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Abstract—Simultaneous multiuser beamforming in multi-
antenna downlink channels can entail dirty paper (DP) precoding
(optimal and high complexity) or linear precoding (suboptimal
and low complexity) approaches. The system performance is
typically characterized by the sum capacity with homogenous
users with perfect channel state information at the transmitter.
The sum capacity performance analysis requires the exact
probability distributions of the user signal-to-noise ratios (SNRs)
or signal-to-interference plus noise ratios (SINRs). The standard
techniques from order statistics can be sufficient to obtainthe
probability distributions of SNRs for DP precoding due to the
removal of known interference at the transmitter. Derivation of
such probability distributions for linear precoding techniques
on the other hand is much more challenging. For example,
orthogonal beamforming techniques do not completely cancel
the interference at the user locations, thereby requiring the
analysis with SINRs. In this paper, we derive the joint probability
distributions of the user SINRs for two orthogonal beamforming
methods combined with user scheduling: adaptive orthogonal
beamforming and orthogonal linear beamforming. We obtain
compact and unified solutions for the joint probability distribu-
tions of the scheduled users’ SINRs. Our analytical resultscan
be applied for similar algorithms and are verified by computer
simulations.

Index Terms—Broadcast channel, multiple-input single-output,
orthogonal beamforming, sum rate, order statistics.

I. I NTRODUCTION

I N a downlink multiuser multiple-input single-output
(MISO) system where a base station (BS) equipped with

M antennas communicates withK single-antenna users,
theoretical results demonstrate that the sum capacity scales
linearly with min{K,M}. In particular, if perfect channel
state information (CSI) is available at BS, it has been shown
that a method based on dirty paper coding (DPC) achieves
the channel capacity [1]. The implementation of the DPC
technique is a challenging task for the present as it requires
complicated coding operations and an exhaustive search to
schedule an optimal set of users whenK > M . Alternative
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linear precoding techniques in the form of multiuser beam-
forming (BF) at BS (as known as space-division multiple
access) can be employed to serve users separately where
each scheduled user’s data stream is individually encoded and
multiplied by a special BF weight vector. Despite independent
encoding among users, the computation of the optimal BF
weight vectors and user scheduling can still be problematic.
A number of suboptimal BF methods combined with user
scheduling have been proposed to handle user scheduling and
BF weight vector design problems jointly at relatively low
complexity [2]-[6]. The suboptimal schemes in [3]-[6] have
been shown to achieve a significant portion of the DPC sum
capacity. A joint BF and user scheduling scheme (OLBF)
with a complexity ofO(M2K) has been described in [5] and
shown to outperform the zero-forcing based scheme of [4] in
the sum rate sense at low signal-to-noise ratio (SNR) values
for low to moderate number of users. A similar scheme has
been reported in [6] with a higher complexity ofO(M3K)
where the joint determination of BF weight vectors and user
scheduling is carried out in a sequential manner. This scheme
(adaptive OBF) has been shown to yield an increased sum rate
performance as compared to the scheme of [5]. An important
advantage of using orthogonal BF weight vectors is that it
allows the scheduler to easily express and compute exact
signal-to-interference plus noise ratio (SINR) values during
user scheduling process [6].

The standard techniques from order statistics can be suffi-
cient to obtain probability distributions of SNR values andthe
sum capacity performance for DPC-based precoding schemes
due to the removal of known interference and use of subop-
timal but effective user selection algorithms [4]. Most of the
performance analysis studies on more practical multiuser BF
algorithms are on the other hand based upon asymptotic anal-
ysis. An exact statistical analysis is essential to gain a com-
plete insight into the system performance and to analytically
determine some useful parameters [7]–[9]. The difficulty with
the performance analysis of linear precoding schemes with
user scheduling mainly arises from the fact that user ordering
changes the statistics of the users making it quite complicated
to express mathematically. Also, depending on the selection
procedure, a decision at any point during user scheduling
can deeply alter the statistics of the previously scheduled
users [9]. A multiuser BF scheme with a greedy user selection
algorithm has been analyzed in [4]. This scheme combines
scalar DPC with linear precoding to completely suppress the
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interference at the transmitter. Using conditional probability
density function (PDF) expressions, the authors provide a
compact solution for the marginal PDFs of the scheduled
users’ channel gains. Note that even in this no-interference
case, a direct approach with conditional distributions requires
complicated algebraic operations to find a general formula.
In [10], a joint user scheduling and BF algorithm relied
on orthogonal BF and limited feedback is analyzed. The
asymptotic sum rate scaling laws are obtained assuming an
asymptotically large number of users. Another low-complexity
suboptimal scheme where orthogonal BF weight vectors are
formed in a random manner is analyzed in [11]. The authors
present exact results for the PDFs of the selected users’ SINRs.

In this paper, we develop statistical tools for analyzing the
sum rate performance of two multiuser orthogonal BF algo-
rithms by assuming single-antenna users and perfect CSI at the
transmitter. By approaching the problem from a different angle
than the previous approaches, we derive an exact and general
result from order statistics on the joint PDF of scheduled users’
SINRs for a given orthogonal BF algorithm combined with a
greedy user scheduling technique. Our approach is built upon
the joint PDF of unordered SINRs with random user selection
where the orthogonality of BF weight vectors facilitates the
analysis. The difference from the work in [11] is that our
result is given for general greedy user scheduling algorithms
under certain conditions. We apply this result specificallyto
adaptive OBF and OLBF to find compact and unified solutions
for the joint PDF of the scheduled users’ SINRs. We verify
our analysis with numerical results.

Notation: We use uppercase and lowercase boldface letters
to represent matrices and vectors, respectively. The opera-
tors E[.], (.)H , |.|, ‖.‖, Pr(.), \, and ∪ denote expectation,
Hermitian transpose, cardinality (absolute value for scalars),
Euclidean norm, probability, set difference, and set union,
respectively. Also,A(:, n) and A(:, 1 : n) represent a vector
equal to nth column of the matrixA and a matrix com-
prised of firstn columns of the matrixA, respectively. We
refer to the joint PDF of{α1, . . . , αn} by f(α1, . . . , αn)
with f(α1 = a1, . . . , αn = an) representing the joint
PDF of {α1, . . . , αn} evaluated at{a1, . . . , an}. Addition-
ally, Fβn

(β1, . . . , βn) denotes the joint cumulative distribution
function (CDF) of {β1, . . . , βn} and Fβn

(b1, . . . , bn) is the
joint CDF of {β1, . . . , βn} evaluated at{b1, . . . , bn}.

The rest of the paper is organized as follows: Section II
presents the system model and a key result for statistical
analysis of the joint orthogonal BF and user scheduling algo-
rithms under certain conditions is derived from order statistics
in Section III. As applications of this result, Sections IV
and V are dedicated to the statistical analysis of adaptive OBF
and OLBF, respectively. Numerical results are presented in
Section VI and Section VII concludes the paper.

