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Abstract

In this paper we analyze a constant multiple-input multiple-output interference channel where a set
of active users are cooperating through interference alignment while a set of secondary users desire
access to the channel. We derive the minimum number of secondary transmit antennas required so
that a secondary user can use the channel without affecting the sum rate of the active users, under
a zero-forcing equalization assumption. When the secondary users have enough antennas, we derive
several secondary user precoders that approximately maximize the secondary users’ sum rate without
changing the sum rate of the active users. When the secondary users do not have enough antennas, we
perform numerical optimization to find secondary user precoders that cause minimum degradation to
the sum rate of the active users. Through simulations, we confirm that i) with enough antennas at the
secondary users, gains equivalent to the case of all the users cooperating through interference alignment
is obtainable, and ii) when the secondary users do not have enough antennas, large rate losses at the
active users can be avoided.

I. INTRODUCTION

Interference alignment (IA) [2], [3] is an interference management technique broadly described
as confining the interference to a subspace of the received signal space such that an interference
free subspace becomes available for the desired signal. Unlike techniques such as ignoring the
interference [4], decoding/cancelling the interference [5] or avoiding the interference (orthogonal
access), IA achieves the maximum degrees of freedom of the K-user interference channel.

Interference can be aligned using signal levels [6], time or frequency channel extensions
[2], and multiple antennas at the interfering nodes [7]–[9]. IA using the signal levels (lattice
alignment) requires a baseband module not compatible with near future wireless networks [10].
IA over time extensions of the channel is a mere theoretical tool requiring non-causal knowledge
of channel state information. IA over frequency extensions of the channel, in its original form
[2], requires a large number of channel uses to fully exploit the power of IA, and is not suitable
when global frequency synchronization is not available. Therefore, aligning the interference over
the spatial dimension, i.e. IA over constant multiple-input multiple-output (MIMO) channels, is
the most attractive physical layer signaling approach. In this paper, we focus on MIMO IA.

In general, a high computational [11], [12] and overhead [13], [14] cost is associated with
finding the IA precoders and combiners. Therefore, once a set of users have aligned their
interference, it is desirable to retain their alignment status until the channels change. Most future
interference-limited wireless networks, however, will be packet-switched with bursty data traffic,
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requiring frequent changes in the number of active users [10]. Also, the feedback overhead [15]
and the number of antennas at each node [7] practically limit the number of user pairs that can
cooperate through IA. Therefore, in an IA network, there will be nodes that are arriving to the
network and, although not included in the existing IA setup, wish to communicate with their
receivers. Determining when such nodes can be admitted to the network (are allowed to transmit)
and/or developing transmission strategies for them is referred to as user arrival. Although there
exist a few prior strategies for user arrival and precoder design for MIMO networks, they either
do not consider IA or they are restricted to opportunistic access methods [16]–[19].

In this paper, we consider a set of active users exhausting the network resources by coopera-
tively utilizing IA and a further set of secondary users who wish to communicate in this network.
We assume the secondary users are required to have minimum impact on the performance of the
active users, defined as the sum rate of the active users after a zero-forcing (ZF) receiver, and the
active users ignore the presence of the secondary users when designing their precoders and/or
equalizers. We first compute a zero-impact threshold for the number of secondary transmitter
antennas where secondary transmitters with more (or equal) antennas than this threshold can use
the communications medium without degrading the sum rate of the active users. Then we find
optimum and suboptimum secondary user precoders for two cases: (i) when the secondary users
satisfy the zero-impact threshold and (ii) when they do not.

When the secondary users satisfy the zero-impact threshold, there exists a set of precoders
that will not degrade the sum rate of the active users. Thus, the secondary users can optimize
an objective function of their own link by selecting a precoder from this set. We choose the
achievable sum rate as the objective function and derive optimum and suboptimum precoders for
the case of one and two secondary users respectively. For more than two secondary users, we
choose the degrees of freedom (DOF) as the objective function, defined as the slope of average
sum rate (b/s/Hz) versus logarithm of signal-to-noise ratio (dB) at high transmit power. We
propose successive IA precoding and show it is optimum for various network setups determined
by the number of active users, secondary users, and antennas at each node. When the secondary
users have fewer antennas than the zero-impact threshold, we search for secondary user precoders
causing minimum degradation to the sum rate of the active users through a steepest descent
search over the Grassmann manifold. For this numerical optimization, we propose three initial
solutions of varying degrees of complexity. Our initial work in [1] only deals with the case of
enough antennas at the secondary users. This paper elaborates on the claims of [1], provides
new analysis for the case of enough antennas at the secondary users, considers the case of not
enough antennas at the secondary users, and presents new simulations results.

The remainder of the paper is organized as follows. In Section II we present the system
model and review IA in the K-user constant MIMO channel. Admission of the arriving users
is considered in Section III. Section IV presents precoder designs for the secondary users with
large number of transmit antennas. In Section V we find secondary user precoders when the
secondary users do not have enough transmit antennas. Numerical results are presented in Section
VI followed by concluding remarks in Section VII.

