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Abstract

This paper presents a study on multiple-antenna interference channels, accounting for general over-

head as a function of the number of users and antennas in the network. The model includes both perfect

and imperfect channel state information based on channel estimation in the presence of noise. Three low-

complexity methods are proposed for reducing the impact of overhead in the sum network throughput

by partitioning users into orthogonal groups. The first method allocates spectrum to the groups equally,

creating an imbalance in the sum rate of each group. The second proposed method allocates spectrum

unequally among the groups to provide rate fairness. Finally, geographic grouping is proposed for cases

where some receivers do not observe significant interference from other transmitters. For each partitioning

method, the optimal solution not only requires a brute force search over all possible partitions, but also

requires full channel state information, thereby defeating the purpose of partitioning. We therefore propose

greedy methods to solve the problems, requiring no instantaneous channel knowledge. Simulations show

that the proposed greedy methods switch from time-division to interference alignment as the coherence

time of the channel increases, and have a small loss relative to optimal partitioning only at moderate

coherence times.

I. INTRODUCTION

Interference channels model the case of simultaneous point-to-point transmission by two or more

transmitters that do not have mutual knowledge of transmitted data for the purposes of coordinated

precoding. Recent work on interference channels has shown that, theoretically, the capacity of such

networks increases linearly with the number of transmit/receive pairs in the network [1], [2]. In particular,

by intelligently precoding the transmitted symbols, all the interference can be forced into a subspace of the
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received space at all receivers simultaneously. This precoding operation is called interference alignment

(IA). Although IA can achieve a linear rate scaling with the number of users in a network, achieving

the optimal scaling requires network channel state information (CSI) when designing the precoders. In

particular, with only two users, previous work has shown a loss in capacity scaling with signal-to-noise

ratio (SNR) when channel coefficients are not known at the transmitters [3], [4]. Other work has studied

IA with statistical channel state information [5] or for other channel models [6]. Iterative algorithms have

been proposed that can run in a distributed fashion requiring only local channel state information at each

node [7]–[9]. Such algorithms trade feedback overhead for the overhead of iterating over the wireless

medium. Previous work has shown that the number of total feedback bits for interference alignment

scales as the square of the number of users in the network [10]. This is because the total number of

wireless links grows with the square of the number of users in the network. CSI at the transmitter can

also be obtained through reciprocity, which requires calibration [11]. Such a procedure trades feedback

overhead for calibration and extra training overhead.

Beyond the requirement of CSI when designing precoders, there is no prior work analyzing the

interference channel without channel state knowledge at the receivers. All current methods for maximizing

degrees of freedom (DOF, the pre-log factor in the sum capacity term related to the total number of spatial

streams in the network) for the interference channel require channel training and estimation at each node

even if no feedback mechanism is employed. The requirement of CSI, even if only at the receivers, may

still dominate communication in an interference channel with many users, since training is known to

effectively reduce the degrees of freedom of a point-to-point link [12]. With low-to-moderate coherence

times, the training required to estimate the K2 wireless channels in a K-user MIMO interference channel

can last nearly as long as the coherence time, leaving a very short amount of time for IA transmission

before the CSI becomes stale. Time and frequency synchronization among all nodes is also required for

interference alignment adding to the overhead burden of the network.

To mitigate the domination of scaling overhead in large interference channels, prior work has considered

clustering in a cellular network based on spatial proximity [13], [14], but this clustering is done without

optimization and does not consider overhead. Others have considered the impact of imperfect CSI on

the achievable sum rate of interference alignment [15], but considered only the case where all links have

the same channel estimation error. The number of bits of limited feedback desired for single-antenna
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interference alignment was investigated in [10]. Overhead due to training was neglected in both cases.

Interference alignment-type transmitters with no transmit CSI have recently been proposed [4], [6],

resulting in reduced network degrees of freedom. Such work makes the assumption that the network

is operating in an environment where training and feedback overhead will dominate, and the total IA

throughput will be smaller than a suboptimal strategy with no feedback. This assumption is valid in quickly

varying channels. The overhead conditions are not quantified. This paper makes no such assumption and

instead addresses the question, “how much overhead makes IA infeasible?” The question has not been

addressed in the literature, and its answer is unclear. With very static channels, we can dedicate long

training sequences to generate high-fidelity training estimates that will be accurate for a long period

of time. Further, with quickly varying channels, obtaining a large amount of channel information is

infeasible. For all the cases between these two extremes, the overhead must be quantified.

In this paper we account for overhead in MIMO interference channels through an overhead penalty

factor on the sum throughput. The model assumes synchronized narrowband block fading with overhead

requiring access to the wireless medium at the beginning of each frame. Using this model we show that

the achieved sum rate with overhead of interference alignment will go to zero with a large number of

users, even if the only overhead in the network is due to training. That is, even with a minimal amount

of overhead (minimum training lengths, no feedback, no synchronization overhead, no medium access

control overhead, etc.), IA does not have asymptotically increasing sum rate as the number of users

grows large. We then show that, if the overhead grows faster than linearly with the number of users

in the network, partitioning the network into orthogonally transmitting groups can increase the effective

degrees of freedom. The rest of the paper is devoted to developing smart partitioning methods.

First, we consider a connected interference channel, where spatial clustering is ineffective because of the

proximity of all users. We derive an optimization to maximize the sum rate when each group is allocated

an equal amount of transmission time, and the solution to this optimization is shown to be too complex

to serve its purpose, requiring global channel state information and comprehensive search. We therefore

propose a greedy algorithm that requires only large scale information (i.e., channel magnitude) on the link

between each transmit/receive pair, but not for the interfering links. The availability of such information is

justified because it is likely to be correlated across channel realizations. Based on an approximation to the

sum rate for interference alignment using linear precoding, the proposed algorithm efficiently partitions
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the network into IA groups. Relative to our previous work [16], this paper introduces new partitioning

algorithms, proposes geographical and equal-rate grouping, and includes analysis on training length.