II. SYSTEM MODEL

A single cell MISO broadcast channel withM antennas at
BS andK (K ≥ M ) single-antenna users is considered where
the total available transmit power is given byP . Assuming
perfect CSI and equal power allocation among the scheduled
users at BS, the received signal atith scheduled userdki

can

be expressed as follows

dki
=

√

P

|Un|
hH
ki

wki
lki

+

√

P

|Un|
hH
ki

∑

j∈Un,j 6=i

wkj
lkj

+ eki

(1)
where hH

ki
= [hki

(1) hki
(2) . . . hki

(M)] is the channel
vector, wki

∈ CM×1 is the unit-norm beamforming weight
vector,lki

∈ C is the unit-norm transmitted data symbol, and
eki

∈ C is additive white Gaussian noise with zero mean and
unit variance forith scheduled user, respectively. In (1), the
set of scheduled users is denoted byUn where the number
of scheduled users is given by|Un| = n. We assume slow
flat fading and a homogeneous network where the elements
of hk (kth user’s channel vector withk ∈ {1, 2, . . . ,K})
are independent and identically distributed (IID) zero-mean
complex Gaussian random variables with unit variance.

III. A N EW LOOK AT ORDER STATISTICS FORSTATISTICAL

ANALYSIS OF JOINT GREEDY USERSCHEDULING AND

ORTHOGONAL BEAMFORMING ALGORITHMS

In this section, we obtain a key result from order statis-
tics on the joint PDF of scheduled users’ SINRs for a
given greedy user scheduling and orthogonal BF algorithm.
We assume thatr users with {K,M} ≥ r ≥ 2 are
sequentially scheduled based on their SINRs, i.e., user
with the maximum SINR is scheduled at each step. The
scheduled users’ SINRs are denoted by{y1, y2, . . . , yr}.
In order to find the joint PDF of{y1, y2, . . . , yn} for
n ∈ {1, 2, . . . , r}, we first form the joint PDF of unordered
SINRs temporarily ignoring ordering among users due to
user scheduling where we assume each candidate user has
the same likelihood to be selected at each step (random
user selection). This is given byf(vk1, vk2, . . . , vkn) for
a certain set of rules (or region) denoted bySk for kth
user and can be obtained under a certain unitary transfor-
mation. The variablevkj represents resulting SINR when
kth user (k ∈ {1, 2, . . . ,K}) is scheduled atjth step
(j ∈ {1, 2, . . . , n}) when no ordering is applied at any step.
Also, {vk1, vk2, . . . , vkn} represent the candidacy SINR ofkth
user at the steps{1, 2, . . . , n}, respectively. The set of rulesSk

depends on the algorithm, e.g.vk1 ≥ vk2 ≥ . . . ≥ vkn ≥ 0.
We can write the following composite joint PDF including all
K users as

f
(
{vk1, vk2, . . . , vkn}

K
k=1

)

=

{ ∏K
k=1 f(vk1, vk2, . . . , vkn) for S1, S2, . . . , SK ,

0 otherwise,
(2)

where independence amongK joint PDFs stems from no
ordering assumption. Now, we take the user ordering (due
to user scheduling) into account by initially assuming that
v11 is scheduled at the first step, i.e.,y1 = v11 = max

k
vk1.

It is worth to mention thatv11 and {vk1}
K
k=2 are no longer

independent. In a similar way, we assume thatv22 is scheduled
at the second step, i.e.,y2 = v22 = max

k≥2
vk2. Note that due

to the first scheduling step, the variables with the subscript
k = 1 are disregarded for the subsequent steps. Repeating
this scheduling process forn steps and applying Bapat-Beg
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theorem from order statistics [12], the new composite joint
PDF can be written as

f
(

{vk1, vk2, . . . , vkn}
K
k=1| v11=y1,

v22=y2,...,vnn=yn

)

=







K!
(K−n)!

∏K
k=1 f

(

{vk1, vk2, . . . , vkn}| v11=y1,
v22=y2,...,vnn=yn

)

for S1, S2, . . . , SK , and ∪n
i=1 Ri,

0 otherwise,
(3)

with

Ri : {yi ≥ {vi+1,i, vi+2,i, . . . , vKi}} for i ∈ {1, 2, . . . , n}.
(4)

In (3),K!/(K−n)! is the number of differentn−permutations
that can be selected out ofK users. Consequently, the joint
PDF of {y1, y2, . . . , yn} can be obtained from

f(y1, y2, . . . , yn)

=

∫

SC

f
(

{vk1, vk2, . . . , vkn}
K
k=1| v11=y1,

v22=y2,...,vnn=yn

) K∏

k=1

n∏

j=1
j 6=k

dvkj

(5)
where the integration regionSC is defined by union of
S1, S2, . . . , SK , and∪n

i=1Ri. Substituting (3) and (4) into (5)
and applying some manipulations, we can write

f(y1, y2, . . . , yn) =
K!

(K − n)!

(
n∏

k=1

φk(yk, yk−1, . . . , y1)

)

×

(
K∏

k=n+1

Fvkn
(y1, y2, . . . , yn)

)

(6)

whereφ1(y1) = f(v11 = y1) and

φk(yk, yk−1, . . . , y1) =

∫

Sk∪(∪k−1

i=1
Ri)

f(vk1, vk2, . . . , vk,k−1, vkk = yk)

×dvk1dvk2 . . . dvk,k−1

for k ∈ {2, 3, . . . , n}. Also, f(vk1, vk2, . . . , vkk)
is the joint PDF of {vk1, vk2, . . . , vkk} and
Fvkn

(y1, y2, . . . , yn) represents the joint CDF of
{vk1, vk2, . . . , vkn} evaluated at{y1, y2, . . . , yn}. In fact,
one can use (6) for any joint greedy user scheduling and
orthogonal BF algorithm with homogeneous users as long as
a composite joint PDF expression can be written as in (2)
and scheduled user’s SINR at a given step is not affected
from the subsequent steps.

IV. A DAPTIVE ORTHOGONAL BEAMFORMING WITH USER

SELECTION

We first apply the order statistics strategy described in the
previous section to adaptive OBF algorithm [6]. An outline of
adaptive OBF is provided in Table I. From the set ofK users,
the first user is scheduled in such a way that it has the largest
channel gain (multiuser diversity) andhk1

= hk1
/‖hk1

‖ is
assigned as its BF weight vector. Then,nth scheduled user is
determined by maximizing SINR metric, which is calculated
using the orthogonal projection of the candidate user’s channel
vector onto the null space of the previously scheduled users’

TABLE I
ADAPTIVE ORTHOGONAL BEAMFORMING WITH USERSELECTION

Step 1)Select the first user ask1= argmax
k∈{1,...,K}

‖hk‖
2 and setU1 = {k1},

W(:, 1) = hk1
= hk1

/‖hk1
‖, n = 1, and calculateC(U1).

