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Extrinsic Channel-Like Fingerprint Embedding for
Authenticating MIMO Systems

Nate Goergen, W. Sabrina Lin, K. J. R. Liu, T. Charles Clancy

Abstract—A framework for introducing an extrinsic finger-
print signal to space-time coded transmissions at the physical
layer is presented, where the fingerprint signal conveys a low
capacity cryptographically secure authentication message of ar-
bitrary length. The multi-bit digital fingerprint message conveyed
by the fingerprint signal is available to all users within reception
range and is used to authenticate the fingerprinted transmission.
A novel approach is discussed where the fingerprint signaling
mechanism mimics distortions similar to time-varying channel
effects. Specifically, the fingerprint is detectable to receivers
considering previous channel state information, but will be
ignored by receivers equalizing according to current channel state
information. Two example fingerprint signaling mechanisms and
detection rules are presented based on pulse-amplitude keying
and phase-shift keying approaches. The methods for obtaining
the real (intrinsic) channel estimate, the extrinsic fingerprint
message, and the primary transmission are analytically demon-
strated using general pilot embedding schemes. The worst-case
distortions caused by non-ideal equalization of a fingerprinted
message are derived using the 2x2 Alamouti code. Simulation
results including bit error rate (BER) and model mismatch error
using a maximum-likelihood (ML) receiver are presented for both
the primary and fingerprint signal, while authentication signal
BERs lower than the primary signal are demonstrated.

Index Terms—MIMO, spectrum sensing, dynamic spectrum
access, authentication, physical-layer, primary user authentica-
tion.

I. INTRODUCTION

W ITH the widespread adoption of wireless communica-
tion, the security of wireless systems has become an

extensively researched topic. While cryptographic methods at
higher layers have been widely used to authenticate wireless
users and prevent interception of transmissions by malicious or
unintended users, the ability to authenticate and classify wire-
less transmissions at the physical (PHY) layer has a number
of advantages over higher-layer approaches. Authentication at
the PHY-layer, before demodulating and decoding the signal,
can prevent wasteful processing of unintended transmissions
and allows nodes to quickly authenticate legitimate users
and implicate charlatans. Additionally, PHY-layer approaches
provide a completely independent authentication mechanism
decoupled from higher-layer authentication devices or proto-
cols, allowing the authentication mechanism to be invariant
of higher-level protocol changes or revisions. In general,
robust authentication devices are crucial to securing wireless
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systems against message forgery and the malicious actions of
impostors, thereby preventing a number of identity attacks to
next-generation wireless systems [1], [2], [3], [4], [5].

Message fingerprinting, where a message conveying the
credentials of a data source is appended to the data, has been
successfully applied to multimedia systems allowing for secure
transmission of multimedia content [6]. The fingerprint mes-
sage is traditionally designed to be very small compared to the
bandwidth required by the primary transmission, to minimize
transmission overhead. Since very little capacity is required
to transmit the authentication message when compared to
the original transmission, and since the fingerprint processing
mechanism can have completely independent synchronization
requirements, robust physical layer fingerprint signals can
be designed to allow for signal authentication even when
the signal itself is unrecoverable due to low signal to noise
ratio (SNR) or fading conditions. This key advantage helps
address the needs of next-generation cooperative communica-
tion applications, such as Relaying and Dynamic Spectrum
Access, where nodes are required to operate correctly (i.e.
avoid occupied spectrum) even in scenarios when they cannot
decode the transmissions they receive.

With this approach we are fingerprinting the modulated,
PHY-layer signal and not the bits of the primary transmission’s
payload. A number of PHY-layer fingerprinting approaches for
wireless digital communications have been investigated, using
basic blind signal superposition methods. In [7] the super-
position of low-power pseudo random sequences on digital
television transmissions is discussed. In [8] and in [9] multi-
resolution approaches are considered for narrowband signals,
where a low-power fingerprint constellation is superimposed
onto the main signal constellation. In [10] the innate charac-
teristics of radio hardware are used for device identification,
and in [11] general fingerprinting through superposition is
discussed.

The main disadvantage of blind superposition is that the
fingerprint signal appears as additional noise in the primary
signal and is fully present when the signal is decoded, re-
sulting in decreased SNR for the original signal. Instead, we
investigate a fingerprinting approach that exploits how the
primary signal will be distorted by the channel and perceived
by the recipient, resulting in improved fingerprint designs.
As a result, the undesirable effects of the fingerprint signal
associated with blind superposition approaches [8] and [9]
can be partially removed by the receiver through traditional
channel equalization practices.

In [12] it was demonstrated that robust PHY-layer fin-
gerprints can be obtained from intrinsic characteristics of
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wireless channels, such as unique scattering environments
and spatial variability, to authenticate the transmitter without
additional signal superposition. This work demonstrated that
transmitters can be validated when the multipath channel
profiles for each transmitter are unique and sufficiently station-
ary. However, when channel conditions are not conducive to
intrinsic fingerprint recognition, due to either highly correlated
multipath profiles between transmitters or rapidly varying
channel conditions, a more robust fingerprint is required to
authenticate wireless nodes. We consider augmenting current
intrinsic channel-based authentication mechanisms with an
extrinsic synthetically-generated digital signal of an arbitrary
length in bits, that is applied by the transmitter to convey
a cryptographically secure digital signature along with the
primary transmission. The authentication message is broadcast
to all users allowing every user within range to authenticate
the primary transmission. We aim to design ’channel-like’
fingerprint signals that can be modeled as time-variant channel
distortions which are subsequently corrected at the receiver
through traditional channel equalization and synchronization
methods. In other words, the channel-like fingerprint signal
and intrinsic time-variant channel effects share the same signal
space. In our previous work [13], the details of a cryptograph-
ically secure arbitrary-length digital signature by using an
extrinsic channel-like fingerprint for narrowband single-input
single-output (SISO) digital television signals was considered.

In this paper we extend our work in [14], which considers
one fingerprinting function for Space-Time Coded (STC)
transmissions.

This paper is organized as follows. Section II introduces
the multiple-input multiple-output (MIMO) system model and
presents a framework for embedding a channel-like fingerprint
signal of an arbitrary length in bits. In Section III the ex-
traction of the intrinsic channel state, the extrinsic fingerprint
message, and the primary transmission are demonstrated.
Section IV presents two fingerprint signaling functions and
accompanying detection rules, and the performance of these
functions are derived. In Section V we discuss the structure
of a basic digital authentication message. In VI we present bit
error rate simulations for the example fingerprinting functions,
and in Section VII we present our conclusions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We assume the transmitter and receiver are MIMO systems
with 𝐿𝑡 transmit antennas and 𝐿𝑟 receive antennas, with a
STC transmitted at index 𝑡 described by matrix U[𝑡] of size
𝐿𝑡 × 𝑀 . The STC U[𝑡] transmitted across all 𝐿𝑡 transmit
antennas in 𝑀 time slots is a composite signal composed of
both the original STC transmission data, which will be referred
to as the primary signal, and pilot signals used for channel
estimation. When the fingerprinting function F[𝑡] is applied
by the transmitter to the ST block U[𝑡] before transmission,
the block received at the receiver Y[𝑡] ∈ 𝒞𝐿𝑟×𝑀 expressed in
matrix form is

Y[𝑡] = H[𝑡]F[𝑡]U[𝑡] + N[𝑡], (1)

where H[𝑡] ∈ 𝒞𝐿𝑟×𝐿𝑡 is the channel coefficient matrix
representing the intrinsic channel conditions experienced by

the fingerprinted block at time 𝑡, and F[𝑡] ∈ 𝒞𝐿𝑡×𝐿𝑡 is the
fingerprinting function applied to the transmission. The chan-
nel noise N[𝑡] is modeled as complex white Gaussian noise
with zero mean and variance (𝜎2/2)I(𝐿𝑟×𝑀). We assume the
elements of H[𝑡] to be independent Rayleigh fading and block-
stationary, where H[𝑡] remains constant over the block, or 𝑀
symbols.

We now briefly describe the pilot-embedding framework
presented in [15], which provides the edifice for the con-
struction of U[𝑡]. We will demonstrate how our channel-like
fingerprinting scheme conveys the fingerprint message through
strategic manipulation of the pilot signals used for channel
estimation, that are embedded in the transmission.

The transmission U[𝑡] consists of a ST code data-bearer
matrix D[𝑡] ∈ 𝒞𝐿𝑡×𝑁 and data-projection matrix A ∈ ℛ𝑁×𝑀 .
Here, 𝑁 is the number of time slots reserved exclusively for
data transmission, while time slots 𝑀 − 𝑁, 𝑁 < 𝑀 are
reserved for data mixed with embedded pilot signals. The ST
symbol U[𝑡] with embedded pilots signals, becomes

U[𝑡] = D[𝑡]A + P, (2)

where P ∈ ℛ𝐿𝑡×𝑀 is the pilot matrix. The salient point of this
data-bearing framework is that most pilot-embedding schemes
can be generalized through the superposition of the data-
bearing structure D[𝑡]A and the pilot matrix P[𝑡]. The data-
projection and pilot matrix satisfy the following properties:

AP𝐻 = 0 ∈ ℛ𝑁×𝐿𝑡 , AA𝐻 = I ∈ ℛ𝑁×𝑁

PP𝐻 = I ∈ ℛ𝐿𝑡×𝐿𝑡 .
(3)

The properties (3) of the data-projection matrix A and P
essentially allow A to project the data component D[𝑡] onto
the orthogonal subspace of the pilot matrix P, allowing for
signal demodulation by means of a Maximum Likelihood
(ML) receiver. The expanded form of the signal at the receiver
(1), with (2) becomes

Y[𝑡] =H[𝑡]X[𝑡]A + H[𝑡]F[𝑡]P + N[𝑡], (4)

where X[𝑡] = F[𝑡]D[𝑡] is the fingerprinted data transmission
before projection by A.

