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Abstract—We consider two sources in a wireless network
exchanging stochastically varying traffic using an intermediate
relay. Each relay use incurs some cost, which, for example,
could be transmission energy. This cost is shared between the
sources when packets from both are transmitted simultaneously
by the relay using network coding. If the relay transmits a
packet originating from one source only, the cost is incurred
by that source only. In this setting, we study transmission
policies that tradeoff the average cost with the average packet
delay. We first present the cost-delay tradeoff for a centralized
scheme using Lyapunov stability arguments. Next, we consider
a distributed policy, where each source aims to optimize its own
cost-delay tradeoff. We determine the Nash equilibrium of the
resulting non-cooperative game and show that it performs worse
than the centralized algorithm. To overcome this limitation, we
introduce a pricing mechanism at the relay, which is shown to
achieve the centralized performance. These algorithms, though
oblivious to the arrival statistics, do require global knowledge of
queue backlogs. Lastly, we consider distributed algorithms that
overcome this requirement. Among those, we observe that simple
queue-length threshold algorithms perform remarkably well.

Index Terms—Cost sharing, delay, network coding, two-way
relaying, queue stability, stochastic traffic, cooperation, compe-
tition.

I. INTRODUCTION

A simple, yet fundamental model for wireless networks
is the two-way relay network shown in Fig. 1. In this

network, two sources communicate with the assistance of a
relay node. Network coding can improve the throughput in this
network compared to traditional store-and-forward routing,
e.g. [1]. Naturally, the use of the relay will incur a cost, due
to, for example, the energy consumption of the relay. Network
coding can also reduce this cost [2], [3]. For example, with
network coding, the relay can forward one packet from each
source simultaneously in a single transmission, while plain
routing would require two transmissions [1].
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When the sources have bursty traffic, the cost reduction
mentioned above comes at the price of increased delay, since
each source must wait for packets to arrive at the other source
in order to exploit the network coding gain [4], [5]. This cost-
delay tradeoff is the main focus of this paper. Specifically,
we design transmission policies for two-way communication
of bursty sources, which tradeoff the average cost with the
average delay. These policies do not require any a priori
information of packet arrival statistics and can operate only
with the instantaneous values of queue backlogs.

In terms of related work, we note that the energy-delay
tradeoff with plain routing has been studied for a single
wireless link as well as multiuser settings [6]–[8]. There have
been a number of works studying the interaction of network
coding with stochastically varying traffic in both two-way
relay networks [9]–[11] and other network topologies [12]–
[14]. In all these works, the main focus is on queue stability
and the maximum stable throughput without considering trans-
mission costs. Game theoretic models for network coding have
been introduced in [15], [16], where the underlying conflict of
interest is due to flow optimization rather than cost sharing.

In this paper, we first consider policies in which a central-
ized controller specifies the transmission rate of each source
based on perfect information of both source queue states. We
use Lyapunov stability arguments, used in [7], [8], [17] for
routing, to develop rate allocation policies for network coding
and analyze their cost-delay tradeoff. Next, we consider decen-
tralized operation, where each source independently decides its
own rate to minimize its own cost objective, given the joint
queue size. This is formulated as a non-cooperative game for
which we characterize the equilibrium strategies.

In practice, it is desirable to design algorithms that do not
require full knowledge of the queue sizes, i.e., queue state
information (QSI), at both sources. We tackle this task by
deriving strategies assuming the worst and best response of
the opponent thereby, limiting the backlog information to the
individual queues only. We then show that dynamic pricing
by the relay for the worst-case response can achieve the cost-
optimal operation at the expense of increasing the complexity
of rate allocation.

Next, we present a simple transmission scheme that requires
only one bit of QSI from the other source. Specifically, the
transmission decisions are made based on whether the individ-
ual queue backlogs exceed a fixed threshold. We demonstrate
that it is possible to achieve asymptotically optimal cost, as the
packet delay grows with increasing threshold values. Finally,
we consider the case where sources do not share any QSI.
Overall, we observe that the cost-delay tradeoffs obtained
from the decentralized rate allocation algorithms proposed in
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Fig. 1. Two-way relay network: Two sources with packet arrivals and a
single relay to exchange the incoming packets.

this paper, approach the cost-delay tradeoff obtained from the
centralized algorithm.

The paper is organized as follows. Section II presents
the system model, cost structure, and queue dynamics. The
centralized and individual cost optimization are considered in
Sections III and IV, respectively. We introduce the dynamic
pricing policy along with a worst-case response strategy in
Section V. This is followed in Section VI by characterizing
simple threshold-based rate allocation algorithms. Next, we
discuss in Section VII the case when sources have only
local queue information. Sections VIII and IX present the
performance comparisons of the proposed algorithms and the
conclusions, respectively.

II. SYSTEM MODEL

We consider a two-way relay network with sources 1 and 2,
and relay 𝑅, as shown in Fig. 1. We assume a slotted system,
in which source 𝑖, (𝑖 = 1, 2) buffers its incoming packets in
queue 𝑄𝑖 with backlog 𝑞𝑖(𝑡) at time slot 𝑡. Source 𝑖 chooses
the service rate 𝜇𝑖(𝑡) at time 𝑡 such that (𝜇1(𝑡), 𝜇2(𝑡)) ∈ 𝐶(𝑡),
where 𝐶(𝑡) is the achievable rate region at time 𝑡. In this
paper, we focus on a simple rate region achievable by network
coding:

𝐶(𝑡) = {(𝜇1(𝑡), 𝜇2(𝑡)) : 0 ≤ 𝜇𝑖(𝑡) ≤ 𝜇max
𝑖 (𝑡), 𝑖 = 1, 2}.

(1)
We assume that the two source each communicate with the

relay over orthogonal interference-free channels, e.g. separate
minislots (TDMA) or separate frequency bands (FDMA). This
channel allocation is fixed, resulting in a rectangular rate
region for the sources. We adopt this model mainly because
of simplicity and to keep the focus of the paper on the effect
that network coding has on the cost-delay tradeoff in this two-
way information exchange. We assume decode-and-forward-
based digital network coding at the relay. Each packet consists
of bits and the relay XOR’s two packets, one from each
source, componentwise. The model also extends to amplify-
and-forward-based analog network coding. The optimization
will remain the same except the rate constraints will no longer
be modeled by rectangular rate regions. In Section III-A, we
will relate this rate region to an underlying physical channel
model.

The queue length at source 𝑖, 𝑖 = 1, 2, evolves as

𝑞𝑖(𝑡+ 1) = max (𝑞𝑖(𝑡)− 𝜇𝑖(𝑡), 0) + 𝑎𝑖(𝑡), (2)

where 𝑎𝑖(𝑡) is the number of bits/packets arriving at 𝑄𝑖 at
time 𝑡. Here, 𝑎𝑖(𝑡) is assumed to be an ergodic process with
a time-average of 𝜆𝑖.