Step 2)While n < M

a) Increasen by one and set SINRmax = 0.

b) For u = {1....,K} \ Un−1

p2u =
∥

∥

(

IM − W(:, 1 : n− 1)WH (:, 1 : n− 1)
)

hu

∥

∥

2
,

SINRu =
‖hu‖2p2u

‖hu‖2(1−p2u)+ n
P

,

If SINRu > SINRmax

SINRmax = SINRu andkn = u.

c) W(:, n) =
(IM−W(:,1:n−1)WH (:,1:n−1))hkn

‖(IM−W(:,1:n−1)WH (:,1:n−1))hkn‖
,

Un = Un−1 ∪ {kn}, and calculateC(Un).

d) If C(Un) ≤ C(Un−1), decreasen by 1 and go to step3.

Step 3)The set of scheduled users isUn and the corresponding BF

weight vectors are the ordered columns ofW.

BF weight vectors. The sum rate corresponding tonth step is
denoted byC(Un) and can be expressed as follows

C(Un) =

n∑

i=1

log(1 + SINRki
)

where

SINRki
=

‖hki
‖2p2ki

‖hki
‖2(1− p2ki

) + n
P

with p2k1
= 1 and

p2ki
=
∥
∥
(
IM − W(:, 1 : n− 1)WH(:, 1 : n− 1)

)
hki

∥
∥
2

for i ≥ 2. Additionally, W denotes the beamforming weight
matrix with wki

as its ith column andhki
= hki

/‖hki
‖

denotes the normalized channel vector ofith scheduled user.
If we haveC(Un) ≤ C(Un−1) at any step, the algorithm
terminates with the set of scheduled usersUn−1 and the
corresponding BF weight matrix. Despite not being a part of
the original algorithm in [6], it allows one to adaptively choose
the number of scheduled users to maximize the sum rate.

A. Performance Analysis

In this section, we obtain PDF expressions for the scheduled
users’ SINR values. The number of scheduled users is a
random quantity. However, for the sake of simplicity, we
assume that the number of scheduled users equalsr with
r ∈ {1, . . . ,M} and denote SINR ofnth scheduled user by
yn wheren ∈ {1, . . . , r}. Note that the analysis presented
here provides PDF expressions for the original adaptive OBF
algorithm given in [6] whenr = M . A direct approach
for deriving PDFs of the scheduled users’ SINRs can be
calculating the PDF of the first scheduled user’s SINR in
the first place, and then, using conditional PDF expressions,
to try to determine the PDF of the second scheduled user.
However, this approach turns out to be quite complicated to
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generalize beyond the second step. A scheduling algorithm
with interference cancellation is analyzed using this approach
in [4]. Even in this simpler case, it requires complicated
algebraic operations to generalize. On the other hand, we
approach the problem from a different perspective by using
unordered SINRs and obtain the joint PDF of all scheduled
users’ SINRs at once. Define unordered SINRvn at nth
scheduling step as the one when no user ordering is applied:

vn =

{
‖h1‖

2 P
r for n = 1,

‖hn‖
2−‖PH

n hn‖
2

‖PH
n hn‖2+ r

P

for n ∈ {2, . . . , r},

where the columns ofM -by-(n−1) matrixPn (n ≥ 2) are BF
weight vectors of previously scheduled users(PH

n Pn = In−1)
without ordering and do not depend onhn. Sincehn has an
isotropic distribution, we can apply a unitary transformation on
hn without changing its statistics. Assume aM -by-M unitary
matrix as[Pn null(Pn)] with theM -by-(M − n+ 1) matrix
null(P) representing the null space ofP 1. If we apply this
transformation above [13], we get
∥
∥PH

n [Pn null(Pn)] hn

∥
∥
2
= ‖[In−1 0n−1×M−n+1] hn‖

2
.

(7)
Let {x1, . . . , xr} be independent random variables with
{x1, . . . , xr−1} being exponentially distributed random vari-
ables andxr denoting a chi-squared random variable with
2(M − r + 1) degrees of freedom. Then, using (7), we can
write unordered SINRs as

vn =

{
(x1 + . . .+ xr)

P
r if n = 1,

xn+...+xr

x1+...+xn−1+
r
P

otherwise. (8)

In (8), {x1, . . . , xr} have the following joint PDF

f(x1, . . . , xr) = e−(x1+...+xr)
xM−r
r

Γ(M − r + 1)
(9)

for {x1, . . . , xr} ≥ 0 whereΓ(s) denotes the gamma func-
tion [14]. We need the joint PDF of unordered SINRs. Thus,
with the help of (8), we can derive the following transforma-
tion:

xn=

{

λn=
r
P (1 + v1)

vn−vn+1

(1+vn)(1+vn+1)
for n∈{1, . . . , r − 1},

λr = r
P (1 + v1)

vr
1+vr

for n = r,

(10)
with the Jacobian determinant given by

det(J) =
( r

P

)r (1 + v1)
r−1

∏r
k=2 (1 + vk)

2 . (11)

Consequently, the joint PDF of{v1, . . . , vr} can be written
as [15]

f(v1, . . . , vr) = f(x1 = λ1, . . . , xr = λr) | det(J)|

=
( r

P

)M e−v1
r
P

Γ(M − r + 1)

(1 + v1)
M−1

∏r
k=2 (1 + vk)

2

(
vr

1 + vr

)M−r

(12)

1The matrix null(Pn) has orthonormal columns that complement the
subspace spanned by the columns ofP.

for v1 ≥ v2 ≥ . . . ≥ vr ≥ 0. The joint PDF of
{v1, . . . , vn} for n ∈ {1, . . . , r} can be found by integrating
out {vn+1, . . . , vr} as

f(v1, . . . , vn)

=

∫ vn

0

. . .

∫ vr−2

0

∫ vr−1

0

f(v1, . . . , vr)dvrdvr−1 . . . dvn+1

=
( r

P

)M e−v1
r
P

Γ(M − n+ 1)

(1 + v1)
M−1

∏n
k=2 (1 + vk)

2

(
vn

1 + vn

)M−n

.

(13)

Note that the preceding expression is the joint PDF of the
resulting SINRs when the user selection algorithm in Table I
is replaced by a random user selection technique. In order
to obtain the PDF expressions of the scheduled users, we
make use of the following theorem [16]. This enables us to
succinctly write the SINR ofnth scheduled user, i.e.,yn, as
a function of unordered SINRs.

Theorem 1: The joint PDF of{y1, y2, . . . , yn} can be ex-
pressed as

f(y1, . . . , yn) =
K!

(K − n)!

×

(∫ yn

0

ϕn(α, yn−1, . . . , y1)dα

)K−n n∏

i=1

ϕi(yi, . . . , y1)

(14)
for y1 ≥ . . . ≥ yn ≥ 0 andn ∈ {1, . . . , r}. In (14), we have

ϕ1(y1) = f(v1 = y1) (15)

and

ϕn(yn, yn−1, . . . , y1)

=

∫ yn−1

yn

∫ yn−2

vn−1

. . .

∫ y1

v2

f(v1, v2, . . . , vn−1, vn = yn)

× dv1 . . . dvn−2dvn−1 (16)

which can be evaluated in closed-form for anyn. A similar
proposition is made in [4] with a lengthy proof. It can be
considered as a special case of the result given in Section III.

