanes in the tunnel. Hence the x-coordinate of the ith
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vehicles xiv belongs to {a(1+2l
L
−1)|l = 0, 1, . . . L−1}. The x-coordinate of the vehicle obeys

uniform distribution with the probability 1/L. The size of the vehicles are also assumed to
have the uniform distribution in the size interval defined in Section III. Then the expectations
E[
∑N

l=1 2 log(1−Lkl )] in (18) are the same for all k ∈ {1, 2, ...M}. Thus, we denote:

µ
L

= E
[ N∑
l=1

2 log(1−Lkl )
]
, (19)

which can be calculated using (7). Substituting (17) and (19) into (18) yields

E
[ N∑
l=1

M∑
k=1

2 log(1−Lkl )
]

=
∞∑
m=0

(
λ
zr
v

)m
· 1

m!
· e−λ

zr
v ·m·µ

L
= λ · zr

v
· µ

L
. (20)

Substituting (20) into (16) yields the mean (ergodic) MIMO capacity in high SNR regime:

E[Chigh

MIMO
]=

N∑
l=1

(
logρ+2log

∣∣e−Γl·zr
∣∣)+logdet

(
ERX∗ERX

)
+logdet

(1

p
CTXCTX∗

)
+λ

zr
v
µ
L
, (21)

The variance of the MIMO capacity in high SNR regime can be calculated in the similar way:

V ar[Chigh

MIMO
]=λ · zr

v
· σ2

L
, where σ2

L
= V ar

[ N∑
l=1

2 log(1−Lkl )
]
, (22)

Note that σ2
L

can also be calculated using (7). After the mean and variance of the MIMO capacity
are given, the capacity distribution in high SNR regime is completely characterized.

Corollary 1: In the high SNR regime, the ε-outage capacity of the MIMO systems in under-
ground tunnels is given by

Outageε[C
high

MIMO
]=E[Chigh

MIMO
]+erf−1(2ε−1)·

√
2Var[Chigh

MIMO
] , (23)

where erf−1(x) is the inverse function of the error function erf(x); E[Chigh

MIMO
] and Var[Chigh

MIMO
] are

given by (21) and (22), respectively.
Proof: According to Theorem 1, the MIMO capacity in high SNR regime follows the normal

distribution N (E[Chigh

MIMO
], Var[Chigh

MIMO
]). Since the ε-outage capacity is the capacity guaranteed for

(1−ε) of the channel realizations, we have

ε = PN

(
Chigh

MIMO
< Outageε[C

high

MIMO
]
)

=
1

2

[
1 + erf

(
Outageε[C

high

MIMO
]− E[Chigh

MIMO
]√

2Var[Chigh

MIMO
]

)]
, (24)

Corollary 1 can be derived from (24), which completes the proof.
2) Low SNR Regime Analysis:
Theorem 2: In the low SNR regime, the MIMO capacity in underground tunnels follows a

lognormal distribution.
Proof: For brevity, we first use a simple matrix to denote the product of matrixes in (13):

G
def
=
ρ

p
(ERX∗ERX)·DM

zr·(C
TXCTX∗)·DM∗

zr . (25)
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According to the relationship between matrix determinant and matrix trace [28], (13) can be
further developed as

C
MIMO

=log det(I + G)=log
(
exp
{

tr[log(I+G)]
})

=log
{ ∞∑
k=0

1

k!

[
−
∞∑
j=1

(−1)j

j!
tr(Gj)

]k}
, (26)

where tr(X) is the trace of the matrix X. In low SNR regime,

|tr(G)| � |(−1)j

j!
tr(Gj)| , j > 1 ; |tr(G)| � | 1

k!
[−tr(G)]k| , k > 1 . (27)

Substituting (27) into (26) yields

Clow

MIMO
' log

[
1+tr(G)

]
' tr(G)·log e=

ρ

p
log e·

p∑
j=1

q∑
i=1

∣∣∣∣ N∑
l=1

[
Eeign
l,(xi,yi)

·CTX

l,j ·e−Γl·zr ·
M∏
k=1

(1−Lkl )
]∣∣∣∣2, (28)

For brevity, we denote fl,i,j
def
= Eeign

l,(xi,yi)
·CTX

l,j ·e−Γl·zr . Then∣∣∣∣ N∑
l=1

[
Eeign
l,(xi,yi)

·CTX

l,j·e−Γl·zr·
M∏
k=1

(1−Lkl)
]∣∣∣∣2=∣∣∣∣ N∑

l=1

{[
Re(fl,i,j)+j ·Im(fl,i,j)