Notation: Upper and lowercase bold letters represent matrices and vectors. A∗, AT and A−1

are conjugate transpose, transpose and inverse of A. A(n,m) is the element on the nth row
and the mth column of A. tr

(
A
)

and rank(A) are trace and rank of A. || · ||F and || · ||0 are
the Frobenius and zero norms. [A,B] is the matrix constructed by horizontal concatenation of
matrices A and B. dae is the smallest integer larger than or equal to a. Kronecker product is
represented with ⊗. For two matrices A and B with dimensions a1 × a2 and b1 × b2, A ⊕ B
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is a block-diagonal matrix of dimension (a1 + b1) × (a2 + b2) with matrices A and B on its
main diagonal. IN is the N ×N identity matrix, 0a×b is the matrix of dimension a× b with all
elements equal to zero. Finally, O is the set of all matrices with orthonormal columns.

II. SYSTEM MODEL

Consider a Ka-user MIMO interference channel shown in Fig. 1 where the ith transmitter
and receiver pair are equipped with Mi and Ni antennas. Each transmitter i uses a precoding
matrix Fi of dimension Mi × di to transmit di streams to its corresponding receiver. In this
paper we assume Fi ∈ O. Note that precoders with orthonormal columns are useful for limited
feedback codebook design [20], in many cases unitary precoders are optimal when there exist
a peak power constraint [21], and waterfilling over the eigenmodes of the effective channels
can always be used to further improve the performance of the system after appropriate unitary
precoders have been found. For each time instant, the received signal at the ith receiver, with
perfect timing and synchronization, is

yi =
Ka∑
k=1

HikFkxk + zi i = 1, . . . , K (1)

where Hik is the matrix of channel coefficients of a block fading channel between transmitter k
and receiver i, the transmitted signal from the ith node is xi with power constraint E{x∗ixi} = P
and zi is the AWGN with elements in CN (0, σ2) where σ2 is the noise power spectral density
which includes thermal noise and white excess interference from unaccounted sources. Note that
similar to [9], we could incorporate colored noise by prewhitening or modifying the proposed
algorithms but this is not considered in this pap er.

A Ka-user system of IA is feasible if there exists a set of matrices W = {W1, . . . ,WKa}
such that, given the system model of (1), the following constraints are met [2]{

rank (WiHiiFi) = di
WiHikFk = 0 ∀k 6= i

∀i, k ∈ {1, . . . , Ka}, (2)

where di is the number of interference-free streams the ith active transmitter can send to its
receiver. The linear equalizer presented in [22] and the projection matrix presented in [9, Section
III.A] are examples of a possible receive filter Wi in (2). We assume Hik has full column
rank for all i, k and the set of {Mi, Ni, di, Ka}, ∀i, is feasible [7]. Through IA, interference
from the active transmitters at the ith active receiver is confined to an Ni − di dimensional
subspace. We denote the non-unique basis for the interference subspace as Ci. We assume the
ith active transmitter sends di streams and each active receiver uses a ZF equalizer, given by
Wi=[Idi ,0di,Ni−di ] [HiiFi,Ci]

−1 [22]. The total achievable sum rate of the active users is [22]

Rau
sum =

Ka∑
i=1

di∑
n=1

log

(
1 +

γo/di

en
(
(F∗iH

∗
iiPiHiiFi)

−1) e∗n

)
, (3)

where Pi = (INi
−CiC

∗
i ) is the projection matrix into the nullspace of the interference subspace

at the ith active receiver, γo = P
σ2 and en is the nth row of In. Note that the assumption of

a ZF receiver at the active receivers is for mathematical tractability and developing intuition
into the problem. The design of section V-B is independent of the receiver type and the design
of Section V-A can be extended to any receiver type that satisfies the rank constraint in 2.
We assume global perfect CSI knowledge and that the secondary users can use the CSI of the
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active users’ network to find the precoders/equalizers used by the active users. Although this
assumption is not practical, the performance achieved by the developed techniques in this paper
can be used as a benchmark for the case that CSI is relayed via limited feedback [13], [14].

III. SECONDARY USER ADMISSION

Assume Ks secondary users request access to the interference alignment group. Define K =
Ka + Ks, and let the secondary users be the last Ks users in the ordered set of user indices
K = {1, . . . , Ka, Ka + 1, . . . , K}. The received signal at the ith ≤ Ka receiver is yi =∑Ka

k=1 HikFkxk +
∑K

`=Ka+1 Hi`F`x` + zi. We assume the first Ka users do not change their
precoders or receiving filters when the secondary users join the network. This has two important
implications: a) the active transmitters do not help the transmission of the secondary users, b)
the active receivers are not aware of the interference from the secondary users.