Second, we derive an equal-rate unequal-time allocation between groups to enforce sum-rate-fairness

rather than time-slot-length fairness. This algorithm is shown to require a small modification to the

equal-time allocation algorithm and an additional final step solving a linear system of equations. This

solution is again based on a connected interference channel where spatial clustering is not beneficial. In

an unconnected network, grouping together users that are geographically separated may allow them to

transmit nearly orthogonal in space with higher throughput due to significant path loss from interfering

transmitters. Conversely, a network can be partitioned into groups that are nearly mutually orthogonal in

space, such that the groups can transmit simultaneously (rather than the users transmitting simultaneously

while groups transmit orthogonally). Finally, we derive greedy algorithms for both of these scenarios based

on position information obtained through GPS or similar positioning methods. The spatial clustering

algorithms are well-suited for dense ad hoc networks [15], [17], [18], where a natural spatial clustering

may not be present or is distorted because of overhead. Assuming the existence of an IA-enabling

mechanism built into the network, these algorithms require no additional overhead.

In summary, this paper proposes a suite of transmission strategies, and a method for choosing among

them, that trade increased overhead for increased capacity, or decreased capacity for decreased overhead.

The strategies presented here are parameterized by a single scalar parameter, the number of groups with

which to partition the network. The most complex strategy considered is interference alignment through

the entire network; the simplest strategy considered is time division multiple access (TDMA) across the

entire network. By partitioning the network into groups that transmit mutually orthogonally, but using

IA inside the groups, the gap between IA and TDMA is filled using very little network knowledge

and processing. Previous work on grouping, for instance for network MIMO [19] and interference

alignment [13], was performed with the overall goal of trading overhead and rate without explicitly

taking overhead into account. Previous efforts to reduce the overhead of IA transmissions, including [7],

[10], assume that all the users are using IA simultaneously, which this paper shows is often suboptimal.

Finally, previous work on imperfect channel state information in interference channels finds rate bounds

but does not optimize these rates as a function of length of the training, as this paper studies.

This paper is organized as follows: Section II presents the model utilized in this paper; Section III
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discusses the problem of partitioning in general and shows why optimal partitioning is impractical;

Section IV proposes greedy algorithms for partitioning the network based on equal time allocation, equal

sum rate allocation, and geographic nearness; Section V analyzes the relationship between partitioning

and training overhead; Section VI presents computational simulations while Section VII concludes the

paper and points toward future work.

Finally, a word on notation. The log refers to log2. Bold uppercase letters, such as A, denote matrices,

bold lowercase letters, such as a, denote column vectors, and normal letters a denote scalars. The letter

E denotes expectation, C is the complex field, max{a, b} denotes the maximum of a and b, ‖A‖F is the

Frobenius norm of matrix A, and |A| is the determinant of square matrix A. The empty set is denoted

as ∅, the identity matrix of appropriate dimension is I, and IA×B is the A×B truncated identity matrix.

II. SYSTEM MODEL

We consider a distributed MIMO network with 2K nodes. K of the nodes have data to transmit

via their Nt antennas to the other K nodes, each with Nr antennas, with no multicasting or cooperative

transmission. Transmitter k ∈ {1, . . . ,K} has data destined only for receiver k. We assume a narrowband

block fading model where the Nr × Nt matrix channel Hk,` between transmitter ` ∈ {1, . . . ,K}

and receiver k ∈ {1, . . . ,K} is independently generated every T symbol periods ∀k, `. We assume

transmissions are frame and frequency synchronous. Thus, at any fixed moment in time, there is a K-

user MIMO interference channel with Nt antennas at each transmitter and Nr antennas at each receiver,

as illustrated in Figure 1. We consider scenarios where interference alignment is considered to be

theoretically amenable; that is, we consider channels in which, without overhead, IA would be a good

candidate transmission strategy, with strong channels between all nodes. In scenarios where IA is not

desirable, such as when interference is much stronger than the signal, receiver methods such as successive

interference cancellation (SIC) may be more attractive [20]. The assumption that all nodes have identical

coherence times is justified because of previous work showing that multiuser transmission is severely

degraded in quickly changing channels [21], [22], meaning all candidates for interference alignment are

likely to have relatively static channels. Analysis for different coherence times for each link is left for

future work.

Communication is divided into frames of period T symbols, as shown in Figure 2. The beginning of

each frame is devoted to overhead, which may include training, feedback, synchronization, higher layer
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overhead, and so on. We do not make assumptions about the source or amount of overhead. Later we

will explicitly model channel training and estimation, but this will not preclude the existence of other

overhead sources. For channel estimation, the transmitters send mutually orthogonal training sequences

since the network is connected (i.e., spatially dense). This training is necessary not only for coherent

detection but also for CSI feedback required to exploit the full degrees of freedom in the network [3],

[4]. Although reciprocity can be exploited [1], it requires double the training and a special calibration

procedure among all the nodes in the network [11]. Overhead time is L(K,Nt, Nr) ≤ T symbol periods.

Thus overhead requires a fraction α = min{L(K,Nt, Nr)/T, 1} of the frame, while data is transmitted

during the remaining α = 1−α. This overhead model is an extention of the model in [12] to the MIMO

interference channel.

The data transmission portion of the frame begins after the first L(K,Nt, Nr) symbols and ends when

the channel changes T transmissions later. Information theoretic results, which neglect overhead, suggest

that all transmitters should send aligned signals simultaneously to achieve the maximum degrees of

freedom in the channel and thus approach its sum capacity with high transmit power [1], [2]. The overhead

portion of the frame has given the transmitters sufficient information to design linear precoders. While

linear precoding may not be sum-rate-optimal [2], it is a practical approach for immediate implementation

because of the simplicity of the receiver signal processing. Transmitter ` sends S` spatial streams to

receiver `. At symbol period n, the signal observed by receiver k ∈ {1, . . . ,K} is

yk[n] =
√
ρk,kHk,kFksk[n] +

K∑
`=1
` 6=k

√
ρk,`Hk,`F`s`[n] + vk[n], (1)

where ρk,` = Ekγk,`, Ek is the transmit power from transmitter k, γk,` is the fading coefficient from

transmitter k to receiver `, Hk,` is the Nr × Nt MIMO channel from transmitter k to receiver `, F`

is the Nt × S` unit-norm linear precoder used at transmitter `, s` is the S` × 1 vector of symbols sent

by transmitter `, and vk is zero-mean white circularly symmetric zero-mean complex Gaussian noise

with covariance matrix Evkv
∗
k = Rk. The rest of the paper examines the implications of overhead as a

function of the number of users and proposes methods to find a balance between overhead and capacity

gains.
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III. OPTIMAL PARTITIONING TO REDUCE OVERHEAD

This section introduces and motivates the notion of network partitioning to reduce overhead. We first

consider the case of maximizing the sum rate of a network with perfect channel estimation. The model

described in Section II is a K-user MIMO interference channel during the data portion of the frame.