The heterogeneous wireless broadcast system we consider
has two types of receivers:

∙ The unaware receiver: Regular, unmodified, MIMO re-
ceivers that will ignore the fingerprint signal and employ
traditional channel equalization and data detection

∙ The aware receiver: Receivers designed to detect and
decode the fingerprint in addition to the primary signal

To the unaware receiver the distortions introduced by the
fingerprinting function F[𝑡] can be combined with the channel
distortions H[𝑡] and will be subsequently removed through
equalization. This is because we consider the case where the
fingerprinting function F[𝑡] is applied to both the pilot and
data signals of the transmission, consistent with the distortions
introduced by the intrinsic channel response. A MMSE equal-
izer operating on current CSI will reverse both the intrinsic and
extrinsic channel-like distortions using the block’s pilot signals
as reference. This process will be explained analytically in a
moment.
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The aware receiver must detect the fingerprinting signal in
the presence of time-variant channel distortions. We consider
the case where the intrinsic channel estimate H[𝑡] is delineated
from the extrinsic fingerprinting component F[𝑡] through pe-
riodic omission of the fingerprint signal F[𝑡], which will serve
as the channel sounding mechanism allowing for estimation
of the intrinsic channel state only. Under this assumption, the
coherence time of the channel will play an important role in
the detection probability of F[𝑡], since time-varying changes
in H[𝑡] will become noise when detecting F[𝑡].

Since channel coherence over many blocks is a strong
assumption for general time-variant channels [16], especially
in high mobility scenarios when channel state is quickly
changing, we consider here the most frequent channel sound-
ing case where the fingerprint signal is omitted every even
block and present on every odd block, yielding a finger-
print transmission with a 50 percent duty-cycle. With this
design, channel coherence over only two blocks is sufficient
for detecting our fingerprint message and a channel with
less stationary behavior will result in degraded performance.
Changing our time index to reflect this design, when 𝑡 = 2𝑀𝑘,
the fingerprint is not present in the transmission and F[𝑡] is
replaced by the identity matrix, I, for the channel sounding
block. When 𝑡 = 2𝑀𝑘 − 𝑀 , F[𝑡] is transmitted. Thus the
received signal with the fingerprinting function applied to
every other block transmission becomes

Y[𝑡] =

{
H[𝑡]U[𝑡] + N[𝑡], 𝑡 = 2𝑀𝑘,

H[𝑡]F[𝑡]U[𝑡] + N[𝑡], 𝑡 = 2𝑀𝑘 −𝑀. (5)

While (5) considers a differential modulation where the per-
ceived channel changes every block, in [13] channel-tracking
equalizers were discussed. This work demonstrated that when
equalizers that track channel state are employed, distortion
to the primary-signal can be avoided by simply extending
the symbol length of the fingerprinting function to be longer
than the forgetting period of the equalizer. By increasing the
length of the fingerprinting symbol, and thus decreasing the
authentication symbol rate, (5) can be extend to any scenario
where the equalizer ignores previous channel state beyond
some finite duration.

When the coherence time of the channel is large the
correlation between H[2𝑀𝑘] and H[2𝑀𝑘−𝑀 ] is significant,
and the fingerprint function can be decoded correctly with a
higher probability. Conversely, as the coherence time of the
channel decreases, there is less mutual information between
the current and outdated CSI and the performance of finger-
print decoder degrades. The correlation between time-varying
channel estimates are discussed in [17], [18] and [19].

To ensure fair analysis of the fingerprinting system, the
fingerprinting function is designed according to transmission
energy constraint

∣∣X[𝑡]∣∣𝐹 = ∣∣D[𝑡]∣∣𝐹 = 𝑃𝑜, (6)

where ∣∣ ⋅ ∣∣𝐹 represents the Frobenius norm. Therefore,
according to (5) the fingerprinting function F[𝑡] must be
designed such that ∣∣F[𝑡]∣∣𝐹 =

√
𝐿𝑡, maintaining an equi-

energy transmission for the period when the fingerprint is
present, i.e. during Y[2𝑀𝑘 − 𝑀 ], and when it is omitted,
i.e. during Y[2𝑀𝑘].

Extending the time-varying channel model used in [12] to
MIMO transmissions, we consider a generalized time-variant
channel response matrix for the intrinsic component of the
channel H[𝑡], where each scalar complex gain element 𝐻𝑖,𝑗 [𝑡]
for rows 𝑖 = 0, . . . , 𝐿𝑟 − 1 and columns 𝑗 = 0, . . . , 𝐿𝑡 − 1 is
the summation of three model components:

∙ A fixed time-invariant channel gain denoted 𝐻̄𝑖,𝑗 =
𝐸 [𝐻𝑖,𝑗 [𝑡]]

∙ A zero-mean time-variant channel gain component de-
noted 𝜇𝑖,𝑗 [𝑡]

∙ A zero-mean receiver noise component denoted 𝑁𝑖,𝑗 [𝑡],

where 𝐻̄𝑖,𝑗 is the mean of the random variable 𝐻𝑖,𝑗 [𝑡]. Thus,
𝐻𝑖,𝑗 [𝑡] becomes

𝐻𝑖,𝑗 [𝑡] = 𝐻̄𝑖,𝑗 + 𝜇𝑖,𝑗 [𝑡] +𝑁𝑖,𝑗 [𝑡]. (7)

While in general each mean of the channel gains, 𝐻̄𝑖,𝑗 , will
be changing in time, we will assume that this component will
remain stationary over the duration of the channel sounding
symbol and adjacent fingerprinted symbol in (5). We obtain
the following matrix definition for the time-varying channel

H[𝑡] =
(
H̄ + 𝝁[𝑡]

)
+N[𝑡] =⎡

⎢⎣
𝐻̄0,0 + 𝜇0,0[𝑡] . . . 𝐻̄0,𝐿𝑡−1 + 𝜇0,𝐿𝑡−1[𝑡]

...
. . .

...
𝐻̄𝐿𝑟−1,0 + 𝜇𝐿𝑟−1,0[𝑡]. . .̄𝐻𝐿𝑟−1,𝐿𝑡−1 + 𝜇𝐿𝑟−1,𝐿𝑡−1[𝑡]

⎤
⎥⎦

+

⎡
⎢⎣

𝑁0,0[𝑡] . . . 𝑁0,𝐿𝑡−1[𝑡]
...

. . .
...

𝑁𝐿𝑟−1,0[𝑡] . . . 𝑁𝐿𝑟−1,𝐿𝑡−1[𝑡]

⎤
⎥⎦ ,

(8)

where each element 𝑁𝑖,𝑗 [𝑡] is zero-mean complex Gaussian
noise with variance 𝜎2𝑁 representing the normalized receiver
noise projected on the pilot signals, assuming the projected
noise is uniformly distributed over P𝐻 (i.e. the pilot signals
are optimally embedded into the transmission). We model the
time-variant portion of the channel response gain for each
element of 𝝁[𝑡] corresponding as an independent first-order
autoregressive (AR-1) model. The AR-1 model has been used
to describe time-variant channels in previous works [11], and
[20], [12]. Assuming an average AR-1 noise power 𝜎2𝑇 over
all time-variant gain elements 𝜇𝑖,𝑗 [𝑡], the AR-1 model is given
as

𝜇𝑖,𝑗 [𝑡] = 𝑎𝜇𝑖,𝑗 [𝑡− 1] +
√
(1− 𝑎2)𝑢𝑖,𝑗 [𝑡]. (9)

The AR model coefficient 𝑎 in (9) represents the influence of
the previous time-variant channel gain component 𝜇𝑖,𝑗 [𝑡 − 1]
on the current estimate 𝜇𝑖,𝑗 [𝑡].The random component of the
time-variant channel 𝜇𝑖,𝑗 [𝑡] is represented in (9) by 𝑢𝑖,𝑗 [𝑡] ∼
𝒞𝒩 (0, 𝜎2𝑇 ), thus 𝐸 [𝜇𝑖,𝑗 [𝑡]] = 0, ∀𝑖, 𝑗. We consider the case
where the AR model coefficient 𝑎, and the noise power 𝜎2𝑇
are the same for each independent channel 𝑖, 𝑗.

III. FINGERPRINT ANALYSIS

Upon receiving the signal, the first step for both aware and
unaware receivers is channel estimation. The channel estima-
tion problem is to extract and estimate channel distortions in
the received signal (5) for performing channel equalization
and further recovering D[𝑡]. By post-multiplying both sides
of (5) by P𝐻 and using the properties in (3), the channel
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response H[𝑡] can be estimated from the received signal during
the channel-sounding symbol at 𝑡 = 𝜏0 = 2𝑀𝑘

Y[𝜏0]P
𝐻 = (H[𝜏0](D[𝜏0]A + P) + N[𝜏0])P𝐻

= H[𝜏0] + N[𝜏0]P𝐻 ,
(10)

where N[𝑡]P𝐻 , the channel estimate noise in (8), is the
projection of the noise vector onto pilot signals and represents
noise in the channel estimate.