In the presence of the secondary users, the sum rate of the first Ka users changes from (3) to

Rau
sum =

Ka∑
i=1

di∑
n=1

log

1+
γo/di

en

(
(F∗iH

∗
iiPiHiiFi)

−1+
∑K

k=Ka+1
γo
dk

WiHikFkF∗kH
∗
ikW

∗
i

)
e∗n

 , (4)

where we have assumed that Hik is independent of Hnm for i 6= n or k 6= m. Under the
assumptions that the active users are ignorant of the secondary users, a reasonable objective is
for the secondary users to not degrade the sum rate of the first Ka users. Comparing (4) and (3)
implies that

∑K
k=Ka+1

γo
dk

WiHikFkF
∗
kH
∗
ikW

∗
i should ideally be zero or equivalently

WiHikFk = 0 i ∈ {1, . . . , Ka}, k ∈ {Ka + 1, . . . , K}. (5)

It can be inferred from (5) that the interference from the secondary users should be confined to
the interference subspace of the active users [22]. Therefore, by requiring that PiHikFk = 0 for
i ∈ {1, . . . , Ka} and k ∈ {Ka +1, . . . , K}, the precoder of the kth transmitter should satisfy

H̃kFk = 0(
∑Ka

i=1Ni)×dk , (6)

where H̃k = [(P1H1k)
∗ , . . . , (PKaHKak)

∗]
∗. Using (6), Lemma 1 provides the required minimum

number of antennas at each secondary user, called the zero-impact threshold, which enables the
secondary nodes to communicate, potentially, without affecting the sum rate of the active users.

Lemma 1. The kth secondary user can transmit dk streams without degrading (3) if

Mk ≥
Ka∑
i=1

di + dk k ∈ {Ka + 1, . . . , K}. (7)

Proof: As Hik has full column rank and Pi is a projection matrix into a di dimensional
subspace (rank(Pi) = di), rank(PiHik) = di [23, Property 3.9.b]. Hence, an Fk 6= 0 satisfying

(6) can be found if Mk > rank(H̃k) =
Ka∑
i=1

di. As each secondary transmitter sends dk streams

to its receiver, Fk (the nullspace of H̃k) should have rank of dk and the result follows.
Based on Lemma 1, we divide the technical contributions of this paper into two parts.
i) The number of transmit antennas at each secondary user satisfies (7). In this case, the

secondary users can also optimize some performance criterion for their own link.
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ii) The number of transmit antennas at each secondary user does not satisfy (7). The secondary
users once admitted degrade the sum rate of the active users.

In the next two sections, we derive optimum and suboptimum secondary user precoders for each
scenario based on Ks and the available transmit antennas at the secondary users. From this point
on, for mathematical tractability and to simplify the exposition, we assume the first Ma × Na

Ka users each transmit da streams and the last Ms ×Ns Ks users each transmit ds streams.

IV. SECONDARY USERS NOT INTERFERING WITH THE ACTIVE USERS

Based on (6) and (7), the secondary transmitters need at least Kada+ds antennas in order not
to decrease the sum rate of the active receivers. This means each secondary user has to generate
a precoder of rank ds using Ms−Kada bases. Therefore, when Ms−Kada > ds, the secondary
users can use the extra degrees of freedom in designing their precoders to not only satisfy (6)
but also improve the performance of their own link. For the rest of this section, we assume
Ms > Kada + ds and that the secondary users want to maximize their sum rate given by

Rsu
sum =

K∑
k=Ka+1

log det

(
I +

γo
ds

HkkFkF
∗
kH
∗
kkI−1k

)
, (8)

where Ik=(INk
+

K∑
i=1,i 6=k

γo
di

HkiFiF
∗
iH
∗
ki) captures the interference from all the transmitters.

Let the right singular vectors of H̃k spanning its nullspace be the columns of Ṽk. It is inferred
from (6) that the columns of Fk have to be a linear combination of the columns of Ṽk; i.e.,
Fk = ṼkGk, for some matrix Gk. As both Fk and Ṽk have orthonormal columns, columns
of Gk are also orthonormal, i.e. Gk ∈ O. Using (8), the optimum secondary user precoders,
F̂k = ṼkĜk, are found by solving

arg max
GKa+1,...,GK∈O

K∑
k=Ka+1

log det

(
I +

γo
ds

HkkṼkGkG
∗
kṼ
∗
kH
∗
kkI−1k

)
, (9)

s.t. H̃kṼkGk = 0 k = Ka + 1, . . . , K.

Solving (9) is difficult in the most general case; we focus on several important special cases.

A. Single New User
In this section we assume a single secondary user is arriving to the network. Then the optimum

secondary user precoder solving (9) can be found in closed-form and is given by Lemma 2.

Lemma 2. For Ks = 1, the columns of Ĝk solving (9) are the ds most significant eigenvectors
of Ṽ∗kH

∗
kkI−1k HkkṼk.

Proof: Let the summands in the objective function of (9) be f(Gk). Using the identity
det (I+AB) = det (I+BA) for any two matrices A and B, rewrite f(Gk) as

f(Gk) = log det

(
I +

γo
ds

Ṽ∗kH
∗
kkI−1k HkkṼkGkG

∗
k

)
.

Let the eigenvalue decomposition of Ṽ∗kH
∗
kkI−1k HkkṼk be UkΣkU

∗
k where Σk is a diagonal

matrix holding its eigenvalues. Then f(Gk) = log det
(
I + γo

ds
ΣkU

∗
kGkG

∗
kUk

)
, and using the



6

Hadamard inequality, the Gk diagonalizing the term inside the det maximizes f(Gk). A solution
is found by setting the columns of Gk to the ds most significant eigenvectors in Uk.