Assuming the training performed in the first part of the frame results in perfect CSI at both transmitter

and receiver, with the overhead model described in Section II and maximum likelihood reception, the

sum rate of the network in bits per transmission for a particular frame is then

Rsum = α

K∑
k=1

log

∣∣∣∣I +

(
Rk +

K∑
`6=k

ρk,`Hk,`F`F
∗
`H
∗
k,`

)−1

ρk,kHk,kFkF
∗
kH
∗
k,k

∣∣∣∣. (2)

When all the transmitters are communicating during the data portion of the frame, the effective

throughput is reduced by a factor of α relative to the information-theoretic sum rate. The reduction

factor α is a function of the number of symbols required for overhead and the coherence time of

the channel. Overhead includes symbols required for training, feedback, synchronization, or any other

spectrum utilization not used for communication of data. It is thus a function of the number of users in

the channel and the number of antennas at each node.

Our claim is that, if the overhead in the network scales faster than linearly with the number of users in

the network, then the sum rate of the network may be increased through partitioning. Figure 3 illustrates

the concept of partitioning. Instead of all the transmitters sending simultaneously throughout the data

portion of the frame, the frame is divided into P sub-frames, each with an overhead and data portion. If

overhead does scale faster than linearly with K, then splitting the interference channel into P equally-

sized interference channels utilizing the spectrum equally but orthogonally will reduce overhead. That is,

if P > 1,

P

(
T/P − L(K/P,Nt, Nr)

T

)
=

T − PL(K/P,Nt, Nr)

T

>
T − L(K,Nt, Nr)

T
. (3)

Previous work has shown that feedback overhead for IA scales with the square of the number of users [10].

A measurement study of a network not even performing coordinated transmissions found that overhead

scaled faster than linearly with the number of users [23]. Orthogonalization thus has significant potential
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to improve the effective sum rate by reducing total network overhead.

Since the capacity of IA is known to increase with the number of users K [1], [2], [24], forcing all users

to transmit orthogonally (time division multiple access, TDMA) is not optimal in general, though in some

cases it may be. We therefore propose a suite of transmission strategies, parameterized by the number

of orthogonal groups P , spanning complexity and overhead from interference alignment to TDMA, as

illustrated in Figure 4. That is, for P = 1, all the users are transmitting simultaneously using IA, and

with P = K, the users are transmitting orthogonally in time-division fashion. For 1 < P < K, the

network is using a hybrid of the two techniques.

Note that since the original K users were modeled as a connected interference channel, where all

receivers observe a signal from all transmitters above the noise floor, any subset of transmit/receive pairs,

in isolation, may also be modeled as a connected interference channel. The interference channel can be

modeled as a connected graph [25]. A vertex vk would include both the transmitter and receiver for user

pair k. The cost of each edge could be the signal-to-noise ratio from the transmitter in one vertex to the

receiver in the other vertex. In this model, the edge cost is assumed to be reciprocal, though this does

not imply that the channel is reciprocal. The weight associated with each vertex is the signal-to-noise

ratio from the transmitter in one vertex to the receiver in the same vertex.

Graph partitioning is an important, well-studied problem in combinatorial optimization [26]. Standard

graph partitioning methods, however, are not directly applicable to the problem considered in this paper.

The main reason is that overhead is difficult to incorporate into the graph model. That is, the sum weight

of a group will depend on how many vertices are assigned to the group, which is not reflected in the

static weight/cost model. In a non-connected interference channel, where some receivers do not observe

interference from some transmitters, graph partitioning can be directly applied to produce non-orthogonal

groups that attempt to transmit IA at the same time. This is described in more detail in Section IV-C.

We thus develop novel methods for the partitioning desired in our network model.

If users in the interference channel are partitioned into P index sets {Kp}, with Kp = |Kp| users in

the pth group, then the sum rate of the network becomes

R̂sum =

P∑
p=1

αp
∑
k∈Kp

log

∣∣∣∣I +

(
Rk +

∑
`∈Kp

`6=k

ρk,`Hk,`F`F
∗
`H
∗
k,`

)−1

ρk,kHk,kFkF
∗
kH
∗
k,k

∣∣∣∣, (4)
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where

αp =
T/P − L(Kp, Nt, Nr)

T
. (5)

This extension of (2) sums the rate of each point-to-point MIMO link inside each group (k ∈ Kp), and

over all groups (p ∈ {1, . . . , P}), where only users in the same group interfere with each other. We then

aim to solve the following optimization:

maximize R̂sum

with respect to P ∈ N1,Kp ∈ N1∀p,F` ∈ CNt×S`∀`

subject to
∑P

p=1Kp = K, ‖F`‖ ≤ 1. (6)

The solution to this optimization is computationally complex and involves not only a brute force search

over every possible grouping, but also the calculation of the desired precoders for each grouping.

Neglecting the precoder calculations, and assuming that we have a priori knowledge that the optimal

partition is to equally distributed users across groups1, the number of searches required is still [26]

K∑
P=1

1

P !

 K

K/P

 K −K/P

K/P

 · · ·
 K/P

K/P

 . (7)

Further, such an optimization requires each link Hk,` to be trained and estimated, negating the overhead

reduction that partitioning provides. Obviously this is not a practical way to optimize overhead in

interference networks. In the next section we present a greedy method for performing channel partitioning

with only channel quality information.