Similarly the joint intrinsic and extrinsic channel distortions,
H[2𝑀𝑘] and F[𝑡], can be estimated from the received signal
(5) during the fingerprinted symbol at 𝜏1 = 2𝑀𝑘 −𝑀

Y[𝜏1]P
𝐻 = (H[𝜏1]F[𝜏1](D[𝜏1]A + P) + N[𝜏1])P𝐻

= (H[𝜏1]F[𝜏1]) + N[𝜏1]P𝐻 ,
(11)

Combining results from (10) and (11), the channel estimate at
the receiver, Ĥ[𝑡], becomes

Ĥ[𝑡] =

{
H[𝑡] + N[𝑡]P𝐻 , 𝑡 = 𝜏0 = 2𝑀𝑘,

H[𝑡]F[𝑡] + N[𝑡]P𝐻 , 𝑡 = 𝜏1 = 2𝑀𝑘 −𝑀, (12)

where N[𝑡]P𝐻 is the normalized projected channel estimate
noise. Since N[𝑡] is uniformly distributed Gaussian noise, and
since proper design of P should ensure that pilot symbols are
placed such that channel conditions are uniformly estimated
throughout the ST block, then N[𝑡]P𝐻 should also have a
uniform noise distribution.

A. Data Recovery

After the channel has been estimated via (10) and (11), the
next step preformed by the receiver is the recovery of the
transmitted data D[𝑡]. By post-multiplying both sides of (5)
by A𝐻 and using the properties (3), the data signal D[𝑡] can
be extracted from the received signal (5) during the channel-
sounding symbol transmitted at 𝜏0 = 2𝑀𝑘, i.e.

Y[𝜏0]A
𝐻 = H[𝜏0]D[𝜏0] + N[𝜏0]A

𝐻 . (13)

For the sake of exposition, we consider here the case where
the number of transmit antenna and the number of receive
antenna are equal, or 𝐿𝑟 = 𝐿𝑡, and that Ĥ[𝑡] is invertible,
which is the case considered later in simulation. Inversion
for the case when 𝐿𝑟 ∕= 𝐿𝑡 is obtainable via a number of
methods such as the pseudoinverse, however this topic is
beyond the scope of this paper . An estimate for the intrinsic
channel response Ĥ[𝜏0] is produced via (10), and thus the
data signal can be recovered by pre-multiplying (13) by the
inverse of the normalized channel estimate produced by the
MMSE estimator, or Ĥ−1[𝜏0]. When the channel is perfectly
estimated for either the 𝜏0 or 𝜏1 block, i.e.

Ĥ−1[𝑡] = H−1[𝑡], 𝑡 = 𝜏0 or 𝜏1 (14)

the extracted data signal at 𝑡 = 𝜏0 = 2𝑀𝑘 is

D̂[𝜏0] =Ĥ−1[𝜏0]Y[𝜏0]A
𝐻

=D[𝜏0] + Ĥ−1[𝜏0]N[𝜏0]A
𝐻 .

(15)

Similarly, when post-multiplying by A𝐻 for 𝑡 = 𝜏1 = 2𝑀𝑘−
𝑀

Y[𝜏1]A
𝐻 = H[𝜏1]F[𝜏1]D[𝜏1] + N[𝜏1]A

𝐻 , (16)

an estimate for the intrinsic channel response combined with
the extrinsic response Ĥ[𝜏0]F[𝜏1] is produced via (11) and
the data signal can be recovered by pre-multiplying (16) by(
Ĥ[𝜏1]F[𝜏1]

)−1

. For the perfectly estimated channel (14) the
extracted data signal at 𝑡 = 𝜏1 = 2𝑀𝑘 −𝑀 becomes

D̂[𝜏1] = D[𝜏1] +
(
Ĥ[𝜏1]F[𝜏1]

)−1

N[𝜏1]A
𝐻 . (17)

We note that from (11) and (17) it has been shown that the
data signal D[𝜏1] can be recovered from Y[𝜏1] in the presence
of the fingerprinting distortion F[𝜏1] without explicitly extract-
ing and detecting the fingerprinting function F[𝜏1]. Thus the
primary transmission in the proposed fingerprinting system
can be recovered independently from the fingerprint detection
by both the aware and unaware receivers.

A further advantage to the proposed system is that channel
estimates obtained during (10) and (11), and subsequent chan-
nel equalization steps preformed in (15) and (17) are identical
steps taken by an unmodified/unaware receiver. Thus, we have
demonstrated that the fingerprinted signal is received by un-
aware receivers without modification to the receiver, channel
estimation procedure, or equalization device when generalized
pilot embedding and channel estimation are employed.

B. Fingerprint Detection

We now consider two methods for detecting the fingerprint
signal given the sequence of channel state information in (12).

The first detection rule, also considered in [12], is the differ-
ential channel estimate denoted Z𝑆𝑈𝐵 [𝜏1, 𝜏0]. This detection
rule is useful for detecting amplitude differences between the
even and odd block transmissions in (5), i.e. our differential
fingerprint signaling method, and is obtained by subtracting
the sounding symbol estimate from the fingerprinted symbol
estimate. Under the assumption that the fingerprinting function
is transmitted independently from the channel response, their
difference becomes

𝐸 [Z𝑆𝑈𝐵 [𝜏1, 𝜏0]] = 𝐸
[
Y[𝜏1]P𝐻 −Y[𝜏0]P𝐻

]
=𝐸
[
H̄F[𝜏1]

]
+ 𝐸 [𝝁[𝜏1]F[𝜏1]] + 𝐸 [N[𝜏1]]−

𝐸
[
H̄
]− 𝐸 [𝝁[𝜏0]]− 𝐸 [N[𝜏0]]

=H̄F[𝜏1]− H̄.

(18)

From (18) we note that this detector is unbiased, since only
the means H̄ and F[𝑡] are present.

We also consider the Hadamard product, or element-wise
product between two matrices, for detecting fingerprinting
functions perturbing signal phase. Denoted Z𝐻𝐴𝐷[𝜏1, 𝜏0], this
detection rule is the element-wise product between the channel
sounding estimate and the conjugate of the fingerprinted
channel estimate, and is given as

𝐸 [Z𝐻𝐴𝐷[𝜏1, 𝜏0]] = 𝐸
[(
Y[𝜏1]P𝐻

) ∘ (Y[𝜏0]P𝐻
)∗]

=𝐸
[(
H̄F[𝜏1]

) ∘ H̄∗]+ 𝐸 [(H̄F[𝜏1]
) ∘ 𝝁∗[𝜏0]

]
+

𝐸 [N[𝜏1] ∘𝝁∗[𝜏0]] + 𝐸 [(𝝁[𝜏1]F[𝜏1]) ∘N∗[𝜏0]] +

𝐸
[
(𝝁[𝜏1]F[𝜏1]) ∘ H̄∗]+ 𝐸 [N[𝜏1] ∘ H̄∗]+

𝐸 [(𝝁[𝜏1]F[𝜏1]) ∘ 𝝁∗[𝜏0]] + 𝐸 [N[𝜏1] ∘N∗[𝜏0]] +

𝐸
[(
H̄F[𝜏1]

) ∘N∗[𝜏0]
]

=∣∣H̄∣∣2F[𝜏1],

(19)
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where (∘) represents the Hadamard product and (∗) represents
conjugation. Here the perturbation factor can be extracted from
the argument of the product of the individual scalar estimates.
We will use these two detectors in the following fingerprint
examples and demonstrate their performance.

IV. SOME FINGERPRINTING SCENARIOS

We now consider some simple fingerprinting functions as
candidates for F[𝑡]. We will give examples for each fingerprint-
ing function using the 2x2 Alamouti code [21] according to the
polar representation of the complex valued intrinsic channel
model (8), i.e.

H[𝑡] =

[
𝐻̄0,0 + 𝜇0,0[𝑡] 𝐻̄0,1 + 𝜇0,1[𝑡]
𝐻̄1,0 + 𝜇1,0[𝑡] 𝐻̄1,1 + 𝜇1,1[𝑡]

]

+

[
𝑁0,0[𝑡] 𝑁0,1[𝑡]
𝑁1,0[𝑡] 𝑁1,1[𝑡]

]

=

[
𝛼1𝑒

𝑗𝜃1 𝛼3𝑒
𝑗𝜃3

𝛼2𝑒
𝑗𝜃2 𝛼4𝑒

𝑗𝜃4

]
+

[
𝜇1[𝑡] 𝜇3[𝑡]
𝜇2[𝑡] 𝜇4[𝑡]

]
+[

𝑁1[𝑡] 𝑁3[𝑡]
𝑁2[𝑡] 𝑁4[𝑡]

]
,

(20)

where the indices {𝑖, 𝑗} are serialized to 1, 2, . . . , 𝐿𝑡𝑀 first
column-wise and then row-wise, for simplicity of notation.
Here 𝐻̄𝑖,𝑗 is represented in polar form, with amplitude
𝛼𝑥, 𝑥 = 1, . . . ,𝑀𝐿𝑡 and angle 𝜃𝑥, 𝑥 = 1, . . . ,𝑀𝐿𝑡. In
the case of the 2x2 code, 𝑁 = 𝐿𝑡 = 2.