If the secondary user was not optimizing its own link, Gk could be set to a random uni-
tary matrix. Call this approach random orthonormal design. Moreover, the secondary user
could ignore the IA nodes and maximize its own achievable rate by adopting a selfish pre-
coding through setting the columns of its precoder to the ds most significant eigenvectors of

H∗KK

(
INs + γo

da

Ka∑
i=1

HKiFiF
∗
iH
∗
Ki

)−1
HKK . Note that generalizing Lemma 2 for Ks > 1 is not

trivial while random orthonormal and selfish precoding can be used for arbitrary Ks.

B. Two New Users
Now assume Ks = 2 where the goal of the secondary users is satisfying (6) while maximizing

the total achievable sum rate of the secondary users given by (8). In this case, Ik in (8) is

Ik = I +
γo
da

Ka∑
i=1

HkiFiF
∗
iH
∗
ki +

γo
ds

HkqFqF
∗
qH
∗
kq q, k ∈ {K − 1, K}, (10)

where q 6= k. Corollaries 1 and 2 give approximate solution for (9) in some special cases.

Corollary 1. When Ka � (Ks − 1) ≥ 1, (9) is solved by setting the columns of Gk to the ds
most significant eigenvectors of Ṽ∗kH

∗
kk

(
INs + γo

da

∑Ka

i=1 HkiFiF
∗
iH
∗
ki

)−1
HkkṼk.

Proof: When Ka � (Ks − 1) ≥ 1, the second term in (10), representing the interference
from the active transmitters, dominates the third term which is the interference from the other
secondary user. Ignoring the third term in (10) changes the optimization of (9) to the case of
Ks = 1 which is solved using Lemma 2 and the result follows.

In Corollary 1, the secondary users can independently design their precoders. A higher sum
rate is obtainable, however, by successive application of Lemma 2 to the nodes in the ordered
list of {Ka + 1, . . . , K} such that the kth secondary user ignores the interference from the ith
transmitter for i ∈ {k+1, . . . , K}. Corollary 2 gives a more precise description of this approach
where for conciseness we ignore the gain attainable through ordering the users.

Corollary 2. When Ka � (Ks− 1) ≥ 1, (9) is approximately solved by computing GK−1 using
Corollary 1 and setting the columns of GK to the ds most significant eigenvectors of

Ṽ∗KH∗KK

(
INs +

γo
ds

HK(K−1)F̂K−1F̂
∗
K−1H

∗
K(K−1) +

γo
da

Ka∑
i=1

HKiFiF
∗
iH
∗
Ki

)−1
HKKṼK .

In an IA network configured for Ka users, the number of secondary users arriving is expected
to be less than the number of users currently in the network which justifies the assumptions
of Corollaries 1 and 2. Moreover, both Corollaries 1 and 2 can be readily extended to more
than Ks = 2. As Ks increases, the interference from the other secondary user(s) becomes non-
negligible and we expect the performance difference between Corollaries 1 and 2 to increase.

In Corollary 2, one of the secondary users interferes with the other one. A more involved
successive application of Lemma 2 can confine the interference from the Kth transmitter at the
(K − 1)th receiver to the (NK−1 −

∑Ka

i=1 di) dimensional subspace spanned by the interference

from the active users which implies MK ≥
Ka∑
i=1

di + (NK−1 −
Ka∑
i=1

di) + dK = NK−1 + dK .
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C. More Than Two New Users
Solving (9) for Ks ≥ 2 is equivalent to solving the general sum rate maximizing precoder of

the MIMO interference channel and, to date, a closed-form solution directly solving it does not
exist [16]. As an alternative, we provide a precoder design maximizing the pre-log factor of (8)
at asymptotically high transmit power for a certain (and plausible) network configuration.

From (6), the ith secondary transmitter has to allocate Kada of its spatial dimensions to pre-
align the interference it causes to the active receivers by selecting its precoder in the column
space of Ṽi. Interference from the active transmitters at the kth secondary receiver spans a
Kada dimensional subspace given by the interference basis of {Hk1F1, . . . ,HkKaFKa}. Let
columns of W̃k span the left nullspace of

[
(Hk1F1)

T , . . . , (HkKaFKa)T
]T . An equalizer at the

kth secondary receiver post multiplied by W̃k always cancels the interference from the active
transmitters. Let the channels between the secondary users, Hki for k, i ∈ {Ka + 1, . . . , K}, be
replaced by (Ms−Kada)× (Ns−Kada) dimensional effective channels of W̃kHkiṼi. Then the
networks of the secondary and active users will become disjointed meaning that the secondary
nodes will not cause/receive any interference to/from the active nodes.

Assume Ms = Ns and let M̃s = Ñs = Ms −Kada. If Ks ≤ 2M̃s

ds
− 1 [7], or M̃s = d1+Ks

2
e

(when ds = 1), we can perform another level of IA between the secondary users over their
effective channels. Hence both the active and the secondary users will be performing IA among
themselves and while the interference from the secondary transmitters is pre-aligned to the
interference subspaces at the active receivers, the interference from the active transmitters is
always canceled at the secondary receivers. We call this method successive IA and conjecture
that in special cases, it achieves the same DOF as if all the K users had performed IA together.