Alternatively, the queue dynamics can be written as

𝑞𝑖(𝑡+ 1) = 𝑞𝑖(𝑡)− 𝜇̃𝑖(𝑡) + 𝑎𝑖(𝑡), (3)

where the transmission rate of source 𝑖 is

𝜇̃𝑖(𝑡) = min(𝜇𝑖(𝑡), 𝑞𝑖(𝑡)), 𝑖 = 1, 2, (4)

since the number of transmitted packets is limited by the
number of packets available in the queue. Note that the rate
𝜇𝑖(𝑡), 𝑖 = 1, 2, is sufficient to optimize the throughput rates,
since sources can simply perform zero padding in the absence
of packets. However, we are interested in minimizing the cost,
which is a function of the number of transmitted packets.
Therefore, we use the transmission rate, 𝜇̃𝑖(𝑡), that is bounded
by the number packets available in the source queues. The
instantaneous rate region is defined as

𝐶(𝑡) ={𝜇̃1(𝑡), 𝜇̃2(𝑡) :

(𝜇̃1(𝑡), 𝜇̃2(𝑡)) ∈ 𝐶(𝑡), 𝜇̃𝑖(𝑡) ≤ 𝑞𝑖(𝑡), 𝑖 = 1, 2}. (5)

We assume that relay 𝑅 does not buffer the incoming
packets and immediately forwards any received data over a
channel that is orthogonal to the channels used by each source.
The relay decodes and re-encodes the packets incoming from
sources before the subsequent transmission in the next time
slot. We assume linear network coding in binary field ℱ2. In
particular, the relay XOR-es bit streams from an equal number
of packets from each source. The remaining residual packets
are appended to the XORed bit stream. Then, the relay broad-
casts packets back to the sources with rate max𝑗=1,2 𝜇̂𝑗(𝑡).
Note that the network coding operation can be carried out at
packet or signal levels, i.e., the relay either decodes, network-
codes and transmits the incoming packets, or simply amplifies-
and-forwards the received signals as in analog network coding
[1]. Each source decodes packets by XOR-ing the bit stream
received from the relay with the bit stream corresponding to
the packets the source transmitted in the previous time slot.

Each use of the relay is assumed to incur a cost, which
could, for example, represent the energy or a function of the
energy expended by the relay, or an actual cost the relay
charges for cooperation. This cost is partitioned among the
two sources depending on the rate allocation such that the
cost of source 𝑖, (𝑖 = 1, 2) for using the relay with rate 𝜇̃𝑖 is

𝐽𝑖(𝜇̃1(𝑡), 𝜇̃2(𝑡)) =𝑐𝑖(𝑡)
(
min
𝑗=1,2

(𝜇̃𝑗(𝑡))
)

+𝑑𝑖(𝑡)
(
𝜇̃𝑖(𝑡)− min

𝑗=1,2
(𝜇̃𝑗(𝑡))

)
, (6)

where 𝑐𝑖(𝑡) and 𝑑𝑖(𝑡) are the costs charged by the relay to de-
liver one packet by network coding and routing, respectively.
For the sequel, we mainly focus on the case where 𝑐𝑖(𝑡) =

1
2

and 𝑑𝑖(𝑡) = 1, for clarity. This models the case where the
cost per unit time of operating the relay is the same for both
routing and network coding: in the network coding case the
cost is equally shared by both sources, whereas any source is
solely responsible for the cost of packets routed by the relay.
The individual cost (6) can then be rewritten as

𝐽𝑖(𝜇̃1(𝑡), 𝜇̃2(𝑡)) = 𝜇̃𝑖(𝑡)− 1

2
min
𝑗=1,2

(𝜇̃𝑗(𝑡)) (7)

and the total cost is then simplified to

𝐽𝑡𝑜𝑡(𝜇̃1(𝑡), 𝜇̃2(𝑡)) =

2∑
𝑖=1

𝐽𝑖(𝜇̃1(𝑡), 𝜇̃2(𝑡)) = max
𝑖=1,2

(𝜇̃𝑖(𝑡)). (8)
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Here, (6)-(8) model linear costs of rate allocation. In Section
III-A, we outline the extension to more general rate-cost
functions reflecting physical channel characteristics and relate
the cost to the needed power for an achievable (information-
theoretic) rate over AWGN channels. We also note that if
routing were applied without network coding at the relay, then
the cost per packet would be equal to 1, leading to a smaller
stability region and larger average delay.

III. CENTRALIZED OPTIMIZATION

We start with the case where a centralized controller has
access to all system parameters along with the queue backlog
information, and makes the transmission decisions for both
sources. The main objective is to minimize the total cost
for both sources while ensuring that the average delay is no
greater than a given value 𝐷. This leads to the following
optimization problem the solution of which will serve as an
upper bound on performance of any algorithm that will be
considered in the sequel:

Total Minimum Cost Problem (PC):

min
(𝜇̃1(𝑡),𝜇̃2(𝑡))∈𝐶̃(𝑡),𝑡≥0

lim
𝑡→∞

1

𝑡

𝑡−1∑
𝜏=0

2∑
𝑖=1

𝔼 [𝐽𝑖(𝜇̃1(𝜏), 𝜇̃2(𝜏))]

(PC)

s.t. lim
𝑡→∞

1

𝑡

𝑡−1∑
𝜏=0

2∑
𝑖=1

𝔼[𝑞𝑖(𝜏)]

𝜆1 + 𝜆2
< 𝐷.

The average delay constraint follows simply from Little’s
theorem [18]. The objective in (PC) divided by the total arrival
rate 𝜆1 + 𝜆2 is equivalent to the long-term average cost per
packet. Let 𝒫∗(𝐷) denote the solution to (PC) as a function
of the delay constraint 𝐷, i.e., the cost-delay tradeoff. 𝒫∗(𝐷)
is a decreasing function of 𝐷 and as 𝐷 → ∞, it will yield the
minimum cost solution subject to the queue’s being stable.

In principle, for a given delay constraint, (PC) can be solved
via dynamic programming. However, such a solution quickly
becomes intractable except for very simple arrival processes
and furthermore, requires a priori knowledge of arrival statis-
tics. Instead, we will follow the approach in [8] and use
Lyapunov stability arguments to yield an approximate solution
to (PC) with provable approximation bounds. This approach
is based on generalizing the classical back-pressure algorithm
from [17] which is throughput-optimal, i.e., it stabilizes the
queues whenever possible. Specifically, at each time 𝑡, the
back-pressure algorithm solves

max
(𝜇1(𝑡),𝜇2(𝑡))∈𝐶(𝑡),𝑡≥0

2∑
𝑖=1

𝑞𝑖(𝑡)𝜇𝑖(𝑡), (9)

or equivalently

max
(𝜇̃1(𝑡),𝜇̃2(𝑡))∈𝐶̃(𝑡),𝑡≥0

2∑
𝑖=1

𝑞𝑖(𝑡)𝜇̃𝑖(𝑡). (10)

Observe that (9) (or (10)) does not necessarily yield an
optimal policy for (PC). Consider, for instance, the following
example. Let the number of packet arrivals be 𝑎1(𝑡) = 1,
𝑎2(𝑡) = 2 for even 𝑡, and 𝑎1(𝑡) = 2, 𝑎2(𝑡) = 1 for odd 𝑡.
For 𝑐𝑖(𝑡) = 1

2 and 𝑑𝑖(𝑡) = 1, the back-pressure solution (9)

Fig. 2. Centralized solution, (A1), for Source 1, Source 2 transmissions.

or (10) is 𝜇1(𝑡) = 1, 𝜇2(𝑡) = 2 for even 𝑡, and 𝜇1(𝑡) = 2,
𝜇2(𝑡) = 1 for odd 𝑡. The long-term average costs per packet
𝐽1 and 𝐽2 are 2

3 . However, if sources accumulate packets over
time slots and transmit such that relay 𝑅 performs network
coding only, the decisions 𝜇1(𝑡) = 1, 𝜇2(𝑡) = 1 for even 𝑡 and
𝜇1(𝑡) = 2, 𝜇2(𝑡) = 2 for odd 𝑡 result in the long-term average
costs approaching the lower bound 1

2 . This is attainable, if the
relay performs network coding with the cost for each relay
transmission equally shared between the sources.

Fortunately, [8] provides a way to augment the policy in
(10) with an additional term to reflect the cost. Adopting this
approach, our modified problem becomes

max
(𝜇̃1(𝑡),𝜇̃2(𝑡))∈𝐶̃(𝑡)

(
𝑞1(𝑡)𝜇̃1(𝑡)+𝑞2(𝑡)𝜇̃2(𝑡)−𝑉max(𝜇̃1(𝑡), 𝜇̃2(𝑡))

)
,

(P1)

where the control parameter 𝑉 tunes the tradeoff between the
average queue backlog and the distance from the minimum
cost. In (P1), maximizing the term 𝑞1(𝑡)𝜇̃1(𝑡) + 𝑞2(𝑡)𝜇̃2(𝑡) is
due to backpressure algorithm stabilizing the source queues,
whereas minimizing the term max(𝜇̃1(𝑡), 𝜇̃2(𝑡)) moves the
stable solution to the minimum cost. Next, we present this
solution.