Proof: See Appendix A.
The marginal PDF ofyn can be obtained as

f(yn) =

∫ ∞

yn

. . .

∫ ∞

y3

∫ ∞

y2

f(y1, y2, . . . , yn)dy1dy2 . . . dyn−1

for yn ≥ 0. The average sum rate can be calculated as

r∑

n=1

E [log (1 + yn)] =
r∑

n=1

∫ ∞

0

log (1 + yn) f(yn)dyn.

1) Example: While the above theorem and the joint PDF
of unordered SINRs in (13) can be applied for any number
of scheduled users, we demonstrate the application of the
tools developed above for the first three scheduled users.
Let us assume thatr out of K users are scheduled with
{K,M} ≥ r ≥ 3. Evaluating (15) and (16) forn = 1 and
n = 2, we get

ϕ1(y1) = f(v1 = y1) =
( r

P

)M yM−1
1

Γ(M)
e−y1

r
P
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and

ϕ2(y2, y1) =

∫ y1

y2

f(v1, v2 = y2)dv1

= e
r
P yM−2

2

Γ
(
M, r

P (1 + y2)
)
− Γ

(
M, r

P (1 + y1)
)

Γ(M − 1)(1 + y2)M

whereΓ(s, x) is the upper incomplete gamma function given
by

Γ(s, x) = Γ(s)e−x
s−1∑

i=0

xi

i!
(17)

for positive integers values [14]. We can writeϕ3(y3, y2, y1)
in closed-form as given in (18) as a double-column equation.
DefiningI3(y3, y2, y1) =

∫ y3

0
ϕ3(α, y2, y1)dα, one can obtain

(19) at the bottom of this page where the derivation is based
on the binomial expansion formula [14] and omitted for the
simplicity. Finally, the joint PDF of the first three scheduled
users’ SINRs can be written as

f(y1, y2, y3) =
K!

(K − 3)!
I3(y3, y2, y1)

K−3

× ϕ1(y1)ϕ2(y2, y1)ϕ3(y3, y2, y1) (20)

for y1 ≥ y2 ≥ y3 ≥ 0. The closed-form expressions for the
marginal PDFs ofy1 and y2 can be found in [16] and the
marginal PDF ofy3 can be obtained either analytically or
using numerical integration techniques.

The analytically obtained PDF expressions are plotted in
Fig. 1 together with the corresponding simulated histograms
for P = 15 dB andK = 10. Two differentM values, namely
M = {2, 3}, are used withr = M and the simulated results

0 2.5 5 7.5 10 12.5 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

y
n

f(
y n)

 

 

Simulation
Analyticalf (y

3
) for M = r = 3

f (y
2
) for M = r = 2

Fig. 1. Comparison of the analytical PDF expressions with the numerical
results for adaptive OBF withP = 15 dB andK = 10.

are based on105 realizations. The strong match between
analytical and simulated results verifies the accuracy of the
analytical derivation.

V. ORTHOGONAL L INEAR BEAMFORMING WITH USER

SELECTION

Another orthogonal BF algorithm (OLBF) has been pro-
posed in [5] and shown to achieve similar performance in
low SNR regime with a lower complexity as compared to

ϕ3(y3, y2, y1) =

∫ y2

y3

∫ y1

v2

f(v1, v2, v3 = y3)dv1dv2

=

(
r
P

)M

Γ(M − 2)

yM−3
3

(1 + y3)M−1

∫ y2

y3

∫ y1

v2

e−v1
r
P
(1 + v1)

M−1

(1 + v2)2
dv1dv2

=
e

r
P

Γ(M − 2)

yM−3
3

(1 + y3)M−1

{

Γ
(
M, r

P (1 + y3)
)

1 + y3
−

Γ
(
M, r

P (1 + y2)
)

1 + y2
(18)

−
y2 − y3

(1 + y2)(1 + y3)
Γ
(

M,
r

P
(1 + y1)

)

+
r

P

[

Γ
(

M − 1,
r

P
(1 + y2)

)

− Γ
(

M − 1,
r

P
(1 + y3)

)
]}

.

I3(y3, y2, y1) =

∫ y3

0

ϕ3(α, y2, y1)dα

=
e

r
P

Γ(M − 2)

M−3∑

i=0

(
M − 3

i

)

(−1)i

{

(1 + y3)
i+1 − 1

(1 + y3)i+1(i+ 1)

[

r

P
Γ
(

M − 1,
r

P
(1 + y2)

)

+
Γ
(
M, r

P (1 + y1)
)
− Γ

(
M, r

P (1 + y2)
)

1 + y2

]

−
(1 + y3)

i+2 − 1

(1 + y3)i+2(i + 2)
Γ
(

M,
r

P
(1 + y1)

)

+

[

r

P

Γ
(
M − 1, r

P (1 + y3)
)

(1 + y3)i+1(i+ 1)
−

Γ
(
M, r

P (1 + y3)
)

(1 + y3)i+2(i+ 2)
−
( r

P

)i+2 Γ
(
M − i− 2, r

P (1 + y3)
)

(i+ 1)(i+ 2)

]

−

[

r

P

Γ
(
M − 1, r

P

)

(i + 1)
−

Γ
(
M, r

P

)

i+ 2
−
( r

P

)i+2 Γ
(
M − i− 2, r

P

)

(i+ 1)(i+ 2)

]}

. (19)
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adaptive OBF. Akin to adaptive OBF, OLBF schedules the
first user in such a way that it has the largest channel gain
and hk1

= hk1
/‖hk1

‖ is assigned as its BF weight vector.
Then, applying Gram-Schmidt orthogonalization process to
hk1

, (M − 1) orthonormal BF weight vectors are obtained.
Assignment of these(M − 1) BF weight vectors to users is
outlined in Table II. For each BF weight vector, the user with
highest SINR is scheduled from the set of candidate users in
a sequential manner. Note that when the number of scheduled
users is less thanM where the set of BF weight vectors does
not spanM dimensional space, the SINR expression used
in Table II becomes a lower bound for the original SINR.
Hence, in the following analysis, we assume that the number
of scheduled users is equal toM (r = M) as given for the
original OLBF algorithm in [5].

A. Performance Analysis

In this section, the result of Section III is used for statistical
analysis of OLBF algorithm. Integral evaluations are mainly
based on the binomial expansion formula [14] and the expan-
sion of the upper incomplete gamma function in (17), hence
omitted for the sake of simplicity. Similar to Section IV, we
define unordered SINRvn at nth scheduling step as the one
when no user ordering is applied. From Table II, one can write

vn =

{
‖h1‖

2 P
M for n = 1,

‖hn‖
2−‖PH

n hn‖
2

‖PH
n hn‖2+M

P

for n ∈ {2, . . . ,M},

where the columns ofM -by-(M − 1) matrix Pn are BF
weight vectors of(M − 1) scheduled users other thannth
one without user ordering(PH

M−1PM−1 = IM−1). Applying a
unitary transformation as[Pn null(Pn)] on hn above (without
affecting its statistics), we can write
∥
∥PH

n [Pn null(Pn)] hn

∥
∥
2
= ‖[IM−1 0M−1×1] hn‖

2
.