Conjecture 1. Consider a 3K-user interference channel for K ∈ Z+ where the transmit-
ter/receiver pairs are divided into K groups of 3 users each, {G1, G2, . . . , GK}, such that
the nodes of the ith group have 3i − 1 antennas. Performing successive IA on the kth group,
2 ≤ k ≤ K, through creating effective channels between the nodes of Gk based on the
interference subspaces and precoders of the {1, . . . , k − 1} groups achieves the same DOF
as if all the 3K users had done IA together.

Using counting arguments, it is possible to show that successive IA achieves 3K DOF. Proving
that IA can only achieve 3K DOF, however, is not trivial. We have numerically confirmed (up
to K = 5) that only 3K DOF is achievable if all the nodes perform IA together (for DOF > K,
the algorithm of [9, Section III.A] does not converge). We also use [7, Theorem 2] to further
support Conjecture 1. Let all the nodes except the `th node (in the ith group) transmit a single
stream. Then, the number of variables (Nv) and the number of equations (Ne) in (2) are

Nv =
3K∑
k=1

dk(Ms +Nk − 2dk) = 9K2 − 3K − 6i+ 4 + d`(6i− 2− 2d`), (11)

Ne =
3K−1∑
k=1

(d` + 3K − 2) + d` (3K − 1) = (3K − 1) (3K − 2 + 2d`) . (12)

From (11) and (12), since d` > 1 and i ≤ K, this system is always improper (Nv < Ne)

Nv = 9K2 − 3K − 6i+ 4 + d`(6i− 2− 2d`) < Ne = (3K − 1) (3K − 2 + 2d`)

6d`(i−K)− 2d2` − 6(i+K) < −2.
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Note that if Ks > 2M̃s

ds
−1 or M̃s 6= d1+Ks

2
e (assuming Ms = Ns), successive IA is not possible

and, in general, the secondary users precoders have to be found through numerical optimization
methods. Secondary users, however, can use suboptimal precoding designs including:
• Each secondary user independently designs its precoder based on Corollary 1
• Secondary users successively design their precoders based on Corollary 2.
• Performing successive IA on a subset of secondary users and using any combination of the

previous suboptimum methods for the rest of the secondary transmitters.
We present numerical comparison of these methods in Section VI and leave analytical comparison
of such suboptimum solutions for future work.

V. SECONDARY USERS INTERFERING WITH THE ACTIVE USERS

In this section we assume that the number of transmit antennas at the secondary users is less
than the zero-impact threshold given by (7). This implies that (5) cannot be satisfied and the
secondary users are bound to change the sum rate of the active users. Consequently, we desire
the secondary users to cause minimum degradation to the sum rate of the active users given by
(4). Defining Qi = (F∗iH

∗
iiPiHiiFi)

−1, we seek a solution to the problem of

arg max
FKa+1,...,FK∈O

Ka∑
i=1

di∑
n=1

log

1+
γo/di

en

(
Qi + γo

ds
Wi

(∑K
k=Ka+1 HikFkF∗kH

∗
ik

)
W∗

i

)
e∗n

 . (13)

Like the sum rate maximizing interference alignment solution, solving (13) in its most general
form is challenging. Consequently we pursue a numerical solution for certain special cases.
Assuming Ks = 1, (13) simplifies to

arg max
Fs∈O

Ka∑
i=1

di∑
n=1

log

1 +
γo/di

en

(
Qi + γo

ds
WiHisFsF∗sH

∗
isW

∗
i

)
e∗n

 , (14)

where subscript s refers to the single secondary user. As Fs ∈ O and Rau
sum(Fs) = Rau

sum(FsQ) for
any unitary matrix Q, Rau

sum has the same value for all the points in the range of Fs. Equivalently,
we are searching for a ds-dimensional subspace of the vector space CMs and therefore, our search
is confined to the Grassmann manifold. Hence, we can find locally optimum solutions for (14)
using numerical optimization over the Grassmann manifold. We use the modified steepest descent
in the complex Grassmann manifold algorithm (MGM) in [24] which requires the derivative of
(14) with respect to Fs and an initial guess. The problem in (14) is not convex and MGM only
guarantees convergence to a local optimum point. Therefore, a better initial solution will lead to
a better final output of the MGM algorithm. Next we propose three initial solutions of varying
degrees of complexity for the MGM algorithm.
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A. Alternating Minimization Based Suboptimum Solution

Let W̃ =
Ka⊕
i=1

di⊕
n=1

√
dienWiHis, S =

Ka⊕
i=1

di⊕
n=1

dienQie
∗
n, and d̃ = Kada. At high SINR, we can

neglect the 1 and rewrite (14) as

arg max
Fs∈O

− log det

(
1

γo
S +

1

ds

(
W̃(Id̃ ⊗ FsF

∗
s)W̃

∗
))

, (15)

= arg min
Fs∈O

log det

(
I +

γo
ds

S−1W̃(Id̃ ⊗ FsF
∗
s)W̃

∗
)
. (16)

where non-singularity of S (due to the rank constraint in (2)) was used to derive (16) from (15).
As Id̃ ⊗ FsF