]
·
M∏
k=1

(1−Lkl )
}∣∣∣∣2=X1

2+X2
2 , (29)

where

X1 =

∣∣∣∣∣
N∑
l=1

[
Re(fl,i,j)·

M∏
k=1

(1−Lkl )
]∣∣∣∣∣ ; X2 =

∣∣∣∣∣
N∑
l=1

[
Im(fl,i,j)·

M∏
k=1

(1−Lkl )
]∣∣∣∣∣ . (30)

where Re(x) and Im(x) denote the real and imaginary part of the complex value x, respectively;
Again, we assume that the number of vehicles M is large enough so that

∏M
k=1(1−Lkl ) can

be viewed as the product of a sufficiently large number of independent and positive random
variables. According to the central limit theorem [29],

∏M
k=1(1−Lkl ) in (30) approximately follow

log-normal distributions. X1 and X2 shown in (30) are the absolute values of two weighted
sums of the log-normal variables

∏M
k=1(1−Lkl ), respectively. According to [27], it has been well

recognized that the sum of log-normal random variables can be well approximated by a new
lognormal variable. It can be proved that this result also applies to the absolute values of the
weighted sums of log-normal variables. Therefore, X1 and X2 are also log-normal variables.
Moreover, based on the definition of the log-normal distribution, it is easy to prove that the
square of a log-normal variable is also a log-normal variable. As a result, X1

2 and X2
2 follow

the log-normal distribution. The MIMO capacity shown in (26) is the sum of the log-normal
variables given in (29). Therefore, the MIMO capacity in low SNR regime follows a log-normal
distribution. This completes the proof.

Substitute (29) into (28) and calculate the mean value, we derive

Clow

MIMO
=
ρ

p
log e·

p∑
j=1

q∑
i=1

(X1
2 +X2

2) . (31)

According to the proof of Theorem 2, X1
2 and X2

2 are log-normal variables. The mean (or
variance) of the sum of the log-normal variable can be approximated calculated by the sum of
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the mean (or variance) of each addend variable [27]. Therefore,

E[Clow

MIMO
]=

ρ

p
log e·

p∑
j=1

q∑
i=1

(
E[X1

2] + E[X2
2]
)
, (32)

Var[Clow

MIMO
]'(

ρ

p
log e)2 ·

p∑
j=1

q∑
i=1

(
Var[X1

2]+Var[X2
2]
)
, (33)

In the following, we show the detailed calculating process of E[X1
2] and Var[X1

2], while
E[X2

2] and Var[X2
2] can be easily derived by exchanging Re(fl,i,j) with Im(fl,i,j).

According to [26], the mean and variance of the square of a log-normal variable can be
expressed as functions of the mean and variance of the log-normal variable. Then we have:

E[X1
2] = E2[X1] + Var[X1] , Var[X1

2]=
(
E2[X1]+Var[X1]

)2[
(1+

Var[X1]

E2[X1]
)4−1

]
, (34)

Next we calculate the mean and variance of lognormal variable X1:

E[X1]=

∣∣∣∣∣
N∑
l=1

{
Re(fl,i,j)·E

[ M∏
k=1

(1−Lkl )
]}∣∣∣∣∣ , Var[X1]'

N∑
l=1

{
Re2(fl,i,j)·Var

[ M∏
k=1

(1−Lkl )
]}
, (35)

We first calculate E[X1] in (35), where

E
[ M∏
k=1

(1−Lkl )
]

=
∞∑
m=1

P (M=m)·E
[ m∏
k=1

(1−Lkl )
]
. (36)

Since the positions and the sizes of the vehicles have independent and identical distributions,

E
[ m∏
k=1

(1−Lkl )
]

=
m∏
k=1

E
[
1−Lkl

]
= Em

[
1−Lkl

] def
= µl

m , (37)

where E
[
1−Lkl

]
can be calculate using (7). Here we use µl to denote E

[
1−Lkl

]
for brevity.

Substituting (17), (36), and (37) into (35) yields:

E[X1] =

∣∣∣∣∣
N∑
l=1

{
Re(fl,i,j)·eλ

zr
v

(µl−1)
}∣∣∣∣∣ . (38)

Similarly, we can derive

Var[X1]'
N∑
l=1

{
Re2(fl,i,j)·

[
eλ

zr
v

(µl
2+σ2

l−1)−eλ
zr
v

(µl
2−1)
]}

; and σ2
l

def
= Var

[
1−Lkl

]
. (39)

where µl is defined in (37); we use σ2
l to denote Var

[
1−Lkl

]
for brevity.