A. Antenna Amplitude Modulation (AAM)

The first fingerprinting function we consider introduces a
gain offset of 𝜖 between symbols to be transmitted by each
antenna such that the overall transmission energy constraint is
withheld. This function can also be thought of as a modulation
of the gain of each antenna, and will be designated with the
subscript 𝐴𝐴𝑀 . The antenna gain fingerprinting function for
the 2x2 code (i.e. 𝐿𝑡 = 2, 𝑀 = 3, 𝑁 = 2) can be represented
as

F𝐴𝐴𝑀 [𝑡] = 𝛾

[
1− 𝜖 0
0 1 + 𝜖

]
, ∣𝜖∣ < 1, (21)

where 𝛾 is a normalization constant used to maintain the con-
stant energy constraint as in (6). For the 𝐴𝐴𝑀 fingerprinting
function this normalization constant becomes

𝛾 =
1√

1 + 𝜖2
. (22)

Since the 𝐴𝐴𝑀 fingerprinting function perturbs the amplitude
of transmitted symbols, we apply the differential channel test
statistic (18) to detect amplitude distortions between channel
estimates. Using (18) and (20) applied to the 𝐴𝐴𝑀 fingerprint
function (21), test statistic for the 2x2 Alamouti code, denoted
Z𝐴𝐴𝑀 [𝜏1, 𝜏0], becomes

Z𝐴𝐴𝑀 [𝜏1, 𝜏0] = 𝐸 [Z𝑆𝑈𝐵 [𝜏1, 𝜏0]] = H̄F[𝜏1]− H̄

=

[
𝛼1(1− 𝜖)𝑒𝑗𝜃1 𝛼3(1 + 𝜖)𝑒

𝑗𝜃3

𝛼2(1− 𝜖)𝑒𝑗𝜃2 𝛼4(1 + 𝜖)𝑒
𝑗𝜃4

]
−[

𝛼1𝑒
𝑗𝜃1 𝛼3𝑒

𝑗𝜃3

𝛼2𝑒
𝑗𝜃2 𝛼4𝑒

𝑗𝜃4

]
=

[−𝜖𝛼1𝑒
𝑗𝜃1 𝜖𝛼3𝑒

𝑗𝜃3

−𝜖𝛼2𝑒
𝑗𝜃2 𝜖𝛼4𝑒

𝑗𝜃4

]
.

(23)

The estimates received in each time slot 𝑖 = 0, . . . , 𝑁 − 1
for each antenna 𝑗 = 0, 1 in (23), 𝑍𝐴𝐴𝑀𝑖,𝑗 , can be combined
by subtracting the amplitude of the estimates corresponding
to the signals received by each antenna, i.e. the columns of
(23). The ensemble estimate for 𝜖 becomes,

𝜖 =

𝑁−1∑
𝑖=0

Re{ZAAMi,1 [𝜏1 , 𝜏0 ]} −
𝑁−1∑
𝑖=0

Re{ZAAMi,0 [𝜏1 , 𝜏0 ]}

= (𝜖𝛼3 + 𝜖𝛼4)− (−𝜖𝛼1 − 𝜖𝛼2) = 𝜖𝜆, 𝜆 =

𝐿𝑡𝑁∑
𝑖=1

𝛼𝑖,

(24)

is the total channel gain measured during the sounding symbol
transmitted at 𝑡 = 𝜏0.

From (24) we see that the performance of the test signal
Z𝐴𝐴𝑀 [𝜏1, 𝜏0] depends on the aggregate signal gain of the
channel 𝜆 and the value chosen for the perturbation amplitude
𝜖. Therefore when using the 𝐴𝐴𝑀 fingerprinting function
we conclude that the symbol error rate (SER) for the au-
thentication signal, and thus the detection performance of
the fingerprint for the aware receiver, can be improved by
increasing 𝜖 at the transmitter.

To analyze the performance of this fingerprinting function,
we must also compute the variance of the test statistic. This
computation, similar to the proof in [12], becomes

𝑉 𝑎𝑟 [Z𝑆𝑈𝐵[𝜏1, 𝜏0]]

= 𝑉 𝑎𝑟
[(
H[𝜏1]F[𝜏1] + N[𝜏1]P

𝐻
)− (H[𝜏0] + N[𝜏0]P

𝐻
)]

= 𝑉 𝑎𝑟 [𝝁[𝜏1]F[𝜏1]] + 𝑉 𝑎𝑟 [𝝁[𝜏0]] + 𝑉 𝑎𝑟
[
N[𝜏1]P𝐻

]
− 2𝐶𝑜𝑣 [𝝁[𝜏1]F[𝜏1],𝝁[𝜏0]] + 𝑉 𝑎𝑟

[
N[𝜏0]P𝐻

]
.

(25)

Due to the design of the 𝐴𝐴𝑀 fingerprinting function, the
gain of the 𝑗𝑡ℎ column of (23) is either increased or decreased
by the perturbation factor 𝜖, thus (25) becomes

𝑉 𝑎𝑟 [Z𝑆𝑈𝐵 [𝜏1, 𝜏0]] ={
𝜎2𝑇 (1+(1− 2𝑎)(1− 𝜖)2) + 𝜎2𝑁 , 𝑗=0, 𝑖=0, . . . , 𝑁−1
𝜎2𝑇 (1+(1− 2𝑎)(1 + 𝜖)2) + 𝜎2𝑁 , 𝑗=1, 𝑖=0, . . . , 𝑁−1.

(26)

Therefore, the total variance of the estimate (24) for the 2x2
code becomes

𝜎2𝜖 = 𝑉 𝑎𝑟 [𝜖] =
𝜎2𝑇 (2(1− 𝑎) + 𝜖2(1− 2𝑎)) + 𝜎2𝑁

𝐿𝑡𝑁
. (27)

If we select a typical antipodal binary signal constellation for
the 𝐴𝐴𝑀 fingerprint function F with parameter 𝜖, i.e.

F𝐴𝐴𝑀 [𝑡] ∈
{
𝛾

[
1− 𝜖 0
0 1 + 𝜖

]
, 𝛾

[
1 + 𝜖 0
0 1− 𝜖

]}
, (28)

it can be shown that the symbol error rate for the maximum-
likelihood fingerprint detector detecting the transmitted fin-
gerprint function F from the noisy estimate at the receiver F̂
is

𝑃
[
F̂ ∕= F

]
= 𝑄

⎛
⎝
√

2𝜖2𝜆2

𝜎𝜖

⎞
⎠ , (29)

where 𝑄(⋅) is the Gaussian tail function. We note that the
variance (27) decreases linearly as the number of elements in
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the code increases, i.e. as 𝐿𝑡 or 𝑁 increase, however we also
note that the variance also increases quadratically in 𝜖.

B. AAM Fingerprint Distortion

We now consider the distortions experienced by the Max-
imum Ratio Combining (MRC) decoder operating on the
2x2 Alamouti code when equalizing the 𝐴𝐴𝑀 -fingerprinted
signal Y[𝜏1] according to an incorrect channel estimate that
considers only the intrinsic channel estimate, i.e. if H[𝜏0]
were used as the channel estimate for a symbol transmitted
at 𝑡 = 𝜏1 = 2𝑘 instead of H[𝜏1]F[𝜏1]. This important
result delineates the worst-case degradation in performance
the MRC receiver would experience due to channel model
estimate mismatch, which generally destroys the orthogonality
of the signals in the transmitted space-time code D[𝑡]. These
distortions might be applicable to unaware receivers with non-
adaptive equalization, and demonstrates how the perturbation
parameter 𝜖 must be carefully chosen to limit maximum
signal degradation when considering a heterogeneous system
of receivers. For the 2x2 Alamouti code,

D[𝑡] =

[
𝑑1 −𝑑∗2
𝑑2 𝑑∗1

]
, (30)

the transmitted symbol X[𝑡] with fingerprinting function (21)
becomes

X𝐴𝐴𝑀 [𝑡] =

[
1− 𝜖 0
0 1 + 𝜖

] [
𝑑1 −𝑑∗2
𝑑2 𝑑∗1

]

=

[
𝑑1(1− 𝜖) −𝑑∗2(1− 𝜖)
𝑑2(1 + 𝜖) 𝑑∗1(1 + 𝜖)

]
.

(31)

The data signal estimate using MRC on the extracted data
(15), using (20) becomes

Y𝐴𝐴𝑀 [𝑡] =

[
𝑟1 𝑟3
𝑟2 𝑟4

]
+ N[𝑡]P𝐻 , (32)

where

𝑟1 = 𝛼1𝑑1(1− 𝜖)𝑒𝑗𝜃1 + 𝛼3𝑑2(1 + 𝜖)𝑒
𝑗𝜃3

𝑟3 = −𝛼1𝑑
∗
2(1− 𝜖)𝑒𝑗𝜃1 + 𝛼3𝑑

∗
1(1 + 𝜖)𝑒

𝑗𝜃3

𝑟2 = 𝛼2𝑑1(1− 𝜖)𝑒𝑗𝜃2 + 𝛼4𝑑2(1 + 𝜖)𝑒
𝑗𝜃4

𝑟4 = −𝛼2𝑑
∗
2(1− 𝜖)𝑒𝑗𝜃2 + 𝛼4𝑑

∗
1(1 + 𝜖)𝑒

𝑗𝜃4 .