IV. GREEDY PARTITIONING

The sum-rate-optimal partition was shown at the end of Section III to be too complex for imple-

mentation. We thus turn to heuristic approaches to reduce not only computational complexity but also

the amount of network knowledge required for implementation. We first develop a greedy method of

partitioning the network where each group is allocated the same amount of time for transmission. We

1This assumption is a good approximation in most cases, but is not optimal in every case. Not making this assumption greatly
increases the search complexity even further.
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then develop a method for allocating time in an unbalanced fashion to make each group’s sum rate equal.

Lastly we consider geographic partitioning methods that can exploit an unconnected interference channel.

For the following algorithms we assume a network mechanism exists to allow IA transmissions

simultaneously from all transmitters if needed. Such a mechanism can be a central controller or a

distributed protocol. The partitioning can be piggy-backed onto this mechanism, as illustrated in Figure 5,

with no additional communications overhead, either through a wired backbone or the wireless medium.

A. Balanced Time Allocation

To develop a greedy algorithm for partitioning the network, we must first define a selection function

that assigns a value of placing a user in a group. This function would ideally be the sum rate increase

of placing a user in a group. This is difficult in multiuser networks since the actual sum rate increase

will depend on which future users are assigned to the group—knowledge that is unavailable in a greedy

algorithm, which makes the locally optimum choice at each step without global knowledge. Instead we

resort to an approximation of this sum rate increase.

After partitioning the K-user interference channel into P orthogonal groups, group p will be a Kp-user

interference channel that is restricted to utilizing only 1/P of the spectrum or coherence interval. This

enforces a time-sharing fairness constraint while attempting to maximize sum throughput for the entire

frame. An equal-rate-per-group design, which involves unbalanced time allocations, will be investigated

in Section IV-B. Thus, interference alignment is a reasonable choice for precoder design in each group.

Although interference alignment requires extensive CSI and calculation of precoders to find the exact sum

rate, we note that the precoder solutions are independent from the direct links {Hk,k}, ∀k. Thus, with

interference alignment, the expected throughput will be approximately the rate obtained from randomly

generating orthogonal precoders Q and combiners Φ of correct rank drawn uniformly from the Grassmann

manifold in the absence of interferers because of our lack of knowledge of the channel state affecting

the precoders and combiners. We then approximate the expected rate for user k in group p to be

Rk,p ≈ αk,pEΦ,Q log

∣∣∣∣I +
ρk,k
Sk

Φ∗Hk,kQQ∗H∗k,kΦ

∣∣∣∣ , (8)

where the scaling factor ρk,k/Sk is for power normalization and αk,p = (T/P −L(Kp + 1, Nt, Nr))/T .

The expectation in (8) is an approximation because we draw Q and Φ independently, whereas actual IA

precoders and combiners are not mutually independent. We then let Q = QUINt×Sk
and Φ = ΦUINr×Sk

,

November 5, 2018 DRAFT



11

where QU and ΦU are random unitary matrices of appropriate dimension and IA×B is the A×B truncated

identity matrix. Defining Ĥk,k = Φ∗UHk,kQU , then

Rk,p ≈ αk,pEΦU ,QU
log

∣∣∣∣I +
ρk,k
Sk

ITNr×Sk
Ĥk,kINt×Sk

ITNt×Sk
Ĥ∗k,kINr×Sk

∣∣∣∣ . (9)

Then, defining the matrix Ĥk = ITNr×Sk
Ĥk,kINr×Sk

, (9) becomes

Rk,p ≈ αk,pEΦU ,QU
log

∣∣∣∣I +
ρk,k
Sk

ĤkĤ
∗
k

∣∣∣∣
= αk,pEΦU ,QU

log

∣∣∣∣I +
ρk,k
Sk

Σ̂2
k

∣∣∣∣
= αk,pEΦU ,QU

Sk∑
i=1

log

(
1 +

ρk,k
Sk

σ̂2
k,i

)
, (10)

where Σ̂k is the Sk × Sk diagonal matrix of singular values of Ĥk Precise calculation of (10) is not

trivial, so we resort to the bound
∑Sk

i=1 log(1 + σ2
i ) ≤ Sk log(1 + (1/Sk)

∑Sk

i=1 σ
2
i ). This bound is tight

when the singular values are roughly equal. Then, (10) can be rewritten as

Rk,p ≈ αk,pSkEΦU ,QU
log

(
1 +

ρk,k
S2
k

‖Ĥk‖2F
)
. (11)

Again with no knowledge of the channels {Hk,`}, k 6= ` on which IA precoder design is based, we resort

to computing the expectation

EΦU ,QU
‖ĤA‖2F =

ρk,kS
2
k

NtNr
EΦU ,QU

‖Ĥk,k‖2F =
ρk,kS

2
k

NtNr
‖Hk,k‖2F . (12)

Using Jensen’s inequality [27], we subsitute the right side of (12) into (11) and finally have

Rk,p ≈ αk,pSk log

(
1 +

ρk,k
NtNr

‖Hk,k‖2F
)
. (13)

This approximation is justified via the plot in Figure 6 for a 3-user 4-antenna system transmitting 2

streams per user. Despite the seemingly large number of approximations made in the derivation, the

estimate is surprisingly tight, especially at moderate-to-high SNR.

The estimation of (13) requires Kp, Nt, Nr, d(Kp, Nt, Nr) (since
∑

k∈Kp
Sk ≤ d(Kp, Nt, Nr), and the

product ρk,k‖Hk,k‖F . Knowledge about the number of antennas Nt and Nr is assumed known a priori,

and the degrees-of-freedom depends on the transmission strategies available [2], [24], which are also
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known in advance. The channel quality metric ρk,k‖Hk,k‖2F can be estimated from the previous channel

realization since large scale fading, including path loss and shadowing, is likely to be correlated across

channel realizations. If ρk,k‖Hk,k‖2F is not known exactly, we can substitute Eρk,k‖Hk,k‖2F in its place,

given previous channel measurements. At the beginning of the algorithm, however, Kp, p ∈ {1, . . . , P}

is undefined because the number of groups P are unknown. One could perform the greedy algorithm for

each possible P and choose the one with the highest sum rate, but this would increase the computational

complexity of the algorithm by a factor of K. We can instead intelligently choose P based solely on

a priori knowledge of Nt, Nr, T , L(K,Nt, Nr), and d(K,Nt, Nr). In particular, we define degrees of

freedom with overhead d̃K(k,Nt, Nr, T ) as

d̃K(k,Nt, Nr, T ) =
T/dK/ke − L(k,Nt, Nr)

T
d(k,Nt, Nr). (14)

We then choose

KO = arg max
k∈N1

d̃K(k,Nt, Nr, T ) (15)

and set P =
⌈
K
KO

⌉
. This choice of P will be near a good overhead-capacity tradeoff since KO is

the DOF-optimal number of users in an Nt ×Nr interference channel with overhead L(k,Nt, Nr) and

coherence time T .