By substituting (34), (38), (39) into (32) and (33), we can calculate the mean (ergodic capacity)
and variance of the MIMO capacity in low SNR regime. Then the outage capacity of the MIMO
systems in low SNR regime can be calculated based on the following corollary.

Corollary 2: In the low SNR regime, the ε-outage capacity of the MIMO systems in under-
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ground tunnels is given by

Outageε[C
low

MIMO
] =

E[Clow

MIMO
]

√
κ
· eerf−1(2ε−1)·

√
2 lnκ , where κ = 1 +

Var[Clow

MIMO
]

E2[Clow

MIMO
]
, (40)

where E[Clow

MIMO
] and V ar[Clow

MIMO
] are calculated in the above analysis.

Proof: According to Theorem 2, the MIMO capacity in low SNR regime follows the log-
normal distribution. Then we have

ε = P log-N

(
Clow

MIMO
< Outageε[C

low

MIMO
]
)

=
1

2

[
1 + erf

(
ln Outageε[C

low

MIMO
]− ln

E[Clow
MIMO

]
√
κ√

2 lnκ

)]
, (41)

Corollary 2 can be derived from (41), which completes the proof.

B. MIMO Antenna Geometry Design Scheme

So far the MIMO capacity in underground tunnels are thoroughly analyzed. In this subsection,
the optimal MIMO antenna geometry is designed to maximize the outage capacity. Since the
MIMO capacity in tunnels have different attributes in high SNR and low SNR regime, in this
subsection, we first develop the optimal MIMO antenna geometry in high SNR regimes. Then
this optimal MIMO antenna geometry is modified to fit the attributes in the low SNR regime.

1) MIMO Antenna Geometry in High SNR Regime: In (23), the high SNR ε-outage capacity
is determined by the mean and variance of the high SNR MIMO capacity. According to (21)
and (22), the TX and RX antenna geometries can only affect the mean capacity in (21) but have
no effect on the capacity variance in (22). As a result, in high SNR regime, to maximize the
ε-outage capacity is equal to maximize the mean capacity. Hence, in the next step, we design
the TX and RX antenna geometry to maximize the mean capacity given in (21).

The first term and the last term in (21) are determined by the tunnel size and the vehicular
traffic flow between the transceivers, which are not affected by the TX and RX antenna geometry.
The optimal antenna geometries are expected to maximize the second and third term in (21). It
is equal to maximize det(ERX∗ERX) by selecting optimal RX antenna geometry, and to maximize
det(1

p
CTXCTX∗) by selecting optimal TX antenna geometry.

According to (1), the eigenfunctions of different modes are orthogonal to each other:∫ a

−a

∫ b

−b
Eeign
i,(x,y) · E

eign∗
j,(x,y) dx dy '

 ab, if i = j

0, otherwise
(42)

At RX side, the matrix ERX∗ERX is in fact the covariance matrix of the eigenfunctions of all
significant modes at the positions of the RX antenna elements. Due to the mode orthogonality,
det(ERX∗ERX) is maximized if ERX∗ERX is diagonal. If the RX antenna elements are placed at
all the positions where the eigenfunctions of significant modes have extrema values, the matrix
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ERX·ERX∗ can be approximately diagonalized. The maximum value of det(ERX∗ERX) is

max
{

det(ERX∗ERX)
}
'

N∏
i=1

[
q∑
i=1

|Eeign
i,(x,y)|

2

]
' qN . (43)

At TX side, we first check the mode intensity CTX
mn,j given in (3). Since

√
1−(mπ

2ak
)2−( nπ

2bk
)2'1

for low order modes (i.e. the significant modes considered in this paper), CTX
mn,j approximately

equals to the mode eigenfunction multiplied by a constant. Hence, the matrix CTXCTX∗ can also
be viewed as the covariance matrix of the eigenfunctions of all significant modes at the positions
of the TX antenna elements. Therefore, in high SNR regime, the optimal TX antenna shares the
same geometry as the optimal RX antenna geometry, where antenna elements are placed at all
the positions where the eigenfunctions of significant modes have extrema values. And

max
{

det(
1

p
CTXCTX∗)

}
'

N∏
i=1

[
p∑
j=1

1

p

∣∣∣ π
ab
Eeign
j,(x,y)