(33)

The estimates of the received signal using an MRC receiver
with model mismatch distortion from the fingerprinting func-
tion present are given as

𝑑1𝐴𝐴𝑀 = 𝛼̂1𝑒
−𝑗𝜃1
(
𝛼1𝑑1(1− 𝜖)𝑒𝑗𝜃1 + 𝛼3𝑑2(1 + 𝜖)𝑒

𝑗𝜃3
)

+ 𝛼̂2𝑒
−𝑗𝜃2
(
𝛼2𝑑1(1− 𝜖)𝑒𝑗𝜃2 + 𝛼4𝑑2(1 + 𝜖)𝑒

𝑗𝜃4
)

+ 𝛼̂3𝑒
𝑗𝜃3
(−𝛼1𝑑2(1 − 𝜖)𝑒−𝑗𝜃1 + 𝛼3𝑑1(1 + 𝜖)𝑒

−𝑗𝜃3
)

+ 𝛼̂4𝑒
𝑗𝜃4
(−𝛼2𝑑2(1 − 𝜖)𝑒−𝑗𝜃2 + 𝛼4𝑑1(1 + 𝜖)𝑒

−𝑗𝜃4
)

+ 𝜂1,

𝑑2𝐴𝐴𝑀 = 𝛼̂3𝑒
−𝑗𝜃3
(
𝛼1𝑑1(1− 𝜖)𝑒𝑗𝜃1 + 𝛼3𝑑2(1 + 𝜖)𝑒

𝑗𝜃3
)

+ 𝛼̂4𝑒
−𝑗𝜃4
(
𝛼2𝑑1(1− 𝜖)𝑒𝑗𝜃2 + 𝛼4𝑑2(1 + 𝜖)𝑒

𝑗𝜃4
)

− 𝛼̂1𝑒
𝑗𝜃1
(−𝛼1𝑑2(1 − 𝜖)𝑒−𝑗𝜃1 + 𝛼3𝑑1(1 + 𝜖)𝑒

−𝑗𝜃3
)

− 𝛼̂2𝑒
𝑗𝜃2
(−𝛼2𝑑2(1 − 𝜖)𝑒−𝑗𝜃2 + 𝛼4𝑑1(1 + 𝜖)𝑒

−𝑗𝜃4
)

+ 𝜂2.
(34)

where

𝜂1 = 𝛼1𝑒
−𝑗𝜃1𝑁1 + 𝛼2𝑒

𝑗𝜃2𝑁∗
2+

𝛼3𝑒
−𝑗𝜃3𝑁3 + 𝛼4𝑒

𝑗𝜃1𝑁∗
4 ,

𝜂2 = −𝛼1𝑒
𝑗𝜃1𝑁∗

2 + 𝛼2𝑒
−𝑗𝜃2𝑁1−

𝛼3𝑒
𝑗𝜃3𝑁∗

4 + 𝛼4𝑒
−𝑗𝜃1𝑁3,

(35)

represent the the combined receiver noise in the estimates of
𝑑1 and 𝑑2, respectively. In (34), 𝛼̂1, 𝛼̂2, 𝛼̂3, 𝛼̂4 are the complex
channel gain estimates for the intrinsic channel given by (20),
produced by the receiver during H[2𝑀𝑘], 𝜃1, 𝜃2, 𝜃3, 𝜃4 are the
channel phase estimates, and 𝑁1, 𝑁2, 𝑁3, 𝑁4 are the elements
of N[𝑡]P𝐻 . We consider the case where the intrinsic channel
component is perfectly coherent over the channel sounding
symbol and the fingerprinted symbol, thus the time-variant
component 𝝁[𝑡] of (20) is omitted, i.e. 𝝁[𝜏1] = 𝝁[𝜏0] = 0,
thus in the noiseless case, when N[𝜏1] = N[𝜏0] = 0, the
channel estimates for 𝑡 = 𝜏1 and 𝑡 = 𝜏0 are equal

Ĥ[𝜏1] = Ĥ[𝜏0], (36)

thus the estimates for channel amplitude and phase have
perfectly determined the intrinsic channel response, or

Ĥ[𝑡] = H[𝑡]=

[
𝛼̂1𝑒

𝑗𝜃1 𝛼̂3𝑒
𝑗𝜃3

𝛼2𝑒
𝑗𝜃2 𝛼̂4𝑒

𝑗𝜃4

]
=

[
𝛼1𝑒

𝑗𝜃1 𝛼3𝑒
𝑗𝜃3

𝛼2𝑒
𝑗𝜃2 𝛼4𝑒

𝑗𝜃4

]
, (37)

leaving only distortions due to the presence of the extrinsic
fingerprint. Using (37), after some manipulation, (34) becomes

𝑑1𝐴𝐴𝑀 = (𝜆 − 𝜖(𝛼1 + 𝛼2 − 𝛼3 − 𝛼4))𝑑1+

2𝜖(𝛼1𝛼3𝑒
𝑗(𝜃3−𝜃1) + 𝛼2𝛼4𝑒

𝑗(𝜃4−𝜃2))𝑑2 + 𝜂1,

𝑑2𝐴𝐴𝑀 = (𝜆 − 𝜖(𝛼1 + 𝛼2 − 𝛼3 − 𝛼4))𝑑2−
2𝜖(𝛼1𝛼3𝑒

𝑗(𝜃1−𝜃3) + 𝛼2𝛼4𝑒
𝑗(𝜃2−𝜃4))𝑑1 + 𝜂2,

(38)

From (38) we notice that an AAM-fingerprinted Alamouti
code improperly equalized according to outdated CSI (i.e. CSI
that does not reflect the distortions introduced by the finger-
printing function), is degraded in amplitude by an amount
proportional to 𝜖. Specifically, the estimate for 𝑑1 is degraded
in amplitude by 𝜖(−𝛼1−𝛼2) and a cross signal is introduced
from the 𝑑2 signal proportional to 2𝜖. Similar distortions are
experienced for the 𝑑2 symbol, which is also degraded by
𝜖(−𝛼1 − 𝛼2). These are the worse-case distortions incurred
due to channel model estimate miss-match when using (21) as
a fingerprinting function, and demonstrates the importance of
selecting 𝜖 when considering receivers with lower performance
equalizers. For example, when the equalizer used by a receiver
has a particularly slow learning curve, or if there is delay
between when the channel is estimated and when this estimate
can be used for equalization, the receiver can equalize the
channel according to an outdated channel model and thus
model mismatch distortions will occur.

We note that when the data symbol D[𝑡] is equalized
and decoded according to current CSI, (10) and (11), the
intrinsic and extrinsic channel distortions will be corrected
when decoding the symbols D[𝜏0] and D[𝜏1]. Thus, when
channel model mismatch error during the fingerprinted symbol
(14) is omitted, D[𝑡] will be recovered using the MMSE
channel estimate according to (16) and (17). The primary
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signal estimates for the 2x2 Alamouti code when the antenna
amplitude offset is properly corrected by equalization becomes

𝑑1 = 𝜆(2)𝑑1 + 𝜂1, 𝑑2 = 𝜆(2)𝑑2 + 𝜂2, 𝜆(2) =

𝐿𝑡𝑁∑
𝑖=1

𝛼2
𝑖 ,

(39)

which is the anticipated performance for the 2x2 MRC Alam-
outi decoder with the perfect channel estimation assumption.

C. Antenna Phase Modulation (APM)

We now consider a fingerprinting function that introduces
a phase offset between the signals to be transmitted by each
antenna, denoted with the subscript 𝐴𝑃𝑀 . The fingerprinting
function for the 2x2 code can be written

F𝐴𝑃𝑀 [𝑡] =

[
𝑒−𝑗𝜖 0
0 𝑒𝑗𝜖

]
, 0 ≤ 𝜖 < 2𝜋. (40)

Since the 𝐴𝑃𝑀 fingerprinting function introduces a phase
perturbation, we apply the Hadamard product detector (19).
The 𝐴𝑃𝑀 fingerprinting function in (40) and equation (20)
for the 2x2 code becomes

Z𝐴𝑃𝑀 [𝜏1, 𝜏0] = 𝐸 [Z𝐻𝐴𝐷[𝜏1, 𝜏0]]

= 𝐸

[[
𝛼1𝑒

𝑗(𝜃1−𝜖) 𝛼3𝑒
𝑗(𝜃3+𝜖)

𝛼2𝑒
𝑗(𝜃2−𝜖) 𝛼4𝑒

𝑗(𝜃4+𝜖)

]
∘
[
𝛼1𝑒

−𝑗𝜃1 𝛼3𝑒
−𝑗𝜃3

𝛼2𝑒
−𝑗𝜃2 𝛼4𝑒

−𝑗𝜃4

]]

=

[
𝛼2
1𝑒

−𝑗𝜖 𝛼2
3𝑒

𝑗𝜖

𝛼2
2𝑒

−𝑗𝜖 𝛼2
4𝑒

𝑗𝜖

]
.

(41)

Combining all scalar estimates from (41) by averaging the
scalar estimates corresponding to the signals received by each
antenna and taking the conjugate of the estimates from the
second column, the ensemble estimate for 𝜖 becomes,

𝑒−𝑗𝜖 =

𝑁∑
𝑗=0

𝑍𝐴𝑃𝑀1,𝑗 [𝜏1, 𝜏0] +

𝑁∑
𝑗=0

𝑍∗
𝐴𝑃𝑀0,𝑗

[𝜏1, 𝜏0]

= 𝜆(2)𝑒−𝑗𝜖,

(42)

where the disturbance factor 𝜖 can be recovered by taking the
argument of (42), and 𝜆(2) =

∑𝐿𝑡𝑁
𝑥=1 𝛼

2
𝑥 is the anticipated

signal gain for the 2x2 MRC Alamouti decoder with the
perfect channel estimation assumption.

From (42) we see that the performance of the test signal
Z𝐴𝑃𝑀 [𝜏1, 𝜏0] depends on the aggregate signal gain of the
channel 𝜆(2) and the magnitude of the perturbation factor, 𝜖.
Therefore when using the 𝐴𝑃𝑀 fingerprinting function we
conclude that the authentication signal SER can be decreased
by increasing 𝜖 at the transmitter.

The variance of the detection rule (42) can be written,

𝑉 𝑎𝑟 [Z𝐻𝐴𝐷[𝜏1, 𝜏0]] =(
𝜎2𝑁 + 𝜎2𝑇

)2
1+ 2

(
𝜎2𝑁 + 𝜎2𝑇 + 𝑎𝜎2𝑇 + 𝑎𝜎4𝑇

)
H̄(2),

(43)

where H(2) = H ∘ H∗ represents the element-wise square
operation on the matrix H and it’s conjugate. Therefore, the
total variance of the estimate (42) for the case where all
elements of H̄(2) are equal, becomes

𝜎2𝜖 =
𝑉 𝑎𝑟 [Z𝐻𝐴𝐷[𝜏1, 𝜏0]]

𝑁𝐿𝑡
. (44)

If we select an antipodal signal constellation for (40) with
phase perturbation parameter 𝜖 = 𝜋/2, i.e.