Once P is found, we can assign users to each group by their approximate rate Rk,p. The algorithm

is summarized in Table I. The algorithm in Table I requires P (
∑K−1

i=0 K − i) searches, which grows

approximately with K3 assuming P grows linearly with K (P will not grow faster than linearly with K,

so this is a worst-case analysis). Further, relative to the optimal search, this algorithm does not require

computation of precoders (which may be an iterative procedure for K > 3), and does not require any of

the channel coefficients to be trained and estimated. Note that this algorithm is based on a model with

linear precoding, which does not result in a linear relationship between K and d(K,Nt, Nr) [24], [28].

This algorithm can work for non-linear precoding [2], which may increase the degrees of freedom in

a constant-coefficient interference channel, with an appropriate approximation of Rk,p. That problem is

beyond the scope of this paper.

Finally, because this is a greedy algorithm, the addition of a user to the network is straightforward

and efficient. One need only run the algorithm for the new user, with a search complexity of P . After

several users have joined the network, it will need to be restructured (likely with higher P ), but for an
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incremental change, network topology does not need to change. When a user leaves the network, the

network can be maintained by re-allocating the user with the worst performance in the network. This

keeps the groups balanced without having to restructure at every change. Detailed exploration of this

matter is left for other work [29].

B. Sum Rate Fairness

The algorithm of Section IV-A allotted an equal amount of time in the frame for each group and

maximized the sum rate under this constraint. Maximizing the sum rate with unbalanced time allocation

will lead to the group with highest sum rate transmitting for the entire frame. Unbalanced time allocation

can be used, however, to provide each group with the same sum rate. A disadvantage of such a design

is that the group with the lowest sum rate is invariably using most of the frame. To mitigate such a

scenario, we must carefully assign users to groups.

We first define the estimated sum throughput of group p at any point in the algorithm to be Rp =∑
k∈Kp

Rk,p. We then define network disparity for a particular allocation of users as

ρ({Rp}) = max
p̂ 6=q̂

Rp̂ −Rq̂. (16)

We then modify Step 5 of the algorithm in Table I to be

{k′, p′} = arg min
k,p

ρ({R1, . . . , Rp +Rk,p, . . . , RP }). (17)

This modified algorithm will attempt to allocate sum rate equally among all groups. The rate, in general,

will not be equal even after this algorithm modification, so group transmission times must be allocated

unequally. This allocation can be done based on the estimated sum rates {Rp} or the actual sum rates {Rp}

if performed after all the training, estimation, and feedback for the frame has occurred. For simplicity

we will use {Rp}. If group p is allocated µpT symbols for transmission (including overhead), then the

sum rate of the network becomes

Rsum =

P∑
p=1

µpT − L(Kp, Nt, Nr)

T
Rp (18)

We constrain
∑

p µp = 1 and µp ≥ 0,∀p. The sum rate of each group is an unknown R∗. We can enforce
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the equal-rate constraint with a set of equations:

µpRp −R∗ = αpRp, p ∈ {1, . . . , P − 1}, (19)

which we can then form into a linear relation

1 1 1 · · · 1 0

R1 0 0 · · · 0 −1

0 R2 0 · · · 0 −1
...

...
. . . . . .

...
...





µ1

µ2

...

R∗


=



1

α1R1

...

αPRP


, (20)

The time allocation vector µ = (µ1, µ2, . . . , µP , R
∗)T has a unique solution since the left matrix in (20)

is square and non-singular.

C. Geographic Grouping

Since the greedy Balanced Time Allocation algorithm proposed in Section IV-A estimates its rate

based only on the SNR between user pairs ρk,k, and neglects inter-user SNRs ρk,`, k 6= `, it does not take

advantage of possible natural groupings that may arise from geographical clusters. It has been shown

that IA performs best, relative to other transmission techniques, when all receivers have strong links to

all transmitters. This is because IA is a degrees-of-freedom-optimal transmission strategy, and degrees-

of-freedom are most important in the regime where all receivers have strong links to all transmitters.

Thus, a position- or signal strength-based algorithm could group geographically close users to maximize

the benefit of IA. Conversely, if non-IA transmissions are considered, a similar algorithm could group

together users that are geographically separated, choosing to transmit as if no interference existed. Since

this regime is not “high SNR” in the interference channel sense (some links may have strong power, but

not all), interference alignment is not the desired transmission strategy, and instead interference can be

ignored. This section analyzes the latter case, which, as we will show, is algorithmically equivalent to

the first case.

We study the problem of geographic grouping under time-orthogonal transmissions, still considering

the overhead model of previous sections. It is assumed that the central controller executing the partitioning

algorithm has position information for each transmitter and receiver in the network, although this could

be replaced with a channel quality indicator for the channels between all receivers and transmitters in the

November 5, 2018 DRAFT



15

network. The position of receiver k is δk, while the position of transmitter ` is π`, so that the distance

between transmitter ` and receiver k is ‖δk − π`‖. We then define

∆k,p = min
`∈Kp

‖δk − π`‖. (21)

If no user is allocated to the pth group, then we define ∆0 > 0 to be a small default distance. Then

∆k,p = ∆0. We can then modify Step 5 of the algorithm in Table I to be

{k′, p′} = arg max
k,p

∆k,p. (22)

To group the closest users and perform IA, we can simply switch the max and min in (21) and (22).