∣∣∣2] ' ( π
ab

)2N

(44)

Based on the above discussion, the optimal RX and TX MIMO antenna geometry in high
SNR regime is described as follows: the number and geometry of the antenna elements depend
on which modes have significant power in the tunnel. For mode EMmn, p = q = m×n antenna
elements are needed. Their positions {(xu, yv)} should be

xu = −a+ (u− 1

2
)
2a

m
, u ∈ [1,m] ; yv = −b+ (v − 1

2
)
2b

n
, v ∈ [1, n] (45)

Since lower order modes have lower attenuation rates, the probability that the lower order
modes have significant power is higher. Therefore, lower order modes are first to be considered
when the number of available antenna elements is limited. For example, if we only have one
antenna element, the lowest order mode EH11 is considered. The position of the antenna element
is (0, 0). If we have three antenna elements, both mode EH11 and EH21 are considered. The
positions of the three antenna elements are (0, 0), (−a/2, 0) and (a/2, 0), so on and so forth.

Intuitively, in high SNR regime, each significant mode needs a set of TX and RX antenna
elements to be efficiently excited and received. By substituting (43) and (44) into (21) and (23),
we find that the high SNR ε-outage capacity increases linearly with log q where q is the number
of RX elements. It indicates that more RX elements are always favorable although the capacity
increase becomes trivial when q is larger than a threshold. In contrast, the high SNR ε-outage
capacity remains the same as the number of TX elements increases, which is because that the
total TX power Ptot is a constant and is equally divided and allocated to each TX elements.

2) MIMO Antenna Geometry in Low SNR Regime: In low SNR regime, the optimal RX
antenna geometry designed for high SNR regime still works, since the proposed RX antenna
geometry can effectively receive all significant propagation modes no matter whether the SNR
is high or low. However, the number and geometry of the TX antenna elements in low SNR
regime need to be redesigned since it may be not efficient to involve a large number of TX
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antenna elements to excite all propagation modes in low SNR regime.
Based on the above discussion, our goal in this subsection is to maximize the low SNR ε-

outage capacity in (40) by designing the number and geometry of the TX antenna elements
while keep the RX antenna geometry designed for high SNR regime. In (40), the low SNR
ε-outage capacity is determined by the mean capacity E[Clow

MIMO
] and the coefficient κ, where κ

is determined by the ratio Var[ClowMIMO]

E2[ClowMIMO]
, which can be approximately viewed as a constant if only

antenna geometry can be changed, according to (32) - (39). Hence, the coefficient κ becomes a
constant. As a result, in low SNR regime, to maximize the ε-outage capacity is equal to maximize
the mean capacity E[Clow

MIMO
], in the condition that only the antenna geometry can be designed.

Since the optimal RX antenna geometry for high SNR regime is also utilized in low SNR
regime, the correlation matrix ERX∗ERX becomes a diagonal matrix. Then (25) and (28) becomes:

Clow

MIMO
' log e · tr

[ρ
p

(ERX∗ERX)·DM

zr·(C
TXCTX∗)·DM∗

zr

]
=log e · tr

[ρ
p
· q · I·DM

zr·(C
TXCTX∗)·DM∗

zr

]
=log e · tr

[qρ
p

(CTXCTX∗)·(DM∗

zr D
M

zr)
]

=
qρ

p
log e·

N∑
l=1

p∑
j=1

∣∣∣CTX

l,j

∣∣∣2·∣∣∣e−Γl·zr ·
M∏
k=1

(1−Lkl )
∣∣∣2. (46)

To determine the optimal number and positions of the TX antenna elements in low SNR
regime, we first assume that a sufficient large number of TX antenna elements are placed at the
whole tunnel cross section. Then we define a set of indicators {δj, j = 1, 2, ..., p} where δj = 1

if the jth TX antenna element is actually used, otherwise δj = 0. Then (46) becomes:

Clow

MIMO
' qρ log e∑p

j=1
δj
·
p∑
j=1

δj ·
N∑
l=1

∣∣∣CTX

l,j ·e−Γl·zr
∣∣∣2·M∏
k=1

(1−Lkl )2. (47)

Hence,

E[Clow

MIMO
] (48)

' qρ log e∑p

j=1
δj
·
p∑
j=1

δj ·
N∑
l=1

∣∣∣CTX

l,j ·e−Γl·zr
∣∣∣2·E[ M∏

k=1

(1−Lkl )2
]