F[𝑡] ∈
{[
𝑒−𝑗𝜋/2 0

0 𝑒𝑗𝜋/2

]
,

[
𝑒𝑗𝜋/2 0
0 𝑒−𝑗𝜋/2

]}
, (45)

it can be shown that the symbol error rate for the maximum-
likelihood fingerprint detector, detecting F from the received
estimate F̂, is

𝑃
[
F̂ ∕= F

]
= 𝑄

(
𝜆(2)
√

2

𝜎𝜖
sin
(𝜋
2

))
, (46)

where 𝑄(⋅) is the Gaussian tail function. From (44) and
(46) we observe that the authentication fingerprint signal SER
decreases when 𝑁 or 𝐿𝑡 are increased, potentially allowing
for fingerprint BERs lower than the primary signal BER in
some channel stationarity conditions.

D. APM Fingerprint Distortion

We now consider worst case distortions present when
equalizing the APM-fingerprinted signal according to incorrect
channel information as was previously done for the AAM
fingerprinting function. The transmitted symbol with finger-
printing function present, (40), becomes

X[𝑡]=

[
𝑒−𝑗𝜖 0
0 𝑒𝑗𝜖

] [
𝑑1 −𝑑∗2
𝑑2 𝑑∗1

]
=

[
𝑑1𝑒

−𝑗𝜖 −𝑑∗2𝑒−𝑗𝜖

𝑑2𝑒
𝑗𝜖 𝑑∗1𝑒

𝑗𝜖

]
, (47)

and the received ST signal becomes

Y𝐴𝑀𝑃 [𝑡] =

[
𝑟1 𝑟3
𝑟2 𝑟4

]
+ N[𝑡]P𝐻 , (48)

where

𝑟1 = 𝛼1𝑑1𝑒
𝑗(𝜃1−𝜖) + 𝛼3𝑑2𝑒

𝑗(𝜃3+𝜖),

𝑟3 = −𝛼1𝑑
∗
2𝑒

𝑗(𝜃1−𝜖) + 𝛼3𝑑
∗
1𝑒

𝑗(𝜃3+𝜖),

𝑟2 = 𝛼2𝑑1𝑒
𝑗(𝜃2−𝜖) + 𝛼4𝑑2𝑒

𝑗(𝜃4+𝜖),
𝑟4 = −𝛼2𝑑

∗
2𝑒

𝑗(𝜃2−𝜖) + 𝛼4𝑑
∗
1𝑒

𝑗(𝜃4+𝜖).

(49)

Thus, the signal estimates for 𝑑𝑃1 and 𝑑𝑃2 using MRC without
correcting for the phase perturbation, denoted 𝑑𝑃1 and 𝑑𝑃2 ,
become

𝑑1𝐴𝑃𝑀 = 𝛼̂1𝑒
−𝑗𝜃1
(
𝛼1𝑑1𝑒

𝑗(𝜃1−𝜖) + 𝛼3𝑑2𝑒
𝑗(𝜃3+𝜖)

)
+

𝛼̂2𝑒
−𝑗𝜃2
(
𝛼2𝑑1𝑒

𝑗(𝜃2−𝜖) + 𝛼4𝑑2𝑒
𝑗(𝜃4+𝜖)

)
+

𝛼̂3𝑒
𝑗𝜃3
(
−𝛼1𝑑2𝑒

−𝑗(𝜃1−𝜖) + 𝛼3𝑑1𝑒
−𝑗(𝜃3+𝜖)

)
+

𝛼̂4𝑒
𝑗𝜃4
(
−𝛼2𝑑2𝑒

−𝑗(𝜃2−𝜖) + 𝛼4𝑑1𝑒
−𝑗(𝜃4+𝜖)

)
+ 𝜂1,

𝑑2𝐴𝑃𝑀 = −𝛼̂1𝑒
𝑗𝜃1
(
−𝛼1𝑑2𝑒

−𝑗(𝜃1−𝜖) + 𝛼3𝑑1𝑒
−𝑗(𝜃3+𝜖)

)
−

𝛼̂2𝑒
𝑗𝜃2
(
−𝛼2𝑑2𝑒

−𝑗(𝜃2−𝜖) + 𝛼4𝑑1𝑒
−𝑗(𝜃4+𝜖)

)
+

𝛼̂3𝑒
−𝑗𝜃3
(
𝛼1𝑑1𝑒

𝑗(𝜃1−𝜖) + 𝛼3𝑑2𝑒
𝑗(𝜃3+𝜖)

)
+

𝛼̂4𝑒
−𝑗𝜃4
(
𝛼2𝑑1𝑒

𝑗(𝜃2−𝜖) + 𝛼4𝑑2𝑒
𝑗(𝜃4+𝜖)

)
+ 𝜂2.

(50)Using (37), after some manipulation, (50) becomes

𝑑1𝐴𝑃𝑀 = (𝛼1 + 𝛼2 + 𝛼3 + 𝛼4)𝑑1𝑒
−𝑗𝜖 + 𝜂1,

𝑑2𝐴𝑃𝑀 = (𝛼1 + 𝛼2 + 𝛼3 + 𝛼4)𝑑2𝑒
𝑗𝜖 + 𝜂2,

(51)

with 𝜂1 and 𝜂2 given in (35).



GOERGEN et al.: EXTRINSIC CHANNEL-LIKE FINGERPRINT EMBEDDING FOR AUTHENTICATING MIMO SYSTEMS 4277

From (51) we observe the worst case distortions from the
extrinsic 𝐴𝑃𝑀 fingerprint function when equalizing accord-
ing to outdated CSI for the 2x2 Allmouti code. Here, worst
case model mismatch error introduces a phase rotation of 𝑒−𝑗𝜖

in 𝑑1𝐴𝑃𝑀 , and 𝑒𝑗𝜖 in 𝑑2𝐴𝑃𝑀 . Because the amount of distortion
𝐴𝑃𝑀 fingerprint is also proportional to 𝜖, we note that like
the 𝐴𝐴𝑀 fingerprinting function, care must be taken when
choosing 𝜖 when the performance of equalizers employed by
unaware receivers must be considered.

V. A BASIC AUTHENTICATION MESSAGE

While Sections III and IV describe the signaling mechanism
for our fingerprint function, in this section we give an example
of a digital authentication message that can be signaled
using the fingerprint function and analyze the authentication
performance.
Our fingerprint signaling scheme allows for the modulation of
a digital authentication message of arbitrary length, and the
fingerprint perturbation 𝜖 can be selected by the transmitter
using discrete symbols from a signal constellation, and using
an appropriate bit-to-symbol mapping the receiver can recover
each symbol of the message via the 𝐴𝐴𝑀 or 𝐴𝑃𝑀 detection
rule. For example, the transmission and detection of consecu-
tive authentication symbols over 𝜌 fingerprinted blocks using
a constelation of order 𝜉 bits-per-symbol will yield a digital
authentication message of 𝜌𝜉 bits in length.
To address the needs of Dynamic Spectrum Access applica-
tions, the digital authentication message embedded in each
node’s transmission should contain bit fields for the basic
self-verifying information of the signal such as the frequency,
location, and time the signal is authorized for transmission.
We will denote these fields as 𝐹 , 𝐿, and 𝑇 , respectively.
A message hash of these parameters is then digitally signed
using a secret key owned by the transmitter and included in
the message, while a timestamp denoted 𝑇𝑆 is also included
with the authentication message to prevent future replay of
the message by malicious users. The timestamp allows for
enforcement of an expiration deadline on the content of the
message, and in the event that a previously used authentication
message is received, with a timestamp that has passed the
expiration deadline, it will be discarded by the receiver. The
authentication message for an authorized user 𝑈𝑗 , denoted
𝑚𝑠𝑔𝑈𝑗 ,𝐴, is given as

𝑚𝑠𝑔𝑈𝑗 ,𝐴 ={
𝑇𝑆, 𝐹, 𝐿, 𝑇,𝐾+

𝐴 , [𝐻𝑎𝑠ℎ𝑚 [𝑇𝑆, 𝐹, 𝐿, 𝑇 ]]𝐾𝐴

}
,

(52)

where [⋅]𝐾𝐴
is a digital signature of the content within [⋅]

using the private key owned by the authorized users group,
the subscript 𝐴 is used to denote that user 𝑈𝑗 is a member
of the authorized users group 𝐴, 𝐾+

𝐴 is the public key of
the authorized users group, and 𝐻𝑎𝑠ℎ𝑚 [⋅] is message digest
of length 𝑚 for the content within [⋅]. The hash algorithm
𝐻𝑎𝑠ℎ𝑚 [⋅] can be any of a number of widely used collision-
resistant hash algorithms which provide reasonable security
against the malicious fabrication of messages. We assume that
implementers adhere to modern security best practices when
selecting hash algorithms.

A. Decoding of the Basic Authentication Message

To decode the authentication message, the receiver first
recovers the all bits of the embedded fingerprint message and
then extracts parameters from the payload of the message.
Once each field has been extracted, the authenticity of the
authorized user’s groups’ public key𝐾+

𝐴 is verified from a mu-
tually accepted trust anchor or certificate authority (CA). The
receiver then independently verifies [𝐻𝑎𝑠ℎ𝑚 [𝑇𝑆, 𝐹, 𝐿, 𝑇 ]]𝐾𝐴

using the authorized user’s groups’ public key, which is
embedded in the authentication message. Malicious forgery
of the authentication message is prevented through the sig-
nature process and by including this signature as part of
the authentication message. The modification of any subset
of the authentication message parameters 𝑇𝑆, 𝐹 , 𝐿, and 𝑇 ,
would cause the message signature to fail validation when it is
received, enabling the receiver to detect and discard modified
messages.
If the authenticity of 𝐾+

𝐴 and the message signature were
both deemed valid, and the operating signal is within the
specifications of 𝐹 , 𝐿, and 𝑇 , it will then be recognized as an
authorized user. This authentication messaging system relies
on the existence of a trust anchor, sometimes referred to as a
Certificate Authority (CA), to verify the authenticity of 𝐾+

𝐴 .