Theorem 1: At time slot 𝑡, the solution to (P1) is given by

(𝜇̃𝑖(𝑡), 𝜇̃𝑗(𝑡)) = (A1)⎧⎨
⎩

(0, 0), if 𝑉 > 𝑞1(𝑡) + 𝑞2(𝑡),

(𝑢𝑐(𝑡), 𝑢𝑐(𝑡)), if 𝑞1(𝑡) + 𝑞2(𝑡) > 𝑉 ≥ max(𝑞1(𝑡), 𝑞2(𝑡)),

(𝑢𝑖(𝑡), 𝑢𝑐(𝑡)), if 𝑞𝑖(𝑡) > 𝑉 ≥ 𝑞𝑗(𝑡), 𝑗 ∕= 𝑖,

(𝑢𝑖(𝑡), 𝑢𝑐(𝑡)), if 𝑉 ≤ min(𝑞1(𝑡), 𝑞2(𝑡)),

(𝑞𝑖(𝑡)− 𝑉 )𝑢𝑖(𝑡) + 𝑞𝑗(𝑡)𝑢𝑐(𝑡)

≥ (𝑞𝑗(𝑡)− 𝑉 )𝑢𝑗(𝑡) + 𝑞𝑖(𝑡)𝑢𝑐(𝑡), 𝑗 ∕= 𝑖,

where

𝑢𝑖(𝑡) = min(𝑞𝑖(𝑡), 𝜇
max
𝑖 (𝑡)), 𝑢𝑐(𝑡) = min(𝑢1(𝑡), 𝑢2(𝑡)).

Transmission policy (A1) is depicted in Figure 2 for clarity.
Proof: The objective function depends on which source

is assigned a higher rate, and it is either equal to (𝑞1(𝑡) −
𝑉 )𝜇̃1(𝑡)+ 𝑞2(𝑡)𝜇̃2(𝑡), if 𝜇̃1(𝑡) ≥ 𝜇̃2(𝑡) or (𝑞2(𝑡)−𝑉 )𝜇̃2(𝑡)+
𝑞1(𝑡)𝜇̃1(𝑡), if 𝜇̃2(𝑡) ≥ 𝜇̃1(𝑡). Consider the case with 𝑞𝑖(𝑡) > 𝑉
and 𝑞𝑗(𝑡) < 𝑉 . For 𝜇̃𝑖(𝑡) ≥ 𝜇̃𝑗(𝑡), the objective function is
greater than or equal to (𝑞1(𝑡) + 𝑞2(𝑡) − 𝑉 )𝑢𝑐(𝑡), whereas
the objective function is at most (𝑞1(𝑡) + 𝑞2(𝑡)− 𝑉 )𝑢𝑐(𝑡) for
𝜇̃𝑗(𝑡) ≥ 𝜇̃𝑖(𝑡). Accordingly, the rate allocation with 𝜇𝑖(𝑡) ≥
𝜇𝑗(𝑡) is selected with 𝜇̃𝑖(𝑡) equal to 𝑢𝑖(𝑡) and 𝜇̃𝑗(𝑡) equal to
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𝑢𝑐(𝑡).
Without loss of generality, consider the case with 𝜇̃𝑖(𝑡) ≥

𝜇̃𝑗(𝑡). Then, max(𝜇̃1(𝑡), 𝜇̃2(𝑡)) = 𝜇̃𝑖(𝑡), and the objective
function is (𝑞𝑖(𝑡)− 𝑉 )𝜇̃𝑖(𝑡) + 𝑞𝑗(𝑡)𝜇̃𝑗(𝑡).

If 𝑞𝑖(𝑡) < 𝑉 , the optimal solution should minimize 𝑢𝑖(𝑡),
since the coefficient associated with the rate of source 𝑖
is negative. However, the special case with 𝜇̃𝑖(𝑡) = 𝜇̃𝑗(𝑡)
should be also taken into account. If 𝑞𝑗(𝑡) > ∣𝑞𝑖(𝑡) − 𝑉 ∣,
or equivalently if 𝑞1(𝑡) + 𝑞2(𝑡) > 𝑉 , then the optimal rate
allocation is 𝜇̃𝑖(𝑡) = 𝜇̃𝑗(𝑡) = 𝑢𝑐(𝑡). On the other hand, if
𝑞𝑗(𝑡) < ∣𝑞𝑖(𝑡)−𝑉 ∣, i.e., if 𝑞1(𝑡)+ 𝑞2(𝑡) < 𝑉 , the optimal rate
allocation is 𝜇̃𝑖(𝑡) = 𝜇̃𝑗(𝑡) = 0.

Finally, if both 𝑞𝑖(𝑡) and 𝑞𝑗(𝑡) exceed 𝑉 , rates should be
selected from one of the two possibilities in the fourth case
of (A1) to maximize the overall objective function.

We next present the performance of (A1).
Theorem 2: For Algorithm (A1), the average queue back-

log and the average packet delay are proportional to 𝑉 , while
the distance of the average cost from the minimum attainable
cost is proportional to 1

𝑉 , i.e.,

lim
𝑀→∞

1

𝑀

𝑀−1∑
𝜏=0

2∑
𝑖=1

𝐽𝑖(𝜇̃1(𝜏), 𝜇̃2(𝜏)) ≤ 𝐽∗ +
𝐵1

𝑉
, (11)

lim
𝑀→∞

1

𝑀

𝑀−1∑
𝜏=0

2∑
𝑖=1

𝔼[𝑞𝑖(𝜏)] ≤
𝐵2 +

𝑉
2

𝜖
, (12)

where 𝐽∗ is the optimal cost per time slot, 𝐵1 and 𝐵2 are
positive constants, and 𝜆𝑖 satisfies (𝜆𝑖 + 𝜖) ∈ 𝐶(𝑡), 𝑖 = 1, 2,
at any time 𝑡 for an arbitrarily small positive constant 𝜖.

Proof: We provide a sketch of the proof for brevity.
We use the Lyapunov drift analysis from [8]. First, the Lya-
punov drift, namely, the time-average difference of Lyapunov
functions for queue backlogs is formulated using the queue
dynamics along with the average cost. Stability is guaranteed
whenever the drift is negative. Next, we show that (A1)
satisfies this condition. This way, we first find the upper bound
on the average queue length and then use Little’s theorem to
derive the upper bound on the average delay and cost.
Both problems (PC) and (P1) stabilize queues and provide
bounded delay. While this bound is explicit in (PC), the
solution of (P1) provides an indirect delay bound that follows
from queue stabilization. To relate (PC) with (P1), we first
note that 𝐽∗ in Theorem 2 is equal to 𝒫(𝐷) as 𝐷 → ∞.
Second, we can specify a common delay upper bound 𝐷
through the relation (12):

𝐷 ≤ 𝐵2 +
𝑉
2

𝜖(𝜆1 + 𝜆2)
, (13)

which yields 𝑉 ≥ 2(𝐷𝜖(𝜆1 + 𝜆2) − 𝐵2). Using a parameter
𝑉 accordingly in (11), we could bound the RHS of (11) as

𝐽∗ +
𝐵1

𝑉
≤ 𝐽∗ +

𝐵1

2(𝐷𝜖(𝜆1 + 𝜆2)−𝐵2)
. (14)

This puts an upper bound on the cost performance of (P1)
and guarantees delay performance of 𝐷. On the other hand,
(PC) achieves the cost performance 𝒫(𝐷), which is known
to be greater than 𝐽∗ for any finite average delay requirement
𝐷. As a result, Theorem 2 also bounds the distance between
the costs attained by solving (P1) compared with the solution

of (PC). We note that while the delay bound in (PC) is
tight in general, the bounds provided in (11)-(12) for the cost
and delay performance of (P1) are not necessarily tight. Our
goal is to characterize this interplay between cost and delay,
and evaluate the performance through feasible algorithms with
tractable analysis. The upper bounds on delay characterize the
worst-case performance and highlights the robustness of the
practical approximate algorithms.