∗
s = (Id̃ ⊗ Fs) (Id̃ ⊗ F∗s) and det (I + AB) = det (I + BA) for any two matrices

A and B, (16) is equivalent to

arg min
Fs∈O

log det

(
I +

γo
ds

(Id̃ ⊗ F∗s)W̃
∗S−1W̃(Id̃ ⊗ Fs)

)
. (17)

Let the eigenvalue decomposition of W̃∗S−1W̃ be UW̃ΣW̃U∗
W̃

. Note that rank
(
W̃∗S−1W̃

)
=

Kada. If the rows of (Id̃ ⊗ F∗s) were equal to the linear combination of (Ms−1)Kada eigenvectors
corresponding to zero eigenvalues in ΣW̃, the det in (17) would attain its minimum value of 1.
Therefore, ideally we would like to have

Id̃ ⊗ Fs = ŨW̃As, (18)

where the columns of ŨW̃ are the columns of UW̃ corresponding to zero eigenvalues of
W̃∗S−1W̃ and As is an (Ms − 1)

∑Ka

i=1 di × (
∑Ka

i=1 di)ds combining matrix such that

A∗sAs = A∗sŨ
∗
W̃

ŨW̃As = (Id̃ ⊗ F∗s)(Id̃ ⊗ Fs) = Id̃ ⊗ F∗sFs = Id̃ ⊗ Ids = Idsd̃. (19)

Let ŨW̃ =
[
ŨT

1 , . . . , Ũ
T

d̃

]T
, where Ũ q for q = 1, . . . , d̃ are row-blocks of dimension Ms ×

(Ms− 1)d̃. Let As = [A1, . . . ,Ad̃], where Ap for p = 1, . . . , d̃ are column-blocks of dimension
(Ms − 1)d̃× ds. Considering the block diagonal structure of Id̃ ⊗ Fs, (18) can be rewritten as{

ŨpAq = 0 p, q = 1, . . . , d̃, p 6= q

ŨpAp = Ũp+1Ap+1 p = 1, . . . , d̃− 1
. (20)

The system of equations in (20) can be further simplified to Ũas = 0, where as = vec (As) and
Ũ is found by vertically stacking the coefficients in the (Msds)d̃

2− (Msds)d̃+ (Msds)(d̃− 1) =

(Msds)
(
d̃2 − 1

)
equations given by (20). Note that as d̃2 ≥Ms, the nullspace of Ũ only consists

of the null vector and a non-zero as exactly solving (20) cannot be found. Next we develop an
alternating minimization algorithm to solve (18) in the least squares sense.

Assume Fs in (18) is given. We seek an As to minimize ||Id̃ ⊗ Fs − ŨW̃As||2F . Formally,

Âs = arg min
As∈O

tr
((

Id̃ ⊗ Fs − ŨW̃As

)∗ (
Id̃ ⊗ Fs − ŨW̃As

))
(21)

= arg min
As∈O

tr
(
Id̃ ⊗ F∗sFs+A∗sŨ

∗
W̃

ŨW̃As − (Id̃ ⊗ F∗s)ŨW̃As −A∗sŨ
∗
W̃

(Id̃ ⊗ Fs)
)
. (22)
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Using (19), (22) simplifies to

Âs= arg min
As∈O

tr
(
Idsd̃ −Re

(
(Id̃ ⊗ F∗s)ŨW̃As

))
= arg max

As∈O
Re
(
tr
(
A∗sŨ

∗
W̃

(Id̃ ⊗ Fs)
))
, (23)

where Re{.} selects the real part of a complex number. The optimization problem of (23)
can be solved using the solution to the “Procrustes problem” [25]. Writing the singular value
decomposition of Ũ∗

W̃
(Id̃ ⊗ Fs) as

[
Φ1 Φ2

] [
ΣT

1 0T
]T

∆∗, the solution to (23) is given by
Âs = Φ1∆

∗ with the maximum value of (23) equal to Re (tr (Σ1)).
Again consider (18) but assume that this time As is given. We seek

F̂s = arg min
Fs∈O

||Id̃ ⊗ Fs − ŨW̃As||2F = arg max
Fs∈O

Re
(

tr
(

(Id̃ ⊗ Fs)A
∗
sŨ
∗
W̃

))
. (24)

Using the sparsity of Id̃ ⊗ Fs, (24) can be written as

F̂s = arg max
Fs∈O

Re
(

tr
(
Fs

∑d̃
k=1 A

∗
kŨ
∗
k

))
, (25)

where Ak and Ũk are defined in (20). Let Ψ
[
Π1 0

] [
(Λ∗1)

T (Λ∗2)
T
]T be the singular value

decomposition of
∑d̃

k=1A
∗
kŨ
∗
k. The solution to (25) is F̂s = Λ1Ψ

∗ where the objective function
attains its maximum value of Re (tr (Π1)). Based on (23) and (25), the alternating minimization
based approximate solution to (18) is given by Algorithm 1.