=
qρ log e∑p

j=1
δj
·
p∑
j=1

δj ·
N∑
l=1

∣∣∣CTX

l,j ·e−Γl·zr
∣∣∣2·eλzrv (µl

2+σ2
l−1) ,

where µl and σ2
l is defined in (37) and (39), respectively. Therefore, to find the optimal TX

antenna geometry in low SNR regime, it is equal to an optimization problem, which is:

Find : {δj, j = 1, 2, ..., p}

Maximize :
qρ log e∑p

j=1
δj
·
p∑
j=1

δj ·
N∑
l=1

∣∣∣CTX

l,j ·e−Γl·zr
∣∣∣2·eλzrv (µl

2+σ2
l−1)

It is not difficult to find the solution of this optimization problem, which is: δk = 1 if k =

arg maxj
∑N

l=1

∣∣CTX

l,j ·e−Γl·zr
∣∣2·eλzrv (µl

2+σ2
l−1); otherwise δk = 0. Therefore, the optimal TX antenna

geometry in low SNR regime involves only one antenna element. According to the channel
model given in Section III, the position of the optimal TX antenna element is located at the
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center of the tunnel cross section, i.e., (x, y) = (0, 0).
To sum up, the optimal RX antenna geometry in low SNR regime is the same as in the high

SNR regime. The optimal TX antenna geometry in low SNR regime involves only one antenna
element that is located at the center of the tunnel cross section. This results can be intuitively
explained as follows. In low SNR regime, given a fixed total transmitting power Ptot, it is more
efficient to concentrate all TX power at the antenna element that can achieves smallest path loss.

V. CAPACITY AND OUTAGE BEHAVIOR OF COOPERATIVE COMMUNICATION SYSTEMS IN

UNDERGROUND TUNNELS

In many applications, such as wireless sensor networks, it is impossible to place multiple
antenna elements on a single device due to the limited size and cost. In this case, instead of
MIMO, cooperative communication systems can be utilized. Based on the channel model in
Section III and the MIMO capacity analysis in Section IV, the capacity and outage behavior of
the cooperative communication systems in underground tunnels are investigated in this section.

A. Capacity and Outage Probability

In this subsection, we investigate the capacity and the outage performance of the selection
Decode-and-Forward (DF) cooperative scheme [20], which has been widely recognized. The
selection DF scheme consists of two phases. In the first phase, the source node sends out the
information, which is received by both the relay node and the destination node. In the second
phase, the relay node check the SNR of the received signal. If the SNR is above a threshold,
the relay node decodes and forwards the received data to the destination node. Otherwise, the
source nodes just send the information again to the destination node. According to [20], the
channel capacity of this cooperative system is given by

Ccoop=

1
2

log
(
1+2ρ|hsd|2

)
, if |hsr|2<eR−1

ρ

1
2

log
(
1+ρ|hsd|2+ρ|hrd|2

)
, if |hsr|2≥eR−1

ρ

(49)

where hsd, hrd, and hsr are the channel gains between the source and the destination, the relay
and the destination, and the source and the relay, respectively; ρ is the SNR at the transmitter;
R is the expected data rate. In underground tunnels, the channel gain hsd, hrd, and hsr can be
calculated by (8). Then the instantaneous cooperative capacity in underground tunnels can be
derived. However, the distribution of the cooperative capacity in underground tunnels does not
fall into any type of classical random distributions. In the following, we calculate the outage
probability to characterize this distribution. The outage probability of the DF cooperative scheme
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can be derived according to (49), which is given by:

P [Ccoop<R]=P
(
|hsr|2<

eR−1

ρ

)
·P
(
|hsd|2<

eR−1

2ρ

)
+P

(
|hsr|2≥

eR−1

ρ

)
·P
(
|hsd|2+|hrd|2<

eR−1

ρ

)
.

(50)

According to (50), we find that the outage probability is determined by the channel gains |hsd|2,
|hrd|2, and |hsr|2. In Section 4.1.2, the square of the channel gain norm |hij|2 is developed as (29),
which is proved to follow a log-normal distribution. The mean and variance of this log-normal
variable, E[|hij|2] and Var[|hij|2], can be calculated using (34)-(39). Then,

P
(
|hij|2<

eR−1

ρ

)
=

1

2

[
1+erf

( ln eR−1
ρ
− µ|hij |2√

2 · σ|hij |2

)]
, (51)

where

µ|hij |2 =ln(E[|hij|2])− 1

2
ln
(

1+
Var[|hij|2]