For (P1) the optimal cost per packet 𝐽𝑜𝑝𝑡
𝑝 = 𝐽∗

𝜆1+𝜆2
is

given by max(𝜆1,𝜆2)
𝜆1+𝜆2

, and it is reduced to 1
2 for 𝜆1 = 𝜆2. For

𝑞1(𝑡) + 𝑞2(𝑡) > 𝑉 > max(𝑞1(𝑡), 𝑞2(𝑡)), the relay 𝑅 performs
network coding only and does not forward uncoded packets.
This results in energy-optimal operation. As 𝑉 increases,
the sources tend to transmit less, and the relay finds more
opportunities for coded transmissions. As 𝑉 decreases, the
relay forwards more uncoded traffic, and the policy resembles
more and more the classical back-pressure algorithm.

A. General Costs based on Physical Channel Properties

Next, we generalize the linear cost function in (8) by relat-
ing the achievable rates to energy. The relay communication
consists of two phases: Multiple access from sources to the
relay, and broadcast from the relay to sources. We assume that
the achievable rates in the first phase are larger than those in
the second phase thereby imposing the bottleneck links. We
assume additive white Gaussian noise channels with unit noise
power and bandwidth. In the broadcast phase, the individual
min-cut capacity for source 𝑖, 𝑖 = 1, 2, can be achieved via
XOR-based network coding [19]. At time slot 𝑡, the end-to-
end rate from source 𝑖 forwarded by the relay satisfies

𝜇𝑖(𝑡) ≤ log(1 + ℎ𝑗𝑃 (𝑡)), (15)

where
√

ℎ𝑗 is the constant channel gain from the relay to
source 𝑗, 𝑗 ∕= 𝑖, and 𝑃 (𝑡) is the transmission power of either
source. The relay power is chosen so as to satisfy the signal-to-
noise-ratio (SNR) requirement at both receivers. Let 𝛾𝑖 = ℎ𝑗𝑃
denote the SNR from source 𝑖 to source 𝑗 with unit noise
power and bandwidth. For low SNR, we have log(1+ 𝛾) ≈ 𝛾
and there is a linear relationship between the rate and the
power, as we assumed so far. For high SNR, i.e., 𝛾 ≫ 1,
log(1 + 𝛾) ≈ log 𝛾, and the power is exponential function of
the rate supported.

We generalize the cost functions (6)-(8) to the case with
asymmetric channel gains between the relay and sources. For
low SNR, the total and individual costs for 𝑖 ∕= 𝑗, 𝑖 = 1, 2,
are

𝐽𝑡𝑜𝑡(𝜇̃1(𝑡), 𝜇̃2(𝑡)) = max

(
𝜇̃1(𝑡)

ℎ2
,
𝜇̃2(𝑡)

ℎ1

)
, (16)

𝐽𝑖(𝜇̃1(𝑡), 𝜇̃2(𝑡)) =
𝜇̃𝑖(𝑡)

ℎ𝑗
− 1

2
min

(
𝜇̃1(𝑡)

ℎ2
,
𝜇̃2(𝑡)

ℎ1

)
. (17)

The centralized solution for (PC) with (16) as the cost is
given by the algorithm (A1a):
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(𝜇̃𝑖(𝑡), 𝜇̃𝑗(𝑡)) = (A1a)⎧⎨
⎩

(0, 0), if min
(

𝑉
ℎ1
, 𝑉
ℎ2

)
> 𝑞1(𝑡) + 𝑞2(𝑡),

(𝑢𝑖(𝑡), 𝑢𝑖(𝑡)
ℎ𝑖

ℎ𝑗
), if ℎ𝑖𝑢𝑖(𝑡) ≥ ℎ𝑗𝑢𝑗(𝑡), 𝑗 ∕= 𝑖,

(𝑞1(𝑡) + 𝑞2(𝑡))max(ℎ1, ℎ2) > 𝑉,

𝑉 ≥ max(𝑞1(𝑡)ℎ2, 𝑞2(𝑡)ℎ1),

(𝑢𝑖(𝑡), 𝑢𝑐𝑗(𝑡)), if 𝑞𝑖(𝑡)ℎ𝑗 > 𝑉 ≥ 𝑞𝑗(𝑡)ℎ𝑖, 𝑗 ∕= 𝑖,

(𝑢𝑖(𝑡), 𝑢𝑐𝑗(𝑡)), if 𝑉 ≤ min(𝑞1(𝑡)ℎ2, 𝑞2(𝑡)ℎ1),

(𝑞𝑖(𝑡)− 𝑉 )𝑢𝑖(𝑡) + 𝑞𝑗(𝑡)𝑢𝑐𝑗(𝑡)

≥ (𝑞𝑗(𝑡)− 𝑉 )𝑢𝑗(𝑡) + 𝑞𝑖(𝑡)𝑢𝑐𝑖(𝑡), 𝑗 ∕= 𝑖,

where

𝑢𝑖(𝑡) = min (𝑞𝑖(𝑡), 𝜇
max
𝑖 (𝑡)) , (18)

𝑢𝑐𝑗(𝑡) = min

(
𝑢1(𝑡), 𝑢2(𝑡), 𝑢𝑖(𝑡)

ℎ𝑖

ℎ𝑗

)
. (19)

For the high SNR regime, the total and individual costs
functions for 𝑖 ∕= 𝑗, 𝑖 = 1, 2, are

𝐽𝑡𝑜𝑡(𝜇̃1(𝑡), 𝜇̃2(𝑡)) = max
(
2𝜇̃1(𝑡), 2𝜇̃2(𝑡)

)
, (20)

𝐽𝑖(𝜇̃1(𝑡), 𝜇̃2(𝑡)) = 2𝜇̃𝑖(𝑡)− 1

2
min

(
2𝜇̃1(𝑡), 2𝜇̃2(𝑡)

)
(21)

for the case with symmetric channels. Then, at any time slot 𝑡,
the centralized solution for (PC) with (20) as the cost function
is given by the algorithm (A1b) as follows:

(𝜇̃𝑖(𝑡), 𝜇̃𝑗(𝑡)) = (A1b)⎧⎨
⎩

(0, 0), if 𝑉 > 𝑞1(𝑡) + 𝑞2(𝑡),

(𝑢𝑛𝑐(𝑡), 𝑢𝑛𝑐(𝑡)), if 𝑞1(𝑡) + 𝑞2(𝑡) > 𝑉,

𝑢𝑛𝑐(𝑡) ≤ min(𝑢1(𝑡), 𝑢2(𝑡)),

(𝑟𝑖(𝑡), 𝑢𝑐𝑗(𝑡)), if 𝑞𝑖(𝑡) > 𝑉 ≥ 𝑞𝑗(𝑡),

𝑗 ∕= 𝑖, 𝑢𝑛𝑐(𝑡) > min(𝑢1(𝑡), 𝑢2(𝑡)),

(𝑟𝑖(𝑡), 𝑢𝑐𝑗(𝑡)), if 𝑉 ≤ min(𝑞1(𝑡), 𝑞2(𝑡)),

𝑢𝑛𝑐(𝑡) > min(𝑢1(𝑡), 𝑢2(𝑡)),

𝑞𝑖(𝑡)𝑟𝑖(𝑡)− 𝑉 2𝑟𝑖(𝑡) + 𝑞𝑗(𝑡)𝑢𝑐𝑗(𝑡)

≥ 𝑞𝑗(𝑡)𝑟𝑗(𝑡)− 𝑉 2𝑟𝑗(𝑡)+𝑞𝑖(𝑡)𝑢𝑐𝑖(𝑡),𝑗 ∕= 𝑖,

where

𝑢𝑖(𝑡) = min (𝑞𝑖(𝑡), 𝜇
max
𝑖 (𝑡)) , (22)

𝑟𝑖(𝑡) = min

(
𝑢𝑖(𝑡), log

(
𝑞𝑖(𝑡)

𝑉

))
, (23)

𝑢𝑐𝑗(𝑡) = min (𝑟𝑖(𝑡), 𝑢𝑗(𝑡)) , (24)

𝑢𝑛𝑐(𝑡) = log

(
𝑞1(𝑡) + 𝑞2(𝑡)

𝑉

)
. (25)

Observe that the algorithm above works more aggressively
compared with (A1a) to equalize the rates because of the
exponential relation between the power and achievable rate
from (20).