Algorithm 1 Alternating minimization based suboptimum solution
Initialize Fs

repeat
Find Âs using (23)
Find F̂s using (25)

until Convergence

After Algorithm 1 converges, ŨW̃Âs w
d̃⊕̀
=1

F`,s and an initial solution for the MGM al-

gorithm, approximately solving (14), can be found by restricting Fs to the set of precoders in
{F1,s, . . . ,Fd̃,1}. As the non-negative objective function of (21) reduces at each step of Algorithm
1, Algorithm 1 always converges. Convergence to a globally optimum point, however, is not
guaranteed as O is not a convex set. Detailed results on convergence of alternating minimization
algorithms similar to Algorithm 1 can be found in [26].

B. Interference Leakage Minimizing Suboptimum Solution
The alternating minimization based initial solution suffers from high computational complexity.

A less complex (and less accurate) initial solution to the MGM algorithm can be found by
revisiting the constraint on the secondary user precoders outlined in (6). Instead of requiring
the secondary transmitters’ interference to be confined in the interference subspace of each
active receiver, we minimize (in the least squares sense) the interference leakage caused by
the secondary users through solving arg min

Fs∈O
||H̃sFs||2F . A solution to this problem is given by

setting the columns of Fs to the ds least significant right singular vectors of H̃s.
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C. DOF-Preserving Suboptimum Solution
In both the initial solutions of Section V-A and Section V-B, interference from the secondary

transmitter is not confined to the interference subspaces of the active receivers. Thus, the DOF of
the active users’ network is zero. By aligning the secondary transmitter’s interference at some of
the active receivers, however, we can achieve a non-zero DOF and hence a better performance at
high γo. Specifically, as Fs can not satisfy (6), we minimize the number of interference subspace
dimensions at the active receivers to which the interference from the secondary transmitter is not
aligned which translates to solving arg min

Fs∈O
||H̃sFs||0. In general, this is a combinatorial problem

[27] and exact solutions are out of the scope of this manuscript. Instead, we search for the largest
subset of active receivers, K̃a, such that the system of equations defined by PiHisFs = 0 for
all i ∈ K̃a has an exact solution (equivalently Ms ≥

∑
i∈K̃a

di + ds). In this fashion, Fs will satisfy

some of the linear equations in (6). Note that this solution is optimal when da = 1. Moreover,
although extending the alternating minimization solution to Ks > 1 in not trivial, interference
leakage minimization and DOF-preserving solutions can be adopted for arbitrary Ks.

VI. NUMERICAL RESULTS

Consider an existing 3-user 2 × 2 MIMO IA network where, through IA [9, Section III.A],
each transmitter sends a single stream to its corresponding receiver. For the rest of this section,
we add nodes to this network and compare the total achievable sum rate of the resulting new
network. All the channel and additive noise coefficients are distributed as CN (0, 1).

Single secondary user not interfering with the active users Assume Ks = 1, Ms = Ns = 5,
and ds = 1, 2. The secondary user precoder can be designed using the optimum method presented
in Lemma 2 or the random orthonormal and the selfish designs discussed in Section IV-A. The
average achievable sum rate of this network for various secondary user precoders versus γo is
shown in Fig. 2. For reference we show the sum rate when all the nodes cooperate through IA.
As expected, the selfish precoding has the worst performance where, due to the uncoordinated
interference, the DOF of the whole network is less than the original IA network. Moreover, both
the optimum and random orthonormal precoders achieve 5 DOF, the maximum DOF attainable
through IA (for DOF > 5 algorithm of [9, Section III.A] does not converge). At low γo, however,
where interference and noise are not distinguishable, the selfish design has the best performance.

Two secondary users not interfering with the active users Now, assume two Ms×Ns

MIMO pairs (Ms=Ns) are added to the network of active users. The secondary users can adopt
selfish precoding, random orthonormal precoding, the self-optimizing precoding of Corollary
1, or the iterative self-optimizing precoding of Corollary 2. The average total achievable sum
rate versus Ms for various precoders at two values of Pa is shown in Fig. 3. The depicted
upper-bound is for the case of no interference among the secondary users or between the active

and secondary users. At γo = 0 dB when Ns−
Ka∑
i=1

di is small, in contrary to the high γo, the

selfish design is outperforming the other methods indicating the available spatial dimensions are
better used to combat noise than interference. As discussed before, for Ms=Ns=Ka+1, after
enforcing the zero-impact constraint on Fk for k>Ka, no further optimization of the precoders
is possible explaining why self-optimizing, iterative self-optimizing and random orthonormal
precodings have the same performance for Ms = Ns = 4. Random orthonormal precoding
requires considerably less overhead compared to the other methods but achieves an acceptable
performance. Also, the diminishing returns of increasing Ms is more sever at low γo.
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Three secondary users not interfering with the active users For the case of Ks = 3 and
Ms = Ns = 5, we consider selfish, random orthonormal, self-optimizing design of Corollary 1,
iterative self-optimizing design of Corollary 2, and successive IA precodings. The average total
achievable sum rate is shown in Fig. 4. In this case, as discussed in Conjecture 1, successive
IA achieves the same DOF as IA over the whole network. The other methods, because of
uncoordinated interference at the secondary receivers, cannot achieve more DOF than the original
network of the active users. In other words, from Conjecture 1, when Ms < (Kada +Ksds) and
da = ds = 1, only successive IA can possibly achieve more DOF than the original IA network.