V. OPTIMIZING TRAINING OVERHEAD WITH PARTITIONING

To analyze the relationship between channel partitioning and overhead, we consider the physical layer

overhead of training for channel estimation. While different interference alignment techniques have

varying requirements for transmit CSI (and thus feedback overhead), they all require receive CSI for

interference nulling. The obtainment of receiver CSI is typically performed through transmission of a

known training sequence orthogonal to the data. In this section we find the optimal training lengths for

a given partition, and the effect that partitioning has on training length.

In general, channel estimation is done in the presence of noise, which means imperfect CSI at both

receiver and transmitter. In this case, (4) is no longer achievable. To approach this problem, we first

assume perfect feedback of the imperfect channel estimates {Ĥk,`}. Second, each receiver applies an

interference-cancelling orthogonal filter Uk to its received signal yk, such that zk = U∗kyk, and sk is

estimated using ML detection from zk. Finally, we assume that the precoder design and receiver designs

treat the channel state knowledge as perfect.

Let

Ĥk,` = Hk,` −Ek,`,∀k, `. (23)

If the receivers use a minimum mean square error (MMSE) estimator, and the channel is being estimated

in additive white Gaussian noise, then Ĥk,` and Ek,` are uncorrelated. The precoder F̂` is based solely
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on {Ĥk,`}. The received signal is then

yk =
√
ρk,kHk,kF̂ksk +

∑
` 6=k

√
ρk,`Hk,`F̂`s` + vk, (24)

and the filtered signal, after interference filtering, is

zk =
√
ρk,kÛ

∗
kĤk,kF̂ksk +

√
ρk,kÛ

∗
kEk,kF̂ksk + Û∗k

∑
`6=k

√
ρk,`Ek,`F̂`s` + Û∗kvk, (25)

since Û∗k
∑

` 6=k Ĥk,`F̂` = 0 through interference alignment. If the error matrix Ek,` is drawn from a

circularly symmetric complex Gaussian distribution, where each component is independent with variance

σ2
E ∀k, `, previous work [15] has found a lower bound on the sum rate using interference alignment with

linear precoders when all the links have equal channel estimation error:

REE ≥
T − L(K,Nr, Nt)

T

K∑
k=1

log

∣∣∣∣∣∣ 1

σ2
ESkγk,k + 1

I

1 + σ2
Eγk,k +

∑
`6=k

σ2
Eγk,`

+ ρk,kH̃k,kH̃
∗
k,k

∣∣∣∣∣∣ .
(26)

Because of the homogenous assumption of channel estimation error, this formulation is useful when each

receiver is roughly equidistant to each transmitter. In general, such an assumption may not be valid.

Further, by characterizing the error variance in terms of the training length, it is possible to design the

length of our training sequences to further trade overhead and rate.

Expanding the analysis to include unequal error variances as a function of training length, we extend

a previous model for point-to-point communications [12] to MIMO interference channels. The residual

interference term in (25) is possibly non-Gaussian and dependent on the data we wish to decode [12].

We therefore find a lower-bound on the capacity of this system by examining the worst-case additive

noise that is uncorrelated with the data. This noise model is tractable and has the same energy as the

residual interference term. The analysis from [12] is directly applicable because we are making the same

assumptions as Theorem 1 in that paper. Thus, the worst-case uncorrelated additive noise is spatially

white, zero mean, circularly symmetric, and Gaussian with covariance matrix σ2
nk

I. Refer to the Appendix
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of [12] for proof. Define Ẽk,` = Û∗kEk,`F̂`. Assuming Es`s` = I, ∀`, and Es`sk = 0,∀` 6= k, then

σ2
nk

=
1

Sk
trEnkn

∗
k

=
1

Sk
Etr

(
K∑
`=1

ρk,`
S`

Ẽk,`Ẽ
∗
k,`

)
+ 1

= 1 +

K∑
`=1

ρk,`
S`

Etr
(
Ẽk,`Ẽ

∗
k,`

)

= 1 +

K∑
`=1

ρk,`σ
2
Ẽk,`

. (27)

Define σ2
H̃k,k

= EtrH̃k,kH̃
∗
k,k, and by the orthogonality principle, σ2

H̃k,k
= 1−σ2

Ẽk,`
. Finally, we normalize

each channel such that Hk,k = H̃k,k/σ
2
Ĥk,k

. The sum capacity with overhead is bounded from below by

Rτ ≥ E
T − τ − L̂(K,Nt, Nr)

T

K∑
k=1

log

∣∣∣∣∣∣I +
ρk,kσ

2
H̃k,k

1 +
∑K

`=1 ρk,`σ
2
Ẽk,`

Hk,kH
∗
k,k

Sk

∣∣∣∣∣∣ , (28)

where τ is the number of transmissions per frame used for training, and L̂(K,Nt, Nr) = L(K,Nt, Nr)−τ

is the number of transmissions per frame required for overhead other than training.

Utilizing orthogonal training sequences from each transmit antenna, we find that

σ2
H̃k,k

=
ρk,kτ

Sk + ρk,kτ
(29)

σ2
Ẽk,`

=
Sk

Sk + ρk,kτ
. (30)

The sum rate (28) can thus be rewritten as

Rτ ≥ E
T − τ − L̂(K,Nt, Nr)

T

K∑
k=1

log

∣∣∣∣∣I + ρeff,k

Hk,kH
∗
k,k

Sk

∣∣∣∣∣ (31)

= E
T − τ − L̂(K,Nt, Nr)

T

K∑
k=1

log

∣∣∣∣∣I +
ρ2
k,kτ

Sk + ρk,kτ +
∑K

`=1
Sk+ρk,kτ
S`+ρk,`τ

ρk,`S`

Hk,kH
∗
k,k

Sk

∣∣∣∣∣ . (32)

The training length τ can then be found by Monte Carlo methods to maximize the lower bound of (32).

At high SNR,

ρeff,k ≈
ρk,kτ

τ +
∑K

`=1 S`
, (33)

and the effect of the residual interferers is constant with respect to {ρk,`}, meaning that there is no
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reduction in the degrees of freedom region compared to the perfect CSI case. If {ρk,`} is fixed, however,

and K increases, then sum throughput is reduced. Thus, to maintain a sum rate increase with additional

users, the signal power must increase with the addition of each user. Increasing the training length can

also improve ρeff,k, but is detrimental to the pre-log overhead factor.