B. Message Security Evaluation

To be considered secure, cryptographic protocols need re-
sist forgery, modification, deletion, and replay. Since we are
considering a broadcast authentication system, where every
user is able to decode and subsequently verify the fingerprint
message, all notions of privacy are non-applicable since we
want every user to have the ability to extract the authentication
message.

By leveraging proven cryptographic primitives and best
security practices in the design of the keys, message
signatures, and message hashes, the probability of making an
authentication error is reduced to the probability of a hash
collision. A well designed hash algorithm such as SHA-1
will feature a collision probability which is nearly zero in
all practical applications, thus preventing the acceptance
of incorrect authentication messages. For example, when
using a 64-bit message hash a malicious node would require
approximately 5.1 × 109 attempts to achieve one collision
using a brute force ’birthday’ attack. Current best practices
when using secure hashing algorithms suggest using at least a
256-bit hash, i.e. SHA-256, further decreasing the probability
of an authentication error and making the probability of
accepting an attacker-fabricated message virtually impossible.

Because the data payload signal, the pilot signals, and
the authentication signal are all transmitted with the same
coherent frame of reference, any PHY-layer attack targeting a
subset of these components (i.e. an attack on the pilot signal
transmissions alone) would cause so much degradation to the
user data signal that the attack would be easily detectable.
Effectively, at this point the attacker is merely a signal
jammer, and jamming style attacks are outside of the scope
of this manuscript.

The authentication message 𝑚𝑠𝑔𝑈𝑗 ,𝐴 is transmitted as
a multi-bit digital signal, the probability of a fingerprint
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detection miss is the same as the probability of receiving the
entire authentication message with one or more bit errors.
Because a single bit error in either the authentication message
or the signature will cause the authentication to fail, the
probability of missing the authentication message is the same
as the probability of a at least one bit error in the message.
Therefore for an uncoded binary transmission, the probability
that the received authentication message is in error is simply

𝑃 [ ˆ𝑚𝑠𝑔𝐴 ∕= 𝑚𝑠𝑔𝐴] = 1− (1 − 𝑃𝑒)
𝐵+𝐶 , (53)

where 𝑃𝑒 is the bit error rate(BER) in the authentication signal,
where 𝐵 is the total length of the fields {𝑇𝑆, 𝐹, 𝐿, 𝑇,𝐾𝐴} and
𝐶 is the length of the signature [𝐻𝑎𝑠ℎ𝑚 [𝑇𝑆, 𝐹, 𝐿, 𝑇 ]]𝐾𝐴

. The
use of forward error correction (FEC) on the authentication
signal, combined with a continuously repeated message (i.e.
repetition encoding), can further decrease the probability of
an authentication miss.
The authentication message in (52) also includes the frequency
𝐹 that the transmitter is authorized to transmit on, which
would presumably be associated with the transmitter’s key
and recorded by a CA like the FCC. Therefore even if we
assume that an adversary can compromise an authorized user’s
key and forge F[𝑘] at the PHY-layer, the attacker will be
constrained to the frequency or frequencies prescribed by
the compromised key. Using a forged F[𝑘] on a frequency
other than the original frequency prescribed by the key will
implicate the transmission as a forgery when validating the
credentials of the key against the CA’s records.

VI. SIMULATION RESULTS

We now present simulation results for the 𝐴𝐴𝑀 finger-
printing constellation (28), for different values 𝜖 and channel
AR model parameter 𝑎 in (9), using the MMSE channel
estimator, the 2x2 Alamouti ST code with 𝑀 = 4, and
𝑁 = 𝐿𝑡 = 𝐿𝑟 = 2. A QPSK constellation was used for
the primary signal. In Section V-B we demonstrated that
the authentication performance of arbitrary authentication
messages can be computed directly from the fingerprint BER,
therefore we will use BER in this section to demonstrate
fingerprint signaling performance. The results for the 𝐴𝐴𝑀
fingerprinting function for a fixed 𝜎𝑇 = 0.01 and values of
𝑎 equal to 0.7 and 0.9 are presented in Figure 1. We observe
that for both values of 𝑎, the authentication fingerprint is
received with a BER advantage over the primary signal. We
also see that the BER for the fingerprint signal is less when
𝑎 = 0.9 than when 𝑎 = 0.7, suggesting that the fingerprint
signal performance does indeed depend on correlation between
channel estimates in time, determined by the AR-1 model
parameter 𝑎.

A plot of the BER for both the primary signal and authen-
tication signal is given in Figure 2 for a fixed 𝑎 = 0.7 and
values of 𝜖 equal to 0.45 and 0.47. As the value of 𝜖 increases,
the signal strength for the authentication signal increases,
resulting in an improved BER for the authentication signal
at the expense of a slight increase in channel estimate MSE
for the primary-user. We observe that the 𝐴𝐴𝑀 fingerprinting
function yields an authentication signal BER advantage over
the primary signal for 𝜖 = 0.47, over the range of SNR plotted.
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Fig. 1. BER for primary and AAM fingerprint signal for various 𝑎.
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Fig. 2. BER for primary and AAM fingerprint signal for various 𝜖.

In Figures 3 and 4 we present results for channel estimate
MSE and the worst-case MSE for the simulations depicted
in Figures 1 and 2, respectively. The worst-case MSE results
represent the additional model error incurred if Y[𝜏1] were
incorrectly equalized using H[𝜏0] as opposed to H[𝜏1], as
suggested by (38).

We note that worst-case MSE is invariant of the AR-1 model
parameter 𝑎, as the MSE for 𝑎 = 0.7 and 𝑎 = 0.9 are nearly
indistinguishable. From Figure 4 we observe that increasing 𝜖
results in an increased channel model MSE as expected, and
the worst-case error introduced by the fingerprinting function
is apparent from the difference between MSE results when the
fingerprint is present and when the fingerprint absent.

The results for the 𝐴𝑃𝑀 fingerprinting function for a fixed
𝜎𝑇 = 0.3 and values of 𝑎 equal to 0.8 and 0.9, are presented
in Figure 5. We observe that like the 𝐴𝐴𝑀 function, the
fingerprint is received with a greater BER advantage over
primary signal for 𝑎 = 0.9, suggesting that the 𝐴𝑃𝑀 finger-
print signal performance also depends on correlation between
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Fig. 4. MSE of the channel estimate with and without AAM fingerprint
signal for various 𝜖.

channel estimates in time, as determined by the AR-1 model
parameter 𝑎. We also observe that in higher SNR, around 8dB,
the slope of the BER curve for the authentication behaves
differently for the case where 𝑎 = 0.8, when compared to the
authentication signal BER curve for 𝑎 = 0.9. In particular,
the authentication signal BER curve slope for 𝑎 = 0.8 stops
changing after 8dB. This can be explained as follows:

In our time-variant channel model (7), the channel matrix
𝐻𝑖,𝑗 [𝑡] is a summation of two independent noise processes,
𝑁𝑖,𝑗 [𝑡], which is a white Gaussian noise process with variance
𝜎2𝑁 , and a colored Gaussian noise process 𝜇𝑖,𝑗 [𝑡], which is
modeled as an AR-1 process driven by 𝑢𝑖,𝑗[𝑡] ∼ 𝒞𝒩 (0, 𝜎2𝑇 ).
For higher values of SNR, i.e. as 𝜎2𝑁 decreases, the domi-
nating noise process when decoding the authentication signals
becomes 𝜇𝑖,𝑗 [𝑡], and not 𝑁𝑖,𝑗 [𝑡]. This effect becomes more
pronounced as the bandwidth of the time-varying component
𝜇𝑖,𝑗 [𝑡] increases, which is inversely proportional to the AR-1
model parameter 𝑎. Thus, for large values of 𝜎2𝑇 , the per-
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formance of the authentication signal degrades more rapidly
under high SNR, as the value of 𝑎 decreases. This is the
scenario of rapidly varying channel.

A plot of the BER for both the primary signal and au-
thentication signal is given in Figure 6 for a fixed 𝑎 = 0.9
and values of 𝜎𝑇 equal to 0.1 and 0.3. As the value of 𝜎2𝑇
increases, the power of the time-varying channel component
increases resulting in a greater channel estimate MSE for both
the primary and authentication signal, and a decreased system
BER for both signals. We note from Figure 6 that the 𝐴𝑃𝑀
fingerprint signal BER is lower than the primary for the range
of SNR simulated.

In Figures 7 and 8 we plot the worst-case mean-squared
error of the channel estimate using the 𝐴𝑃𝑀 fingerprinting
function, suggested by (51), as was done for the 𝐴𝐴𝑀
fingerprinting function. We observe the MSE, and worst-case
MSE, experienced by the MMSE receiver, as suggested by
(51). We note that worst-case MSE is relatively invariant of the
AR-1 model parameter 𝑎, as the MSE for 𝑎 = 0.8 and 𝑎 = 0.9
are completely overlapping and indistinguishable. From Figure
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Fig. 8. MSE of the channel estimate with and without 𝐴𝑃𝑀 fingerprint
signal for various 𝜎𝑇 .