IV. INDIVIDUAL COST OPTIMIZATION

Although in the previous section we have shown that our
approach holds for general cost functions, e.g. (20), in the
sequel, we will use linear cost functions, i.e., (7), for clarity.

Next, we consider a scenario in which the individual nodes
decide on their own rate allocations given perfect QSI of
the other user. Each user 𝑖 = 1, 2 solves the following
optimization problem:

Individual Minimum Cost Problem (PI):

min
𝜇̃𝑖(𝑡): (𝜇̃1(𝑡),𝜇̃2(𝑡))∈𝐶̃(𝑡),𝑡≥0

lim
𝑡→∞

1

𝑡

𝑡−1∑
𝜏=0

𝔼 [𝐽𝑖((𝜇̃1(𝜏), 𝜇̃2(𝜏))]

(PI)

s.t. lim
𝑡→∞

1

𝑡

𝑡−1∑
𝜏=0

𝔼 [𝑞𝑖(𝜏)]

𝜆𝑖
< 𝐷𝑖.

The two users can be viewed as players in a non-cooperative
game, in which (PI) reflects the pay-off of user 𝑖. In principle,
this can be viewed as a stochastic game [20] and can be
solved via dynamic programming. However, once again such
an approach quickly becomes intractable. We instead consider
a Lyapunov drift formulation as in (P1). Furthermore, we
assume that in each time-slot, sources play a single-stage game
against each other with such that given 𝜇̃𝑗 , 𝑗 ∕= 𝑖, source
𝑖 = 1, 2 chooses the individual strategy 𝜇̃𝑖(𝑡) to solve:

max
𝜇̃𝑖(𝑡): (𝜇̃1(𝑡),𝜇̃2(𝑡))∈𝐶̃(𝑡),𝑡≥0

(
𝑞𝑖(𝑡)𝜇̃𝑖(𝑡)− 𝑉𝑖𝐽𝑖(𝜇̃1(𝑡), 𝜇̃2(𝑡))

)
.

(P2)

This formulation does not require any knowledge of the
long-term arrival statistics of either source. Minimizing the
first term 𝑞𝑖(𝑡)𝜇̃𝑖(𝑡) in the individual objective function is to
stabilize the queue of source 𝑖, whereas minimizing the second
term 𝑉𝑖𝐽𝑖(𝜇̃1(𝑡), 𝜇̃2(𝑡)) moves the stable solution to the opti-
mal cost value. (P1) is based on cooperation of sources to op-
timize the system performance of stabilizing both queues and
minimizing the total cost. On the other hand, (P2) assumes that
sources do not cooperate with each other but rather optimize
their individual performance objectives. In particular, in (P2)
sources are unaware of each other’s transmission strategies.
Compared to (P1) this lack of coordination results in total
performance loss, which we will evaluate in Section VIII.
Define 𝐽𝑖(𝜇̃1(𝑡), 𝜇̃2(𝑡)) = 𝑞𝑖(𝑡)𝜇̃𝑖(𝑡)− 𝑉𝑖𝐽𝑖(𝜇̃1(𝑡), 𝜇̃2(𝑡)).

Definition 1: A pair of strategies {𝜇̃∗
𝑖 } are a Nash equilib-

rium if

𝐽𝑖(𝜇̃
∗
𝑖 , 𝜇̃

∗
−𝑖) ≥ 𝐽𝑖(𝜇̃𝑖, 𝜇̃

∗
−𝑖), for all 𝜇̃𝑖 ∈ 𝐶(𝑡) (26)

for each player 𝑖, where “− 𝑖” denotes the player other than
player 𝑖.

For any source 𝑖 = 1, 2, the strategy space is a non-empty
convex subset of Euclidean space and the utility function is
continuous in (𝜇̃1, 𝜇̃2) and quasi-concave in 𝜇̃𝑖. Therefore,
there exists a pure strategy Nash equilibrium at any time slot
𝑡 for given 𝑞𝑖(𝑡), 𝑖 = 1, 2.

Theorem 3: At time slot 𝑡, the solution to (P2) is given by
the Nash equilibrium strategy (A2) for source 𝑖 = 1, 2. (A2)
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Fig. 3. Individual solution, (A2), for Source 𝑖. 𝑖, 𝑗 = 1, 2.

is depicted in Figure 3.

𝜇̃𝑖(𝑡) =

⎧⎨
⎩

0, if 𝑞𝑖(𝑡) < 𝑉𝑖

2 ,

𝑢𝑖(𝑡), if 𝑞𝑖(𝑡) ≥ 𝑉𝑖,

0, if 𝑉𝑖

2 ≤ 𝑞𝑖(𝑡) < 𝑉𝑖, 𝑞𝑗(𝑡) <
𝑉𝑗

2 , 𝑗 ∕= 𝑖,

𝑢𝑐(𝑡), if 𝑉𝑖

2 ≤ 𝑞𝑖(𝑡) < 𝑉𝑖, 𝑞𝑗(𝑡) ≥ 𝑉𝑗 , 𝑗 ∕= 𝑖,

0 or 𝑢𝑐(𝑡), if 𝑉𝑖

2 ≤ 𝑞𝑖(𝑡) < 𝑉𝑖, 𝑖 = 1, 2.

(A2)

Proof: Note that 𝐽𝑖(𝜇̃1(𝑡), 𝜇̃2(𝑡)) = 𝜇̃𝑖(𝑡) −
1
2 min𝑗=1,2 (𝜇̃𝑗(𝑡)) is equal to 𝜇̃𝑖(𝑡) − 1

2 𝜇̃𝑗(𝑡), if 𝜇̃𝑖(𝑡) ≥
𝜇̃𝑗(𝑡), or equal to 1

2 𝜇̃𝑖(𝑡), if 𝜇̃𝑗(𝑡) ≥ 𝜇̃𝑖(𝑡). Without loss of
generality, consider the former case, in which the objective
function is (𝑞𝑖(𝑡)− 𝑉𝑖)𝜇̃𝑖(𝑡) +

𝑉𝑖

2 𝑞𝑗(𝑡)𝜇̃𝑗(𝑡) for source 𝑖, and
(𝑞𝑗(𝑡) − 𝑉𝑗

2 )𝜇̃𝑗(𝑡) for source 𝑗 ∕= 𝑖. The latter case follows
from interchanging 𝑖 and 𝑗. If 𝑞𝑖(𝑡) > 𝑉𝑖, 𝑖 = 1, 2, the largest
possible 𝜇̃𝑖(𝑡) is selected as 𝑢𝑖(𝑡), since the coefficient of
source 𝑖’s rate will be always positive. Similarly, if 𝑞𝑖(𝑡) < 𝑉𝑖

2 ,
𝑖 = 1, 2, the smallest possible 𝜇̃𝑖(𝑡) is selected as 0, since the
coefficient of source 𝑖’s rate will be always negative.