If the network is partitioned into P groups, each utilizing IA, then the rate is bounded from below by

R̂τ ≥ E
P∑
p=1

(
T/P − τp − L̂(Kp, Nt, Nr)

T

) ∑
k∈Kp

log

∣∣∣∣∣I + ρeff,k,p

Hk,kH
∗
k,k

Sk

∣∣∣∣∣ , (34)

where

ρeff,k,p =
ρ2
k,kτp

Sk + ρk,kτp +
∑

`∈Kp

Sk+ρk,kτp
S`+ρk,`τp

ρk,`S`
, (35)

and τp is the number of training symbols used in group p. In this case, partitioning has the added potential

to benefit the rate by reducing the total estimation error by reducing the number of channels to estimate.

The rate bound of (34) allows an engineer to design the length of the training sequences as functions of

the expected channel conditions. In summary, partitioning an interference channel can not only increase

throughput by reducing overhead, but it can also increase the reliability of channel estimations. Further,

the amount of overhead, α, can be optimized through training length minimization.

VI. SIMULATIONS

This section presents numerical results demonstrating the effect of overhead on the interference channel

and comparing the greedy partitioning method of Section IV to previous approaches. The simulations are

done using iterative interference alignment with linear precoding [7], [8] with 100 iterations, although

the analysis does not preclude utilization of other IA designs. As in [9], five random initializations

are used at each iteration, and the precoding design with best sum throughput among the different

initializations is chosen as the design for that iteration. The degrees of freedom using this method has

been conjectured to be d(K,Nt, Nr) = (Nt +Nr)K/(K + 1) [24] and the number of streams are varied

according to this relationship. Thus, if a group has Kp users with M antennas, each transmitter will send

d(Kp,M)/Kp streams. When d(Kp,M)/Kp is not an integer, some transmitters (chosen randomly) will

transmit dd(Kp,M)/Kpe streams and the rest will send bd(Kp,M)/Kpc streams such that the sum of

streams in the network is d(Kp,M). Unless noted otherwise, channels are generated with independent

and identically distributed (i.i.d.) zero-mean circularly symmetric complex Gaussian coefficients with unit
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variance and ρk,` = 20 dB, all k and `, ensuring that the network is fully connected as discussed in

Section II. At low SNR values, interference alignment has been shown to perform poorly [7], thus the

moderately high SNR environment is assumed. Generating the channels i.i.d. with a Gaussian distribution

gives an idea of the best possible performance, since correlation has been shown to reduce IA rates [30].

Absolute values for coherence time and overhead are irrelevant, so the overhead percentage of the

coherence time, α = L(K,Nt, Nr)/T , or the data percentage of the coherence time assuming P = 1

group, and α = (T − L(K,Nt, Nr))/T , are used. For TDMA, overhead is assumed to scale linearly

with the number of users (L = K), while for IA, it scales with the square of the number of users [10]

(L = K2).

Figure 7 demonstrates how the optimal number of groups in a partition of a 6-user network varies with

the coherence time of the channel. In this figure, P = 1 means IA over the entire network, while P = 6

means TDMA over the entire network. Thus, P can be viewed as a complexity parameter that can vary

transmission complexity from IA to TDMA with every combination thereof, as depicted in Figure 4.

With low coherence times (or high overhead percentage since overhead is constant for variable T ), IA

over the entire network results in overhead consuming the entire frame. TDMA gives a non-zero sum

rate but is still not optimal. Partitioning the network into 4 groups, 2 of which have one user while the

rest have two users, results in the highest sum rate when overhead is considered. As the coherence time

increases, however, IA gains start to outweigh the cost of overhead and thus a single-group partition,

equivalent to not partitioning the network, is the best choice in terms of sum rate.

Figure 8 shows the sum rate of the greedy partitioning method and the exhaustive partitioning method

for K = 3 users for various α, with Nt = Nr = 2 antennas are at each node. For exhaustive partitioning,

all possible values for P are considered and the actual sum rate with global channel knowledge (4)

is used. With a small coherence time, TDMA outperforms IA, whereas with a large coherence time,

IA throughput gains outweigh the overhead cost of implementation, resulting in better sum rate than

TDMA. The partitioning algorithms are able to dynamically vary the network transmission strategy as

the coherence time changes. Further, the greedy partitioning method, approximates the optimal partitioning

without a brute force search, with its worst performance at moderately low α due to the a priori choice

of the number of groups based on degrees of freedom with overhead. For K = 6 users, partitioning

leads to a larger sum rate increase at moderate SNR versus switching between IA and TDMA, as shown
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in Figure 9. This is due to the increased number of possible partitions. Greedy partitioning is again able

to adapt between the possible partitions as overhead is varied. Note that, although optimal search is not

shown in this figure due to computational complexity, we know that since the greedy algorithm performs

the partitioning based on large scale statistics, its throughput curve as a function of 1−α is a piecewise

linear function. The different segments of this function are points where a particular partition size is

judged to be favorable when averaged over small scale fading effects. This is visible in Figures 8, 9,

and 10. Thus, the greedy algorithm will be furthest from optimal in the switching regions, such as around

1 − α ≈ 0.5 in Figure 8. The gap between optimal and greedy will therefore grow with the number of

possible partitions, and thus the number of users.

Figure 10 demonstrates the gains of geographic grouping in a 6-cell network with user locations drawn

uniformly from a circle with radius 758 m around each base station, which are placed 1.52 km apart.

The channel model is the Type E model from IEEE 802.16j [31], and the base stations transmit with

Nt = 3 transmit antennas and 40 dBm transmit power. When the partitioning algorithm chooses P > 1,

grouping the users based on geographic distance outperforms the IA max-sum-rate algorithm because the

IA gains are smaller in this operating region and are offset by the relatively high overhead of IA versus

ignoring the interference. That is, users can be grouped to operate in a high SIR region, where ignoring

interference is preferable to aligning it. More spatial streams can be exploited this way, utilizing less

overhead because fewer channels must be estimated and fed back. At large coherence times IA is still the

preferred strategy because the transmitters can utilize the entire frame after overhead for transmission.