(21)
Defining {x1, . . . , xM} as IID exponentially distributed ran-
dom variables and using (21), we can write

vn =

{

(x1 + . . .+ xM ) P
M for n = 1,

xn

x1+...+xn−1+xn+1+...+xM+M
P

for n ∈ {2, . . . ,M}.

(22)
The joint PDF of{x1, . . . , xM} is given by

f(x1, . . . , xM ) = e−(x1+...+xM ) (23)

for {x1, . . . , xM} ≥ 0. Solving forxn, we get

xn =

{

λ1 = M
P v1 −

M
P (1 + v1)

∑M
k=2

vk
1+vk

for n = 1,

λn = M
P (1 + v1)

vn
1+vn

for n ∈ {2, . . . ,M},

(24)
with the following Jacobian determinant

det(J) =

(
M

P

)M
(1 + v1)

M−1

∏M
k=2 (1 + vk)

2
. (25)

Consequently, the joint PDF of{v1, . . . , vM} can be written
as [15]

f(v1, . . . , vM ) = f(x1 = λ1, . . . , xM = λM ) | det(J)|

=

(
M

P

)M

e−v1
M
P

(1 + v1)
M−1

∏M
k=2 (1 + vk)

2
(26)

TABLE II
ORTHOGONAL L INEAR BEAMFORMING WITH USERSELECTION

Step 1)Select the first user ask1= argmax
k∈{1,...,K}

‖hk‖
2 and setU1 = {k1},

hk1
= hk1

/‖hk1
‖, andn = 1.

Step 2)Compute(M − 1) orthonormal basis vectors spanning the null

space ofhk1
and form a matrixW2 as these basis vectors being

its columns.

Step 3)While n < M

a) Increasen by one and set SINRmax = 0.

b) For u = {1....,K} \ Un−1

q2u =
∣

∣WH
2 (:, n− 1)hu

∣

∣

2
,

SINRu =
‖hu‖2q2u

‖hu‖2(1−q2u)+M
P

,

If SINRu > SINRmax

SINRmax = SINRu andkn = u.

c) Un = Un−1 ∪ {kn}.

Step 4)The set of scheduled users isUM and the corresponding BF

weight vectors are the ordered columns ofW = [hk1
W2].

for v1 ≥ {v2, . . . , vM} ≥ 0 and v1
1+v1

≥
∑M

k=2
vk

1+vk
. For

more than two scheduled users, the approach used for the
statistical analysis of adaptive OBF in Section IV cannot be
directly applied in the same manner for OLBF. Difficulty
comes from the fact that the sorting among the random
variables in (26) is not simple and it is quite involved to
evaluate the CDFFvM (v1, v2, . . . , vM ) at {y1, y2, . . . , yM}
given in (6). For instance, the sorting rule can be written as

{
v1 ≥ v3 ≥ 0,

v1−v3
1+2v3+v1v3

≥ v2 ≥ 0,

when M = 3. Even in this case, it is cumbersome to
analytically evaluateFv3(v1, v2, v3) at {y1, y2, y3}. In order
to address this issue, we apply a one-to-one transformation
on each unordered SINR to obtain a simpler sorting rule
among the variables. Representing these new variables byzn
for n ∈ {1, . . . ,M}, the transformation fromvn to zn is given
by

zn =
vn

vn + 1
. (27)

With this transformation, the new sorting rule can be written
as

{
0 ≤ zn ≤ 1,

0 ≤ z2 + z3 + . . .+ zM ≤ z1 ≤ 1,

for all n. Using (26) and (27), the joint PDF of
{z1, z2, . . . , zM} can be found to be [15]

f(z1, z2, . . . , zM ) = e
−M

P

z1
1−z1

(
M

P

)M
1

(1− z1)M+1
. (28)

Similarly, the joint PDF of{z1, z2, . . . , zn} can be found to
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be

f(z1, z2, . . . , zn) =
e−

M
P

z1
1−z1 (M/P )M

(1− z1)M+1

(z1 −
∑n

i=2 zi)
M−n

(M − n)!
(29)

for 0 ≤ z2 + . . . + zn ≤ z1 ≤ 1, 0 ≤ zn ≤ 1, and
n ∈ {1, 2, . . . ,M}. We represent transformed SINR ofnth
scheduled user bytn when the corresponding unordered SINR
expression is given byzn. Hence, the original SINR ofnth
scheduled user is given byyn = tn/(1 − tn) and can be
obtained by a simple change of variables. The following
theorem provides a compact solution on the joint PDF of
{t1, t2, . . . , tn}.

Theorem 2: The joint PDF of {t1, t2, . . . , tn} with
n ∈ {1, 2, . . . ,M} can be written as

f(t1, t2, . . . , tn) =
K!

(K − n)!

× (Fzn(t1, t2, . . . , tn))
K−n

n∏

k=1

ξk(tk, tk−1, . . . , t1) (30)

with 0 ≤ {t2, . . . , tn} ≤ t1 ≤ 1. In (30), Fzn(t1, t2, . . . , tn)
is the CDF of{z1, z2, . . . , zn} evaluated at{t1, t2, . . . , tn},
ξ1(t1) = f(z1 = t1), and

ξk(tk, tk−1, . . . , t1)

=

∫

Rξk

f(z1, z2, . . . , zk−1, zk = tk)dz1dz2 . . . dzk−1

wheref(z1, z2, . . . , zk) is the joint PDF of{z1, z2, . . . , zk}
with k ∈ {1, 2, . . . , n}. The integration regionRξk is given
by union of the regions represented by

{
0 ≤ z2 + z3 + . . .+ zk−1 + tk ≤ z1 ≤ 1,

0 ≤ zn ≤ tn ≤ 1 for n ∈ {1, 2, . . . , k − 1}.
(31)

Proof: This theorem can be directly obtained from the
result of Section III. For transformed SINRs defined above,
the PDF expressions in (2) and the CDF expressions in
(6) are independent ofk. Combining the CDFs into a sin-
gle term and applying a change asφk(tk, tk−1, . . . , t1) →
ξk(tk, tk−1, . . . , t1) in (6), the result given in (30) can be
obtained.