8 we observe that increasing 𝜎2𝑇 results in an increased channel
model MSE for worst-case distortions as expected, and the
worst-case error introduced by the fingerprinting function is
apparent from the difference between MSE results when the
fingerprint is present and when the fingerprint absent.

We conclude from these results that the 𝐴𝑃𝑀 fingerprint-
ing function generally has better performance over the 𝐴𝐴𝑀
fingerprinting function, for larger values of 𝜎2𝑇 , for given
parameters.

VII. CONCLUSION

In this paper we presented a framework for fingerprinting
MIMO transmissions with a digital PHY-layer message for
the purpose of transmitter authentication. We demonstrated
that the fingerprint signal can be added without modifying the
decoding process of unaware, or traditional MIMO receivers.
Further, the distortions introduced by the fingerprint can be

partially removed by the receiver’s equalizer to reduce the
degradation in performance of the primary transmission. It was
demonstrated that the fingerprint signal can be designed with
a BER lower than the primary signal, and that the probability
of symbol error for the proposed method improves as the
correlation between time-varying channel estimates increases.
Our proposed scheme provides the foundation of fingerprint
signaling which can be used to embed authentication messages
of arbitrary lengths for secure wireless transmissions.

REFERENCES

[1] T. Clancy and N. Goergen, “Security in cognitive radio networks:
threats and mitigation,” in International Conference on Cognitive Radio
Oriented Wireless Networks and Communications, May 2008.

[2] T. Newman and T. Clancy, “Security threats to cognitive radio signal
classifiers,” in Virginia Tech Wireless Personal Communications Sympo-
sium, June 2009.

[3] R. Shaukat, S. Khan, and A. Ahmed, “Threats identification and their
solution in inter-basestation dynamic resource sharing IEEE-802.22,” in
Proc. International Conference on Convergence and Hybrid Information
Technology, Aug. 2008, pp. 609–614.

[4] R. Chen, J. Park, and J. Reed, “Defense against primary user emulation
attacks in cognitive radio networks,” IEEE J. Sel. Areas Commun.,
vol. 26, no. 1, pp. 25–37, Jan. 2008.

[5] J. Burbank, “Security in cognitive radio networks: the required evolution
in approaches to wireless network security,” in International Conference
on Cognitive Radio Oriented Wireless Networks and Communications,
May 2008.

[6] C.-S. Lu, Multimedia Security: Steganography and Digital Watermark-
ing Techniques for Protection of Intellectual Property. IGI Publishing,
2004.

[7] X. Wang, Y. Wu, and B. Caron, “Transmitter identification using
embedded pseudo random sequences,” IEEE Trans. Broadcast., vol. 50,
pp. 244–252, Sep. 2004.

[8] M. Morimoto, M. Okanda, and S. Komaki, “A hierarchical image
transmission system in fading channel,” in Proc. IEEE 4th International
Conference on Universal Personal Communications, pp. 769–772, Nov.
1995.

[9] L. Wei, “Coded modulation with unequal error protection,” IEEE Trans.
Commun., vol. 41, pp. 1439–1449, Oct. 1993.

[10] V. Brik, S. Banerjee, and M. Gruteser, “Wireless device identification
with radiometric signatures,” ACM MobiCom, 2008.

[11] P. Yu, J. Baras, and B. Sadler, “Physical-layer authentication,” IEEE
Trans. Inf. Forensics and Security, vol. 3, pp. 38–51, Mar. 2008.

[12] L. Xiao, L. Greenstein, N. Mandayam, and W. Trappe, “Using the
physical layer for wireless authentication in time-variant channels,”
IEEE Trans. Wireless Commun., vol. 7, pp. 2571–2579, July 2008.

[13] N. Goergen, T. C. Clancy, and T. R. Newman, “Physical layer authentica-
tion watermarks through synthetic channelemulation,” in New Frontiers
in Dynamic Spectrum Access Networks, Apr. 2010.

[14] N. Goergen, W. S. Lin, K. J. R. Liu, and T. C. Clancy, “Authenticat-
ing MIMO transmissions using channel-like fingerprinting,” in IEEE
GLOBECOM, Dec. 2010.

[15] C. Pirak, Z. J. Wang, K. J. R. Liu, and S. Jitapunkul, “A data-bearing
approach for pilot-embedding frameworks in space-time coded MIMO
systems,” IEEE Trans. Signal Process., pp. 3966–3979, Oct. 2006.

[16] I. E. Telatar and D. N. C. Tse, “Capacity and mutual information
of wideband multipath fading channels,” in IEEE Trans. Inf. Theory,
vol. 46, July 2000.

[17] P. Bello, “Characterization of randomly time-variant linear channels,”
IEEE Trans. Commun. Systems, vol. CS-11, pp. 360–393, Dec. 1963.

[18] M. Herdin, N. Czink, H. Ozcelik, and E. Bonek, “Correlation matrix
distance, a meaningful measure for evaluation of non-stationary MIMO
channels,” in Proc. IEEE Vehicular Technology Conference, vol. 1, pp.
136–140, June 2005.

[19] J. Wallace and M. Jensen, “Time-varying MIMO channels: measure-
ment, analysis, and modeling,” IEEE Trans. Antennas and Propag.,
vol. 54, pp. 3265–3273, Nov. 2006.

[20] A. O. Kaya, L. J. Greenstein, and W. Trappe, “Characterizing indoor
wireless channels via ray tracing combined with stochastic modeling,”
IEEE Trans. Wireless Commun., vol. 8, no. 8, pp. 4165–4175, Aug.
2009.

[21] S. Alamouti, “A simple transmitter diversity scheme for wireless com-
munications,” IEEE J. Sel. Areas Commun., vol. 16, pp. 1414–1458,
Oct. 1998.



GOERGEN et al.: EXTRINSIC CHANNEL-LIKE FINGERPRINT EMBEDDING FOR AUTHENTICATING MIMO SYSTEMS 4281

Nate S. Goergen (S’03) received the Ph.D. degree
in the Electrical and Computer Engineering Depart-
ment, University of Maryland, College Park in 2011,
the M.S. degree in Electrical and Computer Engi-
neering from the University of Maryland, College
Park in 2010, and the B.S. in Electrical Engineering
from Rose-Hulman Institute of Technology in 2004.
He was awarded the DoD S.M.A.R.T Scholarship
in 2007, the 2010 University of Maryland Invention
of the Year Award, and the Jimmy Lin Award for
Invention in 2011. His research interests include

cognitive radio, signal processing, and physical layer security of wireless
signals. His current research is in watermarking approaches for wireless
communications.

W. Sabrina Lin (M’06) received the Ph.D. de-
gree with the Electrical and Computer Engineering
Department, University of Maryland, College Park,
where she is a Research Associate. She received
the B.S. and M.S. degrees in Electrical Engineering
from National Taiwan University in 2002 and 2004,
respectively. Her research interests are in the area
of information security and forensics, multimedia
signal processing and multimedia social network
analysis. She received the University of Maryland
Future Faculty Fellowship in 2007.

K. J. Ray Liu (F’03) is named a Distinguished
Scholar-Teacher of University of Maryland, College
Park, in 2007, where he is Christine Kim Eminent
Professor of Information Technology. He serves as
Associate Chair of Graduate Studies and Research
of Electrical and Computer Engineering Department
and leads the Maryland Signals and Information
Group conducting research encompassing broad as-
pects of wireless communications and networking,
information forensics and security, multimedia sig-
nal processing, and biomedical engineering.

Dr. Liu is the recipient of numerous honors and awards including IEEE
Signal Processing Society Technical Achievement Award and Distinguished
Lecturer. He also received various teaching and research recognitions from
University of Maryland including university-level Invention of the Year
Award; and Poole and Kent Senior Faculty Teaching Award and Outstanding
Faculty Research Award, both from A. James Clark School of Engineering.
An ISI Highly Cited Author in Computer Science, Dr. Liu is a Fellow of
IEEE and AAAS.

Dr. Liu is President-Elect and was Vice President Publications of IEEE
Signal Processing Society. He was the Editor-in-Chief of IEEE Signal
Processing Magazine and the founding Editor-in-Chief of EURASIP Journal
on Advances in Signal Processing.

His recent books include Cognitive Radio Networking and Security: A
Game Theoretical View, Cambridge University Press, 2010; Behavior Dy-
namics in Media-Sharing Social Networks, Cambridge University Press (to
appear); Handbook on Array Processing and Sensor Networks, IEEE-Wiley,
2009; Cooperative Communications and Networking, Cambridge University
Press, 2008; Resource Allocation for Wireless Networks: Basics, Techniques,
and Applications, Cambridge University Press, 2008; Ultra-Wideband Com-
munication Systems: The Multiband OFDM Approach, IEEE-Wiley, 2007;
Network-Aware Security for Group Communications, Springer, 2007; Multi-
media Fingerprinting Forensics for Traitor Tracing, Hindawi, 2005.

T. Charles Clancy (S’02-M’06-SM’10) is the As-
sociate Director of the Ted and Karyn Hume Center
for National Security and Technology at Virginia
Tech, where he leads the university’s educational
and research efforts in national security. Prior to
joining Virginia Tech, Dr. Clancy led a number of
wireless research programs at the Laboratory for
Telecommunications Science, at the University of
Maryland, emphasizing development in commodity
use of software-defined radio. Dr. Clancy’s research
interests are in the security of wireless communica-

tions, particularly spectrum access and waveform robustness.
Dr. Clancy received his PhD in Computer Science from the University of

Maryland, College Park, MS in Electrical Engineering from the University of
Illinois, Urbana-Champaign, and BS in Computer Engineering from the Rose-
Hulman Institute of Technology, Terre Haute, IN. He is a Senior Member of
the IEEE.