Finally, Figure 11 demonstrates the lower bound on the sum capacity from Section V as a function

of the training length τ for M = 10 antennas, K = 4, 9, 19 users, ρ = 0, 10, 20 dB on all links, and

coherence time T = 200 symbols. In this case, the optimal τ does not significantly vary for different K,

but increases from 18 to 42 symbols as ρ decreases from 20 dB to 0 dB.

VII. CONCLUSIONS

This paper demonstrated the limitations of cooperative protocols for interference channels through

overhead that scales faster than linearly with the number of users in the network. In particular, as the

network grows, the sum rate with overhead of interference alignment goes to zero. By considering

network overhead in the practical design for the interference channel, this paper has found analytical and

algorithmic methods for trading off the overhead with the sum rate increase of cooperative transmission
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strategies by partitioning the network into orthogonally transmitting groups. A suite of transmission

designs spanning the simplicity of TDMA to the performance of IA can be chosen using the simple

algorithms derived in this paper. The proposed algorithms attempt to maximize the sum rate with overhead

with fair time sharing of the channel, fair sum rate between groups, or geographic grouping to exploit the

reduced interference levels in unconnected channels. More work is required to characterize and reduce

the overhead required for such strategies, particularly for obtaining CSI at the transmitters.
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Fig. 1. The MIMO interference channel. Each transmitter is paired with a single receiver. In the model considered in this
paper, the channels Hk,` are block fading with coherence time Tk,`.
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FIGURES 24
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symbols
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Fig. 2. Illustration of the communication frame used for the model in this paper. The beginning of the frame is used for overhead
of any nature, consuming L(K,Nt, Nr) symbols. The remaining T − L(K,Nt, Nr) symbols are used for data transmission.
New channels, independent of previous realizations, are generated at the end of the frame.
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Fig. 3. Illustration of a partition of the K-user interference channel into two K/2-user interference channels transmitting
orthogonally to each other.
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FIGURES 26
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Increasing capacity and overhead

Fig. 4. Illustration of the parameterized suite of transmission strategies partitioning provides. With P = 1, all K users transmit
simultaneously using interference alignment, which provides capacity gains at the cost of increased overhead. At P = K, the
users transmit orthogonally in TDMA/FDMA fashion, with relatively low complexity and overhead, but also lower capacities.
For 2 ≤ P ≤ K − 1, the interference channel is partitioned into smaller groups which transmit IA within the groups, but
orthogonal to other groups.
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Fig. 5. Illustration of the modifications needed to transform an IA-only system into a partitioning system. The partitioning
function, if implemented in a greedy manner as explained in this section, requires no more communication to or from the
transmitters as the IA-only system.
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Fig. 6. Sum rate versus SNR of the approximation in (13) for the 3-user MIMO interference channel with 4 antennas at each
node and 2 streams per user. In this simulation and unless noted otherwise, SNR is the signal-to-noise ratio of all links in the
interference channel, including interfering links.
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Fig. 7. Sum rate versus number of groups for the 6-user MIMO interference channel with Nt = 3 and Nr = 4. In this figure,
P = 1 groups corresponds to IA over the entire network while P = 6 groups corresponds to TDMA. With large α, IA is not
practical because overhead dominates the frame. As the coherence time increases (α decreases), however, P = 1 (i.e., applying
IA over the network) is the sum-rate-optimal partition.

November 5, 2018 DRAFT



FIGURES 30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

16

18

1−α for IA

S
um

 R
at

e 
b/

s/
H

z

 

 

Optimal Search

Greedy Partitioning

IA over Network

TDMA over Network

Fig. 8. Sum rate versus α for exhaustive search, greedy partitioning, IA, and TDMA. For this simulation, the users are kept at
K = 3 and there are Nt = Nr = 2 antennas at each node, one stream is sent by each transmitter in groups utilizing IA, and 2
streams are sent when a group consists of one node. The horizontal axis corresponds to the percentage of the coherence interval
available for data transmission after overhead. At low coherence times, the overhead required for IA dominates its performance
and utilizing TDMA results in a better sum rate. As the coherence time increases, IA gains begin to outweigh the overhead
costs, and IA has a higher sum rate.
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Fig. 9. Sum rate versus α for greedy partitioning, IA, and TDMA. For this simulation, the users are kept at K = 6 and there are
Nt = 3 antennas at each transmitter and Nr = 4 antennas at each receiver. As in Figure 8, the horizontal axis corresponds to the
percentage of the coherence interval available for data transmission after overhead. A larger gain is available when partitioning
with more users relative to the 3 users of Figure 8.
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Fig. 10. Sum rate versus α for greedy partitioning with geographic grouping, IA-sum rate grouping, IA, and TDMA. For this
simulation, a cellular channel model is used for a 6-cell arrangement.

November 5, 2018 DRAFT



FIGURES 33

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

τ (symbols)

S
um

 r
at

e 
(b

ps
/H

z)

 

 

4 users, ρ=0dB

9 users, ρ=0dB

19 users, ρ=0dB

4 users, ρ=10dB

9 users, ρ=10dB

19 users, ρ=10dB

4 users, ρ=20dB

9 users, ρ=20dB

19 users, ρ=20dB

Fig. 11. Sum rate lower bound versus τ for K = 4, 9, 19 users, M = 10 antennas, ρ = 0, 10, 20 dB, and coherence time
T = 200 symbols. Optimal τ values for ρ = 0, 10, 20 dB are 18, 26, and 42 symbols, respectively.

November 5, 2018 DRAFT



TABLES 34

1. Find KO according to (15)
2. P = d KKO

e
3. Set KA = {1, . . . ,K} and Kp = ∅ for p ∈ {1, . . . , P}
4. Find Rk,p for k ∈ KA and p ∈ {1, . . . , P}
5. Let {k′, p′} = arg maxk,pRk,p
6. Add k′ to the set Kp′ and remove from KA
7. If KA 6= ∅, return to 4; else done

TABLE I
GREEDY ALGORITHM BASED ON IA RATE AND GROUP SIZE APPROXIMATIONS.
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