In order to utilize Theorem 2, we need to express CDF of
{z1, z2, . . . , zn}. This has multiple segmentations forn ≥ 3
and can pose high complexity for higher values ofn. In fact,
when n = 4, there are eleven segments that one needs to
consider separately. Here, we note the similarity of the region
the random variables in (29) are defined to a Dirichlet distribu-
tion [17]. In [18], the high complexity involved in evaluation
of a high dimensional multivariate CDF is addressed in a
Dirichlet distribution context. Using the inclusion-exclusion
principle [12] with an earlier result on multivariate Dirichlet
distribution [19], the authors develop a recursive technique that
allows the high dimensional multivariate CDF expression tobe
represented by marginal CDFs of individual variables. In the
following, we apply the technique described in [18] with some
manipulation for the calculation ofFzn(t1, t2, . . . , tn). When
t1 ≥ t2 + t3 + . . .+ tn, Fzn(t1, t2, . . . , tn) can be calculated
for anyn value and the derivation is deferred to Appendix B.
Let the survival function [17] of{z1, z2, . . . , zn} be defined as

t3

z2 + z3 = t1

z2

z2 + z3 = t1

z3

z2

z3

︷ ︸︸ ︷

Fz1(t1)− F z2(t1, t2)− F z2(t1, t3)

︷ ︸︸ ︷
∫ t3

0

∫ t2

0

∫ t1

z2+z3

f(z1, z2, z3)dz1dz2dz3

Fz3(t1, t2, t3)

t2 t2

t1 < t2 + t3t1 ≥ t2 + t3

t3

Fig. 2. Illustration of the inclusion-exclusion principlefor n = 3 where the
shaded areas refer to integration regions.

F zn(t1, t2, . . . , tn) = Pr (z1 ≤ t1, z2 > t2, . . . , zn > tn). It is
worth to mention that this survival function is not the comple-
mentary CDF of{z1, z2, . . . , zn} evaluated at{t1, t2, . . . , tn}.
Assuming 0 ≤ {t1, t2, . . . , tn} ≤ 1, we first calculate the
CDFs of z1 and {z1, z2} together with the survival function
of {z1, z2} as

Fz1(t1) =

∫ t1

0

f(z1)dz1,

Fz2(t1, t2) =

∫ t2

0

∫ t1

z2

f(z1, z2)dz1dz2,

and F z2(t1, t2) = Fz1(t1) − Fz2(t1, t2). Second, we obtain
the CDF and survival function of{z1, z2, z3} as

Fz3(t1, t2, t3)

=

{
Given in Appendix B fort1 ≥ t2 + t3,
Fz1(t1)− F z2(t1, t2)− F z2(t1, t3) for t1 < t2 + t3,

(32)
and

F z3(t1, t2, t3)

=







Fz1(t1)− Fz2(t1, t2)− Fz2(t1, t3) + Fz3(t1, t2, t3)

for t1 ≥ t2 + t3,

0 for t1 < t2 + t3,
(33)

respectively. Using the fact thatz2 + z3 ≤ z1 from (29),
F z3(t1, t2, t3) = Pr (z1 ≤ t1, z2 > t2, z3 > t3) can be
determined to be equal to zero whent1 < t2 + t3. In Fig. 2,
the inclusion-exclusion principle used in (32) is illustrated for
n = 3. The shaded areas represent the integration regions
for the evaluation of the CDF at{t1, t2, t3}. Proceeding same
way as above, we can computeFzn(t1, t2, . . . , tn) for any
n with n ∈ {3, . . . ,M} in a recursive manner as given in
(34) on the next page [17], [18]. Theoretically, one can
calculateFzn(t1, t2, . . . , tn) and F zn(t1, t2, . . . , tn) for any
dimensions. Below, we use the preceding procedure to find
the joint PDF of the first three scheduled users’ SINRs.
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1) Example: We present an application of the general result
given in Theorem 2 for the first three scheduled users’ SINRs
for anyK ≥ M ≥ 3. We haveξ1(t1) andξ2(t2, t1) given by

ξ1(t1) = f(z1 = t1) =
e−

M
P

t1
1−t1 (M/P )M

(1− t1)M+1

tM−1
1

(M − 1)!

and

ξ2(t2, t1) =

∫ t1

t2

f(z1, z2 = t2)dz1

=

M−2∑

i=0

(
M − 2

i

)
(−1)i

Γ(M − 1)

(
M

P

)i

eM/P (1− t2)
M−2−i

×

{

Γ

(

M − i,
M

P (1− t2)

)

− Γ

(

M − i,
M

P (1− t1)

)}

.

For ξ3(t3, t2, t1), we have two upper bounds onz2 as
0 ≤ z2 ≤ {t2, t1 − t3}. Consequently, one can write

ξ3(t3, t2, t1) =

{
η(t2) for t1 ≥ t2 + t3,
η(t1 − t3) for t1 < t2 + t3,

whereη(.) is given in (36) as a double-column equation. Using
(32), Fz3(t1, t2, t3) can be expressed as

Fz3(t1, t2, t3)

=

{
Given in Appendix B fort1 ≥ t2 + t3,
Fz2(t1, t2) + Fz2(t1, t3)− Fz1(t1) for t1 < t2 + t3,

(37)
where

Fz1(t1) =

∫ t1

0

f(z1)dz1

=

∫ t1

0

e−
M
P

z1
1−z1 (M/P )M

(1 − z1)M+1

zM−1
1

(M − 1)!
dz1

=

M−1∑

i=0

(
M − 1

i

)
(−1)i

Γ(M)

(
M

P

)i

eM/P (38)

×

[

Γ

(

M − i,
M

P

)

− Γ

(

M − i,
M

P (1 − t1)

)]

and Fz2(t1, t2) is given in (39) at the bottom of this page.
Finally, the joint PDF of {t1, t2, t3} can be obtained by
substitutingFz3(t1, t2, t3), ξ1(t1), ξ2(t2, t1), andξ(t3, t2, t1)

Fzn(t1, t2, . . . , tn) =







Given in Appendix B for t1 ≥ t2 + t3 + . . .+ tn,
Fz1(t1)−

∑n
i=2 F z2(t1, ti)

+
∑n−1

i=2

∑n
j=i+1 F z3(t1, ti, tj)

...
+(−1)n

∑

2≤i1<i2<
...<in−2≤n

F zn−1
(t1, ti1 , . . . , tin−2

) for t1 < t2 + t3 + . . .+ tn,

(34)

F zn(t1, t2, . . . , tn) =







Fz1(t1)−
∑n

i=2 Fz2(t1, ti)

+
∑n−1

i=2

∑n
j=i+1 Fz3(t1, ti, tj)

...
+(−1)n−1Fzn(t1, t2, . . . , tn) for t1 ≥ t2 + t3 + . . .+ tn,
0 for t1 < t2 + t3 + . . .+ tn.

(35)

η(x) =

∫ x

0

∫ t1

z2+t3

f(z1, z2, z3 = t3)dz1dz2

=
M−3∑

i=0

(
M − 3

i

)
(−1)i

Γ(M − 2)

(
M

P

)i

eM/P

{

− Γ

(

M − i,
M

P (1− t1)

)
(1− t3)

M−i−2 − (1− x− t3)
M−i−2

M − i− 2

+ Γ(M − i)

(
M

P

)M−i−2 M−i−1∑

j=0

Γ
(

i + j + 2−M, M
P (1−t3)

)

− Γ
(

i+ j + 2−M, M
P (1−x−t3)

)

j!