Single secondary user interfering with the active users Consider the case where Ks = 1
and Ms = Ns = 3. Here, Ns does not satisfy (7) and the new node is bound to degrade Rau

sum.
Average Rau

sum versus γo for the MGM algorithm initialized with the three solutions provided in
Section V is depicted in Fig. 5. The alternating minimization algorithm approximately maximizes
the sum rate of the active users and, as expected, the MGM algorithm converges to the best
solution when initialized with it. In addition, the DOF preserving initial solution results in
the best performance at high transmit power among all the initial solutions. Moreover, selfish
precoding can be considered as a random initialization for the MGM algorithm and attains a
good performance although the initial solution itself drastically decreases Rau

sum.
Convergence of the MGM and the alternating minimization algorithms Both the MGM

and the alternating minimization algorithms are guaranteed to converge to a (sub) optimum
solution (see [24, Section VII.A] and Section V-A). The convergence metric for the MGM
algorithm is the magnitude of the descent direction on the Grassmann manifold and for the
alternating minimization algorithms is the Frobenius norm of the change in Fs at two consecutive
iterations. The worst convergence rate of the MGM algorithm at two values of γo initialized with
the solutions of Section V-A and V-B together with the slowest convergence rate of the alternating
minimization algorithm over 1000 randomly generated channels are shown in Fig. 6. Note that
the alternating minimization algorithm does not depend on γo. Both algorithms converge in less
than 500 iterations (the mean number of iterations of all the cases was less than 40).

VII. CONCLUSIONS

In this paper, we derived sum rate and DOF optimum/suboptimum precoders for a set of
secondary users arriving to an already established network of active users performing MIMO
IA. We showed how knowledge of the interference subspaces at the active receivers can be
used to mitigate the performance degradation caused by the secondary users and how, in some
networks, gains of IA are obtainable even if all the users do not perform IA together. We derived
the minimum number of secondary transmit antennas, the zero-impact threshold, required for
using the network resources without degrading the sum rate of the active nodes.

When the secondary users have more than the zero-impact antennas, optimum and suboptimum
precoders maximizing the achievable sum rate of the secondary users and the total DOF of the
network were found for up to two and more than two secondary users, respectively. For up
to two secondary users, we showed that a total achievable sum rate close to the upper-bound
is obtainable. For more than two secondary users, the proposed successive IA techniques, for
certain (and plausible) combination of number of secondary users and antennas, achieves the
same DOF as if all the users had simultaneously performed IA. The successive IA method, as a
decentralized IA technique, can be adopted in next generation wireless communication systems
where different categories of nodes, such as base stations, femtocells and user terminals with
different number of antennas and different levels of cooperation have to coexist.
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When the secondary users have less than the zero-impact antennas, we proposed a precoder
design based on steepest descent search on the Grassmann manifold. We derived three initial
solutions for the numerical search, maximizing the sum rate of the active users at high SINR,
minimizing the interference power leakage in a least squares sense, and maximizing the obtain-
able DOF in the IA network. The sum rate maximizing initial solution was the most complex
and resulted in the highest active users’ sum rate.

We assumed global CSI without considering the associated overhead. Also, with increasing
number of antennas the interference mitigation power of the secondary nodes increases, but so
do the overhead associated with training the additional links and relaying their CSI. Quantifying
such overhead costs and the effects of a limited capacity feedback link is left for future work.
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Fig. 1. Ka-user MIMO interference channel where the ith transmit/receive pair is equipped with Mi transmit and Ni receive
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Fig. 2. Average total achievable sum rate versus transmit power for varying precoder designs for the single 5× 5 secondary
node arriving to an already established 3-user 2 × 2 MIMO IA network. As expected, ignoring the active users results in the
worst performance and reduces the attained multiplexing gain. Restricting the interference from the secondary transmitters at the
active receivers increases the multiplexing gain of the network and can achieve the same DOF as if all the nodes had done IA
together. Moreover, random orthonormal precoding in the interference subspace of the active receivers achieves an acceptable
performance close to the optimum design.



16

A
ve

ra
ge

 T
ot

al
 A

ch
ie

va
bl

e 
Su

m
 R

at
e 

(b
/s

/H
z)

Numer of Antennas at The New User Terminals
4 6 8 10 12 14

0

15

20

25

30

35

40

45

Transmit Power = 20 dB

Transmit Power = 0 dB
5

10

Rand. Orthonormal Active Users W/ No Interference
Upper-Bound Iterative Self-Optimizing

Self-Optimizing Selfish

Fig. 3. Average total achievable sum rate versus Ns at two secondary transmitters arriving to a 3-user 2 × 2 MIMO IA
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high SNR regime, restricting the interference at the active receivers considerably increases the sum rate. As expected, when
Ms = Ns = Ka + 1 = 4, all the interference avoiding designs have the same performance. Moreover, diminishing returns of
increasing Ns is more apparent at low SNR.
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SNR (and low interference-to-noise) regime [4], reduces the total DOF of the network. Moreover, only successive interference
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