Consider 𝑉𝑖

2 < 𝑞𝑖(𝑡) < 𝑉𝑖. If 𝑞𝑗(𝑡) <
𝑉𝑗

2 , source 𝑗 will
not transmit and the best strategy of source 𝑖 is to reduce
𝑢𝑖(𝑡) to 0. If 𝑞𝑗(𝑡) > 𝑉𝑗 , the best strategy of source 𝑗 is to
transmit. Then, source 𝑖 either tends to decrease its rate to
𝑢𝑐(𝑡) for 𝜇̃𝑖(𝑡) ≥ 𝜇̃𝑗(𝑡), or tends to increase its rate to 𝑢𝑐(𝑡)
for 𝜇̃𝑗(𝑡) ≥ 𝜇̃𝑖(𝑡). Source 𝑖 selects the rate 𝑢𝑐(𝑡) for either
case. For 𝑉𝑖

2 < 𝑞𝑖(𝑡) < 𝑉𝑖, 𝑖 = 1, 2, there are multiple Nash
equilibria including 𝜇𝑖(𝑡) = 0 and 𝜇𝑖(𝑡) = 𝑢𝑐(𝑡), 𝑖 = 1, 2.

V. DYNAMIC PRICING AT THE RELAY

We now consider the case where sources have no informa-
tion about each other’s queue backlog in contrast to (P2). Thus
source 𝑖 assumes that the opponent source 𝑗 ∕= 𝑖 plays a fixed
strategy. The worst-case response of the opponent 𝑗 is 𝜇̃𝑗 = 0
such that there is no possibility of network coding to reduce
the relay cost. If source 𝑖 = 1, 2 assumes that source 𝑗 ∕= 𝑖
plays the worst-case strategy, it ends up with the optimization
problem:

max
𝜇̃𝑖(𝑡): (𝜇̃𝑖(𝑡),0)∈𝐶̃(𝑡),𝑡≥0

(
𝑞𝑖(𝑡)𝜇̃𝑖(𝑡)− 𝑉𝑖𝐽𝑖(𝜇̃𝑖(𝑡), 0)

)
. (P3)

The solution to (P3) is given by

𝜇̃𝑖(𝑡) =

{
0, if 𝑞𝑖(𝑡) < 𝑉𝑖,

𝑢𝑖(𝑡), if 𝑞𝑖(𝑡) ≥ 𝑉𝑖.
(A3)

As shown in Figure 4, (A3) simply compares the individual
queue backlog with a threshold that is independent of the

Fig. 4. Solution by playing Worst Case response, (A3), for Source 𝑖. 𝑖 = 1, 2.

opponent’s queue backlog or transmission decision. A similar
algorithm can be defined by assuming that the opponent
𝑗 plays the best-case strategy, which is 𝜇̃𝑗 = 𝜇max

𝑗 (𝑡) so
that packets of source 𝑖 can always be network-coded. The
resulting problem is

max
𝜇̃𝑖(𝑡):(𝜇̃𝑖(𝑡),𝜇

max
𝑗 (𝑡))∈𝐶(𝑡),𝑗 ∕=𝑖

(
𝑞𝑖(𝑡)𝜇̃𝑖(𝑡)− 𝑉𝑖𝐽𝑖(𝜇̃𝑖(𝑡), 𝜇

max
𝑗 (𝑡))

)
.

(P4)
The solution (A4) to (P4) is given by:

𝜇̃𝑖(𝑡) =

⎧⎨
⎩

0, if 𝑞𝑖(𝑡) < 𝑉𝑖

2 ,

𝜇max
𝑗 (𝑡), if 𝑢𝑖(𝑡) ≥ 𝜇max

𝑗 (𝑡),
𝑉𝑖

2 ≤ 𝑞𝑖(𝑡) < 𝑉𝑖, 𝑗 ∕= 𝑖,

𝑢𝑖(𝑡), if 𝑢𝑖(𝑡) ≥ 𝜇max
𝑗 (𝑡), 𝑞𝑖(𝑡) ≥ 𝑉𝑖, 𝑗 ∕= 𝑖,

𝑢𝑖(𝑡), if 𝑢𝑖(𝑡) < 𝜇max
𝑗 (𝑡), 𝑞𝑖(𝑡) ≥ 𝑉𝑖

2 , 𝑗 ∕= 𝑖.

(A4)

So far, we assumed fixed weights 𝑐𝑖(𝑡) = 1
2 for network

coding and 𝑑𝑖(𝑡) = 1 for routing. Instead, suppose the relay
uses dynamic pricing by selecting the weights 𝑐𝑖(𝑡) and 𝑑𝑖(𝑡)
in (6) as functions of queue backlogs 𝑞1(𝑡) and 𝑞2(𝑡) to
adapt the distributed energy costs to the centralized optimal
solutions. For that purpose, relay penalizes the difference
between the data rates transmitted from each source thereby
increasing the network coding opportunities and minimizing
the relay cost. The individual cost for node 𝑖 is changed to

𝐽𝑖(𝜇̃1(𝑡), 𝜇̃2(𝑡)) = 𝑐𝑖(𝑡) min
𝑗=1,2

𝜇̃𝑗(𝑡) + 𝑑𝑖(𝑡)

×(𝜇̃𝑖(𝑡)−min
𝑗=1,2

𝜇̃𝑗(𝑡)) + 𝑒𝑖(𝑡)(max
𝑗=1,2

𝜇̃𝑗(𝑡)−min
𝑗=1,2

𝜇̃𝑗(𝑡)), (27)

where 𝑒𝑖(𝑡) is an additional weight to equalize the trans-
mission rates for both sources. The individual optimization
problem is then given by

max
𝜇̃𝑖(𝑡):(𝜇̃𝑖(𝑡))∈𝐶(𝑡),𝑡≥0

(
𝑞𝑖(𝑡)𝜇̃𝑖(𝑡)− 𝑑𝑖(𝑡)𝜇̃𝑖(𝑡)

+(𝑑𝑖(𝑡)+𝑒𝑖(𝑡)−𝑐𝑖(𝑡))min
𝑗=1,2

𝜇̃𝑗(𝑡)− 𝑒𝑖(𝑡)max
𝑗=1,2

𝜇̃𝑗(𝑡)
)
, (28)

where we again assume the sources play the worst-case
response without knowing each other’s queue backlogs. In
particular, we do not require that the weights are globally
known, i.e. they can be delivered only to the respective
sources.

Theorem 4: Given the queue backlogs 𝑞𝑖(𝑡), 𝑖 = 1, 2, and
threshold parameter 𝑉 , the rate weights 𝑐𝑖(𝑡), 𝑑𝑖(𝑡) and 𝑒𝑖(𝑡)
for (A3) to achieve the optimal solutions (A1) satisfy:

If 𝑉 > 𝑞1(𝑡) + 𝑞2(𝑡) : 𝑞𝑖(𝑡) < 𝑐𝑖(𝑡) < 𝑑𝑖(𝑡) + 𝑒𝑖(𝑡),

𝑖 = 1, 2. (29)

If 𝑞1(𝑡) + 𝑞2(𝑡) ≥ 𝑉 > max(𝑞1(𝑡), 𝑞2(𝑡)) :

𝑑𝑖(𝑡) + 𝑒𝑖(𝑡)>𝑞𝑖(𝑡), 𝑐𝑖(𝑡) > 𝑑𝑖(𝑡)+𝑒𝑖(𝑡),

𝑖 = 1, 2. (30)
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If 𝑞𝑖(𝑡) ≥ 𝑉 > 𝑞𝑗(𝑡), 𝑗 ∕= 𝑖 : 𝑑𝑖(𝑡) + 𝑒𝑖(𝑡) < 𝑞𝑖(𝑡),

𝑑𝑗(𝑡) + 𝑒𝑗(𝑡)>𝑞𝑗(𝑡), 𝑐𝑗(𝑡) > 𝑑𝑗(𝑡) + 𝑒𝑗(𝑡). (31)

If 𝑉 ≤ min(𝑞1(𝑡), 𝑞2(𝑡)), (𝑞𝑖(𝑡)− 𝑉 )𝑢𝑖(𝑡) + 𝑞𝑗(𝑡)𝑢𝑐(𝑡)