}

. (36)

Fz2(t1, t2) =

∫ t2

0

∫ t1

z2

f(z1, z2)dz1dz2

=

M−2∑

i=0

(
M − 2

i

)
(−1)i

Γ(M − 1)

(
M

P

)i

eM/P

{

− Γ

(

M − i,
M

P (1− t1)

)
1− (1− t2)

M−i−1

M − i− 1

+ Γ(M − i)

(
M

P

)M−i−1 M−i−1∑

j=0

Γ
(
i+ j + 1−M, M

P

)
− Γ

(

i+ j + 1−M, M
P (1−t2)

)

j!

}

. (39)
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Fig. 3. Comparison of the analytical PDF expressions with the numerical
results for OLBF withP = 15 dB andK = 10.

in (30) with n = 3. This is given by

f(t1, t2, t3)=







K!
(K−3)! (Fz3,t1≥t2+t3(t1, t2, t3))

K−3 ξ1(t1)

×ξ2(t2, t1)η(t2) for t1 ≥ t2 + t3,

K!
(K−3)! (Fz3,t1<t2+t3(t1, t2, t3))

K−3
ξ1(t1)

×ξ2(t2, t1)η(t1 − t3) for t1 < t2 + t3,
(40)

with 0 ≤ {t2, t3} ≤ t1 ≤ 1 whereFz3,t1≥t2+t3(t1, t2, t3) and
Fz3,t1<t2+t3(t1, t2, t3) refer to two segments involved in the
evaluation ofFz3(t1, t2, t3) for t1 ≥ t2 + t3 andt1 < t2 + t3,
respectively. At this point, we can first obtain the marginal
PDF of tn and then apply the inverse of the transformation
given in (27) to get the marginal PDF of the actual SINRyn.
Other possibility is to obtain the joint PDF of actual SINRs
through the same transformation:

f(y1, y2, y3) =
f
(

t1 = y1

1+y1
, t2 = y2

1+y2
, t3 = y3

1+y3

)

(1 + y1)
2
(1 + y2)

2
(1 + y3)

2 (41)

with 0 ≤ {y2, y3} ≤ y1 [15]. The corresponding average sum
rate can be expressed as

E [log(1 + y1) + log(1 + y2) + log(1 + y3)] .

The PDF expressions of the second and third scheduled
users are illustrated in Fig. 3 together with the corresponding
simulated histograms forP = 15 dB and K = 10. The
simulated results are based on105 realizations and twoM
values ofM = {2, 3} are used with the number of scheduled
users being equal toM . The strong match between analytical
and simulated results validates the accuracy of the analysis
above.
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Fig. 4. Sum rate performance of greedy ZF DP, adaptive OBF, and OLBF
for M = r = 3, P = {0, 10} dB, and varyingK.

VI. N UMERICAL RESULTS

This section illustrates the sum rate performance of adaptive
OBF and OLBF algorithms by computer simulations and
analytical results. We also compare these two orthogonal BF
schemes with two other well-known multiuser BF algorithms.
The first one is greedy zero-forcing dirty paper coding (ZF
DP) algorithm under uniform power allocation and is used
as a benchmark scheme. Greedy ZF DP is a combination of
scalar dirty paper coding and BF at the transmitter to yield
interference-free users [20], [21]. It has been shown to attain
the same slope of sum rate increase with transmit power
in dB as the capacity-achieving DPC [4]. The other scheme
used is based on zero-forcing BF and called zero-forcing BF
with greedy user selection (ZFS) [4]. In order to make a fair
comparison, we assume that the number of scheduled users is
M for all four schemes. The average sum rate is depicted
with respect toK with M = 3 and P = {0, 10} dB in
Fig. 4. ForP = 10 dB, adaptive OBF and OLBF yield sum
rates that are more than75% and65% of greedy ZF DP sum
rate, respectively. The sum rate loss against greedy ZF DP
is smaller forP = 0 dB where the sum rates of adaptive
OBF and OLBF are more than90% and 80% of greedy
ZF DP sum rate, respectively. ForP values around0 dB,
one can use either of the low complexity algorithms adaptive
OBF or OLBF without losing much in terms of sum rate
performance. Most importantly, the simulated and analytical
curves are on top of each other verifying the accuracy of
the analytical derivations. In Fig. 5, we plot the average sum
rate for M = {2, 4} and varyingP where the number of
users is chosen asK = M . Note that adaptive OBF and
OLBF become identical forM = 2 under this setting. In
this scenario, two orthogonal BF schemes outperform ZFS
for most of the plottedP range. The performance gap can
be attributed to the better control of multiuser interference by
orthogonal BF schemes [5]. Also, adaptive OBF yields better
performance as compared to OLBF under this setting.
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Fig. 5. Sum rate comparison of adaptive OBF and OLBF with ZFS for
M = r = {2, 4}, K = M , and varyingP .

VII. C ONCLUSION

In this paper, we investigate a statistical analysis for thesum
rate performance of two orthogonal BF schemes, each one
of which carries out user scheduling and computation of BF
weight vectors in conjunction. Multiuser BF algorithms com-
bined with non-random user scheduling techniques are gen-
erally difficult to analyze as ordering among the user SINRs
make it intractable to derive marginal PDFs of the scheduled
users’ SINRs by standard approaches using conditional PDFs.
By taking a fresh look at the problem, we have derived
a general result from order statistics on the joint PDF of
scheduled users’ SINRs under a certain scheduling algorithm
with some definite properties. This result has been specifically
applied to two orthogonal BF schemes, namely adaptive OBF
and OLBF, to find compact solutions for the joint PDF of
the scheduled users’ SINRs. In particular, we have obtained
closed-form expressions for the first three scheduled usersfor
both schemes. Our key finding is to demonstrate the relation
between the probability distribution functions in unordered
and ordered SINR cases. Evaluation of the CDF of unordered
SINRs has been shown to be instrumental for analysis and a
recursive technique has been developed to evaluate the CDF
in OLBF case. Finally, we have verified our analysis with
numerical results. The presented analysis can also be applied
for similar algorithms.

APPENDIX A
PROOF OFTHEOREM 1

We resort to the result of Section III. In order to evaluate
the integralφk(yk, yk−1, . . . , y1) in (6), we need the region
defined bySk. For adaptive OBF, this is given by

Sk : vk1 ≥ vk2 ≥ . . . ≥ vkn ≥ 0 (42)

for all k ∈ {1, 2, . . . ,K}. Using this together with (4),
φk(yk, yk−1, . . . , y1) can be written as

φk(yk, yk−1, . . . , y1)

=

∫ yk−1

yk

∫ yk−2

vk−1

. . .

∫ y1

v2

f(v1, v2, . . . , vk−1, vk = yk)

× dv1 . . . dvk−2dvk−1 (43)

for k ∈ {2, . . . , n}. Note that due to the assumption
that the network consists of homogeneous users, the PDF
f(vk1, vk2, . . . , vkn) in (2) is independent ofk. Also, (K−n)
CDF expressions inside the second parentheses in (6) are
identical. Consequently, the joint PDF of{y1, y2, . . . , yn} can
be written as

f(y1, . . . , yn) =
K!