E2[|hij|2]

)
; σ2

|hij |2 =ln
(

1+
Var[|hij|2]

E2[|hij|2]

)
. (52)

The sum of two log-normal variable, |hsd|2 + |hrd|2, also follows a log-normal distribution:

P
(
|hsd|2 + |hrd|2<

eR−1

ρ

)
=

1

2

[
1+erf

( ln eR−1
ρ
− µ(|hsd|2+|hrd|2)√

2 · σ(|hsd|2+|hrd|2)

)]
, (53)

where

µ(|hsd|2+|hrd|2) = ln(E[|hsd|2] + E[|hrd|2])− 1

2
ln
(

1 +
Var[|hsd|2] + Var[|hrd|2]

(E[|hsd|2] + E[|hrd|2])2

)
;

σ2
(|hsd|2+|hrd|2) =ln

(
1 +

Var[|hsd|2] + Var[|hrd|2]

(E[|hsd|2] + E[|hrd|2])2

)
. (54)

Substituting (51) and (53) into (50) yields the outage probability in underground tunnels:

P [Ccoop < R]=
1

4

[
1+erf

( ln eR−1
ρ
− µ|hsr|2√

2 · σ|hsr|2

)]
·
[
1+erf

( ln eR−1
2ρ
− µ|hsd|2√

2 · σ|hsd|2

)]
+

1

4

[
1−erf

( lneR−1
ρ
−µ|hsr|2√

2 · σ|hsr|2

)]
·
[
1+erf

( ln eR−1
ρ
−µ(|hsd|2+|hrd|2)√

2 · σ(|hsd|2+|hrd|2)

)]
. (55)

Note that the ε-outage cooperative capacity Outageε[Ccoop] can be also calculated from (55) by
letting R = Outageε[Ccoop] and P [Ccoop < Outageε[Ccoop]] = ε.

B. Optimal Relay Assignment in Tunnels

So far we assume that the relay position is determined. However, in real applications, especially
the mobile wireless networks, the positions of the cooperative users are highly dynamic. Since the
relay position has obvious influence on the outage probability, the cooperative relay assignment
is of great important. In this subsection, we first use the outage probability given in (55) as the
relay assignment metric and propose an outage-optimal and fully distributed cooperative relay
assignment protocol. Then, we develop a much simpler relay assignment metric based on the
outage probability to reduce the computation burden on each cooperative node.
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1) Outage-Optimal Relay Assignment Protocol: Assuming that in an underground tunnel, the
source node s is to send data to the destination node d. Node s assign one of its neighbors
{ri, i = 1, 2, ...} as the relay node and adopts the selection DF scheme. All the nodes have
its own position information, which is valid in most applications. The source first sends RTS
message to all its neighbors. RTS message contains the position information of the source and
the destination. Each neighbor that can correctly receives the RTS message calculates the relay
assignment metric. Here we first use the outage probability given in (55) as the relay assignment
metric. To calculate this metric, the following information is required: 1) the position information
of itself, the source, and the destination, and 2) the statistical vehicular traffic load information in
the underground tunnel, which is assume to be available at each node. No information exchanging
among neighbor nodes and the destination node is required.

After deriving the relay assignment metric, each neighbor node randomly select a back-off
time and start timing. The mean value of the back-off time is proportional to the relay assignment
metric, i.e. the outage probability. The neighbor node sends out a CTS message to the source node
after the back-off time out if it does not receive any other CTS messages from other neighbors
during the back-off time. Then the source node assigns this neighbor as the relay node and start
the selection decode-and-forward cooperative communication. By this relay assignment protocol,
the neighbor node that has the least outage probability will be selected as the cooperative relay.
Therefore, the protocol is outage-optimal. Moreover, since calculating the relay assignment metric
only require the the source and destination position information in the RTS message and the
position information of each neighbor node itself, the proposed protocol is also fully distributed.

2) Simpler Relay Assignment Metric: Despite the advantages of the proposed relay assignment
protocol, the computation burden to calculate the outage probability in (55) may be heavy for
low cost and resource limited devices, such as the sensor nodes. Therefore, we propose a simpler
relay assignment metric based on the outage probability given in (55).