≥ (𝑞𝑗(𝑡)− 𝑉 )𝑢𝑗(𝑡) + 𝑞𝑖(𝑡)𝑢𝑐(𝑡), 𝑗 ∕= 𝑖 :

𝑑𝑖(𝑡) + 𝑒𝑖(𝑡) < 𝑞𝑖(𝑡), 𝑑𝑗(𝑡) + 𝑒𝑗(𝑡) > 𝑞𝑗(𝑡),

𝑐𝑗(𝑡) > 𝑑𝑗(𝑡) + 𝑒𝑗(𝑡). (32)

Proof: We arrange the coefficients in (28) and adjust
the weights 𝑐𝑖(𝑡), 𝑑𝑖(𝑡) and 𝑒𝑖(𝑡) to mimic the behavior of
the centralized case (A1). The objective function depends
on which source is assigned a higher rate, and is equal to
(𝑞𝑖(𝑡) − 𝑑𝑖(𝑡) − 𝑒𝑖(𝑡))𝜇̃𝑖(𝑡) + (𝑑𝑖(𝑡) + 𝑒𝑖(𝑡) − 𝑐𝑖(𝑡))𝜇̃𝑗(𝑡), if
𝜇̃𝑖(𝑡) ≥ 𝜇̃𝑗(𝑡), or (𝑞𝑖(𝑡) + 𝑒𝑖(𝑡) − 𝑐𝑖(𝑡))𝜇̃𝑖(𝑡) − 𝑒𝑖(𝑡)𝜇̃𝑗(𝑡), if
𝜇̃𝑖(𝑡) ≤ 𝜇̃𝑗(𝑡). For brevity, we will consider two subcases.
First, assume 𝑉 > 𝑞1(𝑡) + 𝑞2(𝑡), where the solution should
be 𝜇̃𝑗(𝑡) = 𝜇̃𝑖(𝑡) = 0 from (A1). If 𝑐𝑖(𝑡) < 𝑑𝑖(𝑡) + 𝑒𝑖(𝑡),
assuming 𝜇̃𝑖(𝑡) ≥ 𝜇̃𝑗(𝑡), the worst-case response is 𝜇̃𝑗(𝑡) = 0,
and if 𝑑𝑖(𝑡) + 𝑒𝑖(𝑡) > 𝑞𝑖(𝑡), 𝜇̃𝑖(𝑡) is selected as 0, resulting
in an objective value of 0. For 𝜇̃𝑖(𝑡) ≤ 𝜇̃𝑗(𝑡), the worst
case response is 𝜇̃𝑗(𝑡) = 0 for 𝑒𝑖(𝑡) < 0 and 𝜇̃𝑗(𝑡) =
𝑢𝑗(𝑡) if 𝑒𝑖(𝑡) > 0. For 𝑒𝑖(𝑡) < 0, the desired solution is
𝜇̃𝑖(𝑡) = 0 from the initial assumption 𝜇̃𝑖(𝑡) ≤ 𝜇̃𝑗(𝑡). For
𝑒𝑖(𝑡) > 0, the maximum value of the objective function is
(𝑞𝑖(𝑡)+𝑒𝑖(𝑡)− 𝑐𝑖(𝑡))𝑢𝑐(𝑡)−𝑒𝑖(𝑡)𝑢𝑐(𝑡) = (𝑞𝑖(𝑡)− 𝑐𝑖(𝑡))𝑢𝑐(𝑡).
With 𝑞𝑖(𝑡) < 𝑐𝑖(𝑡), the objective value is negative and the
overall rate selection is 𝜇̃𝑖(𝑡) = 0. Changing the indices 𝑖 and
𝑗 results in the symmetric solutions.

Next, assume 𝑞1(𝑡) + 𝑞2(𝑡) > 𝑉 > max(𝑞1(𝑡), 𝑞2(𝑡)).
For 𝜇̃𝑖(𝑡) ≥ 𝜇̃𝑗(𝑡), by selecting 𝑐𝑖(𝑡) > 𝑑𝑖(𝑡) + 𝑒𝑖(𝑡),
the worst-case response is to maximize 𝜇̃𝑗(𝑡). However, if
𝑑𝑖(𝑡) + 𝑒𝑖(𝑡) > 𝑞𝑖(𝑡), source 𝑖 tends to reduce 𝜇̃𝑖(𝑡) to
𝑢𝑐(𝑡) because of the worst-case response from source 𝑗. Then,
the objective function is (𝑞𝑖(𝑡) − 𝑐𝑖(𝑡))𝑢𝑐(𝑡). The maximum
objective value achieved by assuming 𝜇̃𝑖(𝑡) ≤ 𝜇̃𝑗(𝑡) is also
equal to (𝑞𝑖(𝑡) − 𝑐𝑖(𝑡))𝑢𝑐(𝑡), with 𝜇̃𝑖(𝑡) = 𝑢𝑐(𝑡). Hence, the
overall solution is 𝜇̃𝑖(𝑡) = 𝑢𝑐(𝑡). The other two subcases for
(A1) are derived similarly. By setting 𝑑𝑖(𝑡)+𝑒𝑖(𝑡) < 𝑞𝑖(𝑡), the
rates of source 𝑖 are increased in accordance with the solution
of (A1).

VI. COST SHARING WITH 1-BIT QUEUE INFORMATION

For the individual cost optimization problem, we can further
simplify the transmission decisions by limiting the necessary
queue information to one bit, which distinguishes whether the
opponent’s queue exceeds a threshold, or not. Each source 𝑖
starts with one threshold 𝑉𝑖 (which is greater than 𝜇𝑚𝑎𝑥

𝑖 ), and
transmits with rate 𝜇𝑚𝑎𝑥

𝑖 if its queue size exceeds 𝑉𝑖. Source
𝑖 only needs to know whether the queue backlog 𝑞𝑗(𝑡) of the
other source 𝑗 ∕= 𝑖 exceeds the minimum of the maximum
service rates of both users 𝜇max = min𝑗=1,2

(
𝜇max
𝑗

)
, or not.

If so, a second threshold 𝜇𝑚𝑎𝑥 is introduced. Then, if the
queue size of source 𝑖 is between the two thresholds 𝜇𝑚𝑎𝑥

and 𝑉𝑖, source 𝑖 transmits with rate 𝜇𝑚𝑎𝑥. Shown in Figure
5, the resulting algorithm is

Fig. 5. Algorithm with 1-bit information, (A5), for Source 𝑖. 𝑖, 𝑗 = 1, 2.

𝜇̃𝑖(𝑡) =

⎧⎨
⎩
0, if 𝑞𝑖(𝑡) < 𝜇max,

0, if 𝜇max ≤ 𝑞𝑖(𝑡) < 𝑉𝑖, 𝑞𝑗(𝑡) < 𝜇max,𝑗 ∕= 𝑖,

𝜇max, if 𝜇max ≤ 𝑞𝑖(𝑡) < 𝑉𝑖, 𝑞𝑗(𝑡) > 𝜇max,𝑗 ∕= 𝑖,

𝜇max
𝑖 , if 𝑞𝑖(𝑡) ≥ 𝑉𝑖.

(A5)
We will show in Section VIII that the cost performance

of (A5) is very close to the centralized algorithm, especially
as we increase the threshold 𝑉 . Note that (A5) has a similar
structure as the algorithm proposed in [5], where two queues
in the relay store packets incoming from two sources. If both
relay queues are nonempty, two packets, one from each relay
queue, are network-coded and transmitted by the relay. If one
of the relay queues is empty, there is no transmission unless
the backlogged queue length exceeds a fixed threshold (the
buffer capacity). However, in [5], the system is not slotted
and the scheduling decisions are carried out at the instants
of packet arrivals, and the combined queue state can change
at most by 1, allowing a Markov chain analysis for the
decoupled source queues. However, in this paper the number
of packet arrivals per time slot may be arbitrary, leading to
more complex transitions between the two queue states.