(K − n)!
(Fvkn

(y1, y2, . . . , yn))
K−n

×

n∏

k=1

φk(yk, yk−1, . . . , y1).

(44)
Using (4) and (42) together with (13), the CDF expression in
(44) can be evaluated as

Fvkn
(y1, y2, . . . , yn)

=

∫ yn

0

∫ yn−1

vn

. . .

∫ y1

v2

f(v1, v2, . . . , vn)dv1 . . . dvn−1dvn

=

∫ yn

0

φn(α, yn−1, . . . , y1)dα (45)

where we apply a change of variables asvn = α. Using (43)
and (45) in (44) with a change of function names asφ → ϕ
yields the desired result given in (14).

APPENDIX B
EVALUATION OF Fzn(t1, t2, . . . , tn) FOR t1≥ t2+t3+. . .+tn

For t1 ≥ t2+t3+. . .+tn, Fzn(t1, t2, . . . , tn) can be written
as

Fzn(t1, t2, . . . , tn)

=

tn∫

0

. . .

t2∫

0

t1∫

z2+z3+...+zn

f(z1, z2, . . . , zn) dz1dz2 . . . dzn

=

tn∫

0

. . .

t2∫

0

t1∫

z2+z3+...+zn

e−
M
P

z1
1−z1 (M/P )M

(1− z1)M+1

(z1 −
∑n

i=2 zi)
M−n

(M − n)!

× dz1dz2 . . . dzn. (46)

A direct closed-form solution for the above integral is rather
complicated to derive. The difficulty occurs due to the fact
that the inner-most integral is with respect toz1. Instead
of directly solving this integral, we change the integration
order such thatz1 is the last integration variable and apply
the inclusion-exclusion principle as similar to Section V.
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For t1 ≥ t2 + t3 + . . . + tn, we defineWn(z1, t2, . . . , tn)
andWn(z1, t2, . . . , tn) as

Wn(z1, t2, . . . , tn) = Pr (z1, z2 ≤ t2, z3 ≤ t3, . . . , zn ≤ tn)

and

Wn(z1, t2, . . . , tn) = Pr (z1, z2 > t2, z3 > t3, . . . , zn > tn).

Then, we can write

Fzn(t1, t2, . . . , tn) =

∫

z1

Wn(z1, t2, . . . , tn)dz1 (47)

for t1 ≥ t2 + t3 + . . .+ tn. Also, we have

W 2(z1, t2) =

∫ z1

t2

f(z1, z2)dz2

and
W2(z1, t2) = f(z1)−W 2(z1, t2)

where f(z1) and f(z1, z2) can be derived from (29). For
n = 3, we have

W3(z1, t2, t3)

=

{ ∫ t3
0

∫ t2
0 f(z1, z2, z3)dz2dz3 for z1 ≥ t2 + t3,

f(z1)−W 2(z1, t2)−W 2(z1, t3) for z1 < t2 + t3,
(48)

and

W 3(z1, t2, t3)

=







f(z1)−W2(z1, t2)−W2(z1, t3) +W3(z1, t2, t3)
for z1 ≥ t2 + t3,

0 for z1 < t2 + t3.
(49)

Using the inclusion-exclusion principle [11], we can
express Wn(z1, t2, t3, . . . , tn) and Wn(z1, t2, t3, . . . , tn)
in a recursive manner for anyn with n ∈ {3, . . . ,M}
as given in (50) and (51). The integral in the first line in
(50) can be solved by substituting (29). The closed-form
solution is given in (52) which can be integrated overz1
by applying a change of variables and using the binomial
expansion formula [14]. The domain of the integration is
given by [t2 + t3 + . . . + tn, t1]. The recursive structure
presented above can be utilized to writeWn(z1, t2, . . . , tn)
with n ∈ {4, . . . ,M} in terms of (52),f(z1), W2(z1, ti), and
W3(z1, tj , tk). Consequently, to evaluateFzn(t1, t2, . . . , tn)
for t1 ≥ t2 + t3 + . . . + tn, we only need to calculate the
integrals of these simpler expressions overz1 which can be
evaluated by taking the segmentations ofz1 into account. As
an example, the closed-form solution ofFz3(t1, t2, t3) for
t1 ≥ t2 + t3, i.e,

∫

z1
W3(z1, t2, t3)dz1, is given in (53) at the

top of the next page. In the same manner, using (50), (51),
and (52),Fzn(t1, t2, . . . , tn) for t1 ≥ t2 + t3 + . . . + tn can
be evaluated for anyn in an exact closed-form.

Wn(z1, t2, . . . , tn) =







∫ tn
0
. . .
∫ t2
0

f(z1, z2, . . . , zn) dz2 . . . dzn for z1 ≥ t2 + t3 + . . .+ tn,

f(z1)−
∑n

i=2 W 2(z1, ti)

+
∑n−1

i=2

∑n
j=i+1 W 3(z1, ti, tj)

...
+(−1)n

∑

2≤i1<i2<
...<in−2≤n

Wn−1(z1, ti1 , . . . , tin−2
) for z1 < t2 + t3 + . . .+ tn,

(50)

Wn(z1, t2, . . . , tn) =







f(z1)−
∑n

i=2 W2(z1, ti)

+
∑n−1

i=2

∑n
j=i+1 W3(z1, ti, tj)

...
+(−1)n−1Wn(z1, t2, . . . , tn) for z1 ≥ t2 + t3 + . . .+ tn,

0 for z1 < t2 + t3 + . . .+ tn.

(51)

∫ tn

0

. . .

∫ t3

0

∫ t2

0

f(z1, z2, . . . , zn)dz2 . . . dzn

=
e
−M

P

z1
1−z1 (M/P )M

(1− z1)M+1

zM−1
1 −

n∑

i=2

(z1 − ti)
M−1 +

∑

2≤i1<i2≤n

(z1 − ti1 − ti2)
M−1 + . . .+ (−1)n−1

(

z1 −
n∑

j=2

tj

)M−1

(M − 1)!
.

(52)
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∫

z1

W3(z1, t2, t3)dz1 =

∫ t1

t2+t3

∫ t3

0

∫ t2

0

f(z1, z2, z3)dz2dz3dz1 +

∫ t2+t3

0

f(z1)dz1 −

∫ t2+t3

t2

∫ z1

t2

f(z1, z2)dz2dz1

−

∫ t2+t3

t3

∫ z1

t3

f(z1, z2)dz2dz1

=

M−1∑

i=0

(
M − 1

i

)
(−1)i

Γ(M)

(
M

P

)i

eM/P

{

Γ

(

M − i,
M

P

)

− (1− t2)
M−i−1Γ

(

M − i,
M

P (1 − t2)

)

−(1− t3)
M−i−1Γ

(

M − i,
M

P (1− t3)

)

+ (1− t2 − t3)
M−i−1Γ

(

M − i,
M

P (1− t2 − t3)

)

−

[

1− (1− t2)
M−i−1 − (1− t3)

M−i−1 + (1− t2 − t3)
M−i−1

]

Γ

(

M − i,
M

P (1− t1)

)}

. (53)
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