According to (55), to minimize the outage probability is equal to maximize the parameters
µ|hsr|2 and µ(|hsd|2+|hrd|2) while minimizing the parameters σ|hsr|2 and σ(|hsd|2+|hrd|2). Similar to
the analysis in Section 4.2.2, it can be proved that the position of the relay node does not
significantly affect the ratio Var[|hsd|2]+Var[|hrd|2]

(E[|hsd|2]+E[|hrd|2])2
and the ratio Var[|hsr|2]

E2[|hsr|2]
. Hence, according to (52)

and (54), to minimize the outage probability in (55) is equal to maximize ln(E[|hsr|2]) and
ln(E[|hsd|2] + E[|hrd|2]). Since E[|hsd|2] is determined, ony E[|hsr|2] and E[|hrd|2] need to be
considered. However, there exists tradeoff between |hsr| and |hrd|. The optimal relay node should
be placed at the position where |hsr| and |hrd| are both sufficient large. Motivated by the above
discussion, to reduce the metric computation complexity, we use min{E[|hsr|], E[|hrd|]} as a
simpler metric instead of the outage probability.

This simpler metric metric can be calculated based on (29), (30), and (38), which can be
further simplified by the following approximation. Since the lowest order mode EH11 has the
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lowest attenuation rate in tunnels, if the distance between source and destination is large enough,
we can approximately assume that only the lowest order mode exists. This assumption is valid
since the cooperative communication is not necessary in short range distance communication
where the impact of multipath fading is negligible. Then the simpler metric can be calculated as

min{E[|hsr|], E[|hrd|]} (56)

' min
{∣∣ π
ab
Eeign

1,(xr,yr)
·Eeign

1,(xs,ys)
·ezsr·[−Γ1+

λ
v

(µ1−1)]
∣∣, ∣∣ π
ab
Eeign

1,(xr,yr)
·Eeign

1,(xd,yd)
·ezrd·[−Γ1+

λ
v

(µ1−1)]
∣∣},

where zsr is the axial distance between the source and the relay; zrd is the axial distance between
the destination and the relay; Γ1 is the attenuation coefficient of mode EH11; Eeign

1,(x,y) is given
in (1); µ1 is defined in (37).

The simpler relay assignment metric given in (56) can be adopted in resource limited de-
vices instead of the outage probability given in (55). Note that the back-off time is inversely
proportional to this simpler relay assignment metric.

VI. NUMERICAL ANALYSIS

In this section, the capacity and outage behavior of MIMO and cooperative communication
systems in underground tunnels are numerically analyzed. Then, the proposed MIMO antenna
geometry as well as the cooperative relay assignment protocol are compared with existing
geometry and protocols, respectively. Except studying the effect of certain parameters, the default
simulation parameters are set as follows: The one-lane tunnel has a rectangle cross section with a
height of 4 m and a width of 6 m. The operating frequency is 1 GHz. The SNR at the transmitter
ρ = Ptot

N0
is 100 dB. The traffic load is described using the average rate of vehicle arrival λ and

average vehicle velocity v. The default values are set as λ = 0.5 s−1 and v = 72 km/hour.

A. MIMO Systems in Underground Tunnels

Fig. 2 shows the ergodic and the 10%-outage MIMO capacity as functions of of the axial
distance between the transceivers, where the 5 × 5 MIMO antenna with optimal geometry is
adopted. It shows that the theoretical results in high SNR regime have a good match with the
simulations when the axial distance is smaller than 500 m, while the theoretical results in low
SNR regime have a good match with the simulations when the axial distance is larger than
1000 m. Therefore, the theoretical ergodic and outage MIMO capacities have a good match with
the simulations in both high SNR regime and low SNR regime.

In Fig. 3(a), the cumulative distribution function (CDF) of the normal distribution with
parameters derived in high SNR regime is compared with the simulated capacity distribution
when axial distance is 400 m. In Fig. 3(b), the CDF of the log-normal distribution with parameters
derived in low SNR regime is compared with the simulated capacity distribution when axial
distance is 1200 m. A good match is shown between the theoretical and simulation results.
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Fig. 4(a) and Fig. 4(b) show the 10%-Outage capacity of the optimal MIMO antenna ge-
ometries with different element number as a function of the axial distance and the SNR at
the transmitter, respectively. The capacity of a traditional linear antenna array with 3 antenna
elements is also provided for comparison. For fair comparison, one terminal of the traditional
linear antenna array is placed at the center of the tunnel. The array is placed parallel to the
floor with interval of one wavelength (0.33 m). Fig. 4(a) and Fig. 4(b) indicate that, the MIMO
capacity with optimal geometry is significantly higher than that of the undesigned geometry. In
low SNR regime, the undesigned linear array has even smaller capacity than that of the SISO
(1× 1) system placed at the optimal position. In high SNR regime (axial distance smaller than
500 m), the optimal 3× 3 MIMO antenna achieves much higher capacity than the optimal 1× 3

SIMO antenna. In low SNR regime (axial distance larger than 600 m), the optimal 1× 3 SIMO
antenna achieves higher outage capacity than the optimal 3×3 MIMO antenna. This phenomenon
is consistent with our analysis on the MIMO antenna geometry design in Section IV-B, i.e. the
spatial diversity at the TX side is more efficient in the high SNR regime that in the low SNR
regime.

Moreover, Fig. 4(a) and Fig. 4(b) also show the capacity of a 3 × 3 MIMO system and a
SISO system in terrestrial environments. A widely used terrestrial channel model is utilized,
where the Friis transmission equation with a exponent of 3 is used to model the path loss and a
Rayleigh random variable is used to model the multipath fading. The MIMO antenna elements
are placed far enough to guarantee they are not correlated. Fig. 4(a) and Fig. 4(b) show that
the capacity of MIMO and SISO system is much smaller than the capacity in tunnels since the
signal energy in tunnels does not spread as much as in terrestrial environments. Meanwhile, the
gain of MIMO compared with SISO in terrestrial environments is larger than in tunnels since
the MIMO antenna elements in tunnels are more correlated.

B. Cooperative Communication Systems in Underground Tunnels

In the following analysis on cooperative communication systems in tunnels, we assume the
source node and the destination node are 400 m apart. Both nodes are placed at the center of the
tunnel cross section. First, we assume that the relay node is fixed, which is placed in the middle
point of the distance between the source and the destination, i.e., at the center of the tunnel cross
section and 200 m apart from both the source and the destination. In Fig. 5, it is shown that
the theoretical outage probability is consistent with the simulation results with different traffic
load (average arrival rate λ). As the traffic load become heavier, the mean cooperative capacity
decreases and the variance of the cooperative capacity increases, which is due to the reason that
heavier traffic load causes higher additional path loss and more randomness.

Then, the performance of the relay assignment protocols is analyzed. In the following sim-
ulations, we let 50 cooperative relay nodes uniformly distributed between the source and the
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destination. The position of each relay node on the tunnel cross section is also uniformly
distributed. Four relay assignment strategies are adopted: 1) optimal strategy that use the outage
probability given in (55) as the metric; 2) simpler metric strategy that use the metric given in
(56); 3) nearest neighbor strategy given in [24] that select the nearest neighbor as the relay node;
and 4) farthest neighbor strategy that that select the farthest neighbor as the relay node. In Fig. 6,
the outage probability of the four strategies are provided as functions of the TX SNR and the
traffic load (λ). As expected, the optimal strategy achieves the lowest outage probability in all
conditions. The simpler metric strategy has higher outage probability than the optimal strategy
but much lower than the nearest and farthest neighbor strategy.

VII. CONCLUSION

In this paper, we analyze the capacity and outage behavior of the MIMO and cooperative
communication systems based on the underground tunnel channel model. For MIMO system,
we prove that the MIMO capacity in underground tunnels follows either a normal distribution in
high SNR regime or a log-normal distribution in low SNR regime. The ergodic and outage
capacity of MIMO systems in tunnels are explicitly expressed as functions of tunnel size,
transmission power, vehicular traffic load, and MIMO antenna geometry. Then the optimal MIMO
antenna geometry design scheme is proposed, which obviously increases the outage capacity.
For cooperative communication systems, we calculate the outage probability of such systems in
underground tunnels. Based on the formula of the outage probability, we proposed an outage-
optimal cooperative relay assignment protocol, which significantly outperforms the existing relay
assignment protocols in term of outage probability in underground tunnel environments.
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Fig. 1. Tunnel Environment
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Fig. 2. Ergodic and 10%-outage MIMO capacity as functions of the axial distance between transceivers.
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Fig. 3. CDF of MIMO capacity: (a) high SNR, (b) low SNR.
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Fig. 4. 10%-Outage MIMO capacity with different antenna geometries as a function of (a) axial distance (SNR at the transmitter
is 100 dB) and (b) SNR at the transmitter (axial distance is 500 m).
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Fig. 5. Outage probabilities of cooperative communication systems with different traffic loads.
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Fig. 6. Outage probability with different cooperative relay assignment strategy as functions of different (a) SNR at the transmitter
and (b) traffic load.