VII. COST SHARING WITH LOCAL QUEUE INFORMATION

Next, we assume that sources do not have any information
about each other’s queue backlogs and make transmission
decisions as in stand-alone operation independent of each
other

𝜇̃𝑖(𝑡) =

{
0, if 𝑞𝑖(𝑡) = 0,

𝑢𝑖(𝑡) otherwise.
(A6)

The centralized solution (P1) couples the decisions of the
sources through minimizing the cost term max(𝜇1(𝑡), 𝜇2(𝑡)),
which can be approximated as max(𝑥, 𝑦) ≈ 𝑥+ 𝑦 − (𝑥−𝜎 +

𝑦−𝜎)
−1
𝜎 for large 𝜎 such that the centralized solution leads to

maximizing

𝐽𝑡𝑜𝑡(𝜇̃1(𝑡), 𝜇̃2(𝑡)) =(𝑞1(𝑡)− 𝑉 )𝜇̃1(𝑡)+(𝑞2(𝑡)− 𝑉 )𝜇̃2(𝑡)

− 𝑉 (𝜇̃1(𝑡)
−𝜎+𝜇̃2(𝑡)

−𝜎)
−1
𝜎 , (33)

which has the solution of the form:

𝜇̃𝑖(𝑡) =

{
min(𝑢𝑖(𝑡), 𝑓(𝑞𝑖(𝑡))𝜇𝑗(𝑡)), if 𝑞𝑖(𝑡) < 𝑉,

𝑢𝑖(𝑡), if 𝑞𝑖(𝑡) ≥ 𝑉,
(A7)

𝑖 ∕= 𝑗, 𝑖 = 1, 2, where 𝑓(𝑞𝑖(𝑡)) = ((1 − 𝑞𝑖(𝑡)
𝑉𝑖

)
𝜎

−1−𝜎 − 1)
1
𝜎 .

Each source 𝑖 has only local queue information and its rate
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TABLE I
SUMMARY OF THE PROPOSED COST SHARING ALGORITHMS

A1 Centralized optimal algorithm
A2 Individually optimal algorithm
A3 Worst-case response algorithm
A4 Best-case response algorithm
A5 Dynamic threshold-based algorithm

with 1-bit queue backlog information
A6 Stand-alone algorithm

without queue backlog information
A7 Queue estimation-based algorithm

without queue backlog information

linearly depends on the rate of the other source, which is
unknown in the decentralized operation at source 𝑖 and needs
to be estimated. Since the rate allocation depends on queue
backlog, this involves estimating the queue estimate of the
other source. In particular, by assuming that 𝑞𝑖(𝑡) < 𝑉 ,
𝑖 = 1, 2, the total cost 𝐽𝑡𝑜𝑡(𝜇̃1(𝑡), 𝜇̃2(𝑡)) increases in 𝜇̃1(𝑡),
if min(𝑞𝑖(𝑡), 𝜇

𝑚𝑎𝑥
𝑖 ) < 𝑓(𝑞𝑖(𝑡))min(𝑞𝑗(𝑡), 𝜇

𝑚𝑎𝑥
𝑗 ), and vice

versa. To move the solution to the equilibrium, each source 𝑖
estimates the queue backlog 𝑞𝑗 of source 𝑗 ∕= 𝑖 by solving

min(𝑞𝑖(𝑡), 𝜇
𝑚𝑎𝑥
𝑖 ) = 𝑓(𝑞𝑖(𝑡))min(𝑞𝑗(𝑡), 𝜇

𝑚𝑎𝑥
𝑗 ), 𝑖 = 1, 2, 𝑖 ∕= 𝑗.

(34)

If no valid solution is found for the estimate, source 𝑖
assumes that queue backlog of source 𝑗 exceeds 𝑉 and the
other source’s rate is 𝜇𝑚𝑎𝑥

𝑗 . After the queue estimates 𝑞𝑗(𝑡) are
found, the rate of the other source 𝜇̂𝑗(𝑡) is mapped from the
queue backlog estimate through an increasing function of 𝑞𝑗(𝑡)
which reaches 𝜇𝑚𝑎𝑥

𝑗 when 𝑞𝑗(𝑡) = 𝑉 . In particular, we choose

the mapping 𝜇̂𝑗 = (
𝑞𝑗
𝑉 )

𝜇𝑚𝑎𝑥
𝑗
𝑉 𝜇𝑚𝑎𝑥

𝑗 and each source 𝑖 indepen-
dently chooses the rate 𝜇𝑖(𝑡) = min(𝑢𝑖(𝑡), 𝑓(𝑞𝑖(𝑡))𝜇̂𝑗(𝑡)).

VIII. COMPARISON OF COST-DELAY TRADEOFFS

We compare the cost and delay of different algorithms sum-
marized in Table I. We assume Poisson traffic with symmetric
arrival rates 𝜆𝑖 = 𝜆, parameters 𝑉𝑖 = 𝑉 and transmission rates
𝜇max
𝑖 (𝑡) = 𝜇max, 𝑖 = 1, 2. The costs are shown in Figures 6

and 7 for 𝜇max = 5 and for 𝑉 = 10 and 25, respectively.
The centralized solutions outperform the individually optimal
ones. The average costs are high for low arrival rates, since it
is less likely that queues are backlogged and network coding
opportunities appear. The average cost is reduced, as the
parameter 𝑉 increases.

Figures 8 and 9 depict the average delay as function
of the average cost per packet for different values of 𝑉 .
For the centralized optimal problem, the usual energy-delay
tradeoff is observed, i.e., the energy cost decreases, as delay
increases, whereas the individual optimization problems may
deviate from this behavior because sources do not have full
information on each other’s queue backlogs. The average cost
per packet achieved by (A5) is very close to the centralized
algorithm (A1) and the delay is reduced while achieving the
near-optimal cost. This effect is due to (A5)’s property of
having a lower threshold, which causes sources to transmit
without their queue backlog having to exceed the original
threshold 𝑉 (whenever both source queues are backlogged)
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Fig. 6. Cost per packet as function of common arrival rate for 𝑉 = 10.
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Fig. 7. Cost per packet as function of common arrival rate for 𝑉 = 25.

such that the average delay is reduced. It is readily seen that
(A7) outperforms other rate allocation algorithms with only
local queue information, while providing low delay. Although
(A6) provides low delay by always attempting to transmit,
the cost per packet might be greater than the optimal value 1

2
even if both sources transmit simultaneously, since it is likely
to have a mismatch between the number of packets transmitted
from each source.

IX. CONCLUSION

We considered the problem of minimizing the cost at a relay
node that exchanges packets by network coding or routing
depending on the availability of randomly arriving traffic at
both sources. The cost is shared by the sources depending on
their rate allocation over the relay. We considered different
levels of source cooperation and availability of QSI at the
sources. First, we derived the centralized control scheme to
jointly optimize the cost and stable rates. For distributed
operation, sources share the cost of network coding for their
packets, whereas the residual cost for plain routing is charged
to the source with higher rate requirement.

If sources are selfish with individual objectives, cost sharing
with network coding couples them in a rate allocation game.
We derived the Nash equilibrium strategies and evaluated the
non-cooperative cost-delay tradeoffs. Then, we showed that
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Fig. 8. Cost per packet as function of packet delay, 𝜆 = 1, 𝜇max = 5.
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Fig. 9. Cost per packet as function of packet delay, 𝜆 = 4, 𝜇max = 5.

pricing at the relay for the worst-case response can achieve the
cost-optimal operation. We also relaxed the QSI assumption
and considered simple rate allocation schemes, where sources
either have one bit or no information on the queue state of
each other. With one bit QSI, the threshold-based algorithms
approach the optimal cost, whereas the packet delay does not
increase with the threshold as fast as the centralized cost-
optimal scheme. This leads to new cost-delay tradeoffs for
network coding.

Future work includes analysis of an arbitrary number
of sources communicating over the relay node. This set-
ting would require understanding multiuser interactions under
stochastic traffic that go beyond pairwise packet matching and
can lead to interesting new performance tradeoffs